Newspace parameters
Level: | \( N \) | \(=\) | \( 105 = 3 \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 105.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(6.19520055060\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{17}) \) |
Defining polynomial: |
\( x^{2} - x - 4 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Fricke sign: | \(1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−5.56155 | −3.00000 | 22.9309 | −5.00000 | 16.6847 | −7.00000 | −83.0388 | 9.00000 | 27.8078 | ||||||||||||||||||||||||
1.2 | −1.43845 | −3.00000 | −5.93087 | −5.00000 | 4.31534 | −7.00000 | 20.0388 | 9.00000 | 7.19224 | |||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(3\) | \(1\) |
\(5\) | \(1\) |
\(7\) | \(1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 105.4.a.c | ✓ | 2 |
3.b | odd | 2 | 1 | 315.4.a.m | 2 | ||
4.b | odd | 2 | 1 | 1680.4.a.bk | 2 | ||
5.b | even | 2 | 1 | 525.4.a.p | 2 | ||
5.c | odd | 4 | 2 | 525.4.d.i | 4 | ||
7.b | odd | 2 | 1 | 735.4.a.k | 2 | ||
15.d | odd | 2 | 1 | 1575.4.a.m | 2 | ||
21.c | even | 2 | 1 | 2205.4.a.bh | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
105.4.a.c | ✓ | 2 | 1.a | even | 1 | 1 | trivial |
315.4.a.m | 2 | 3.b | odd | 2 | 1 | ||
525.4.a.p | 2 | 5.b | even | 2 | 1 | ||
525.4.d.i | 4 | 5.c | odd | 4 | 2 | ||
735.4.a.k | 2 | 7.b | odd | 2 | 1 | ||
1575.4.a.m | 2 | 15.d | odd | 2 | 1 | ||
1680.4.a.bk | 2 | 4.b | odd | 2 | 1 | ||
2205.4.a.bh | 2 | 21.c | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{2} + 7T_{2} + 8 \)
acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(105))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} + 7T + 8 \)
$3$
\( (T + 3)^{2} \)
$5$
\( (T + 5)^{2} \)
$7$
\( (T + 7)^{2} \)
$11$
\( T^{2} + 26T - 256 \)
$13$
\( T^{2} - 14T - 2008 \)
$17$
\( T^{2} - 16T - 3268 \)
$19$
\( T^{2} - 174T + 4696 \)
$23$
\( T^{2} - 184T - 4864 \)
$29$
\( T^{2} + 32T - 29732 \)
$31$
\( T^{2} - 330T + 25848 \)
$37$
\( T^{2} + 132T + 1908 \)
$41$
\( T^{2} - 200T - 73300 \)
$43$
\( T^{2} - 364T + 13472 \)
$47$
\( T^{2} - 292T - 28256 \)
$53$
\( T^{2} - 34T - 194344 \)
$59$
\( T^{2} - 364T + 27616 \)
$61$
\( T^{2} - 792T - 113076 \)
$67$
\( T^{2} + 788T + 151904 \)
$71$
\( T^{2} - 454T - 411296 \)
$73$
\( T^{2} - 778T + 16664 \)
$79$
\( T^{2} - 408T + 8704 \)
$83$
\( T^{2} - 1136T + 26416 \)
$89$
\( T^{2} - 36T - 2252108 \)
$97$
\( T^{2} + 498T - 28592 \)
show more
show less