Properties

Label 105.4.a.a
Level $105$
Weight $4$
Character orbit 105.a
Self dual yes
Analytic conductor $6.195$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 105.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(6.19520055060\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - 3q^{3} - 8q^{4} + 5q^{5} + 7q^{7} + 9q^{9} + O(q^{10}) \) \( q - 3q^{3} - 8q^{4} + 5q^{5} + 7q^{7} + 9q^{9} + 42q^{11} + 24q^{12} + 20q^{13} - 15q^{15} + 64q^{16} + 66q^{17} + 38q^{19} - 40q^{20} - 21q^{21} + 12q^{23} + 25q^{25} - 27q^{27} - 56q^{28} - 258q^{29} + 146q^{31} - 126q^{33} + 35q^{35} - 72q^{36} + 434q^{37} - 60q^{39} - 282q^{41} + 20q^{43} - 336q^{44} + 45q^{45} - 72q^{47} - 192q^{48} + 49q^{49} - 198q^{51} - 160q^{52} + 336q^{53} + 210q^{55} - 114q^{57} - 360q^{59} + 120q^{60} - 682q^{61} + 63q^{63} - 512q^{64} + 100q^{65} + 812q^{67} - 528q^{68} - 36q^{69} + 810q^{71} - 124q^{73} - 75q^{75} - 304q^{76} + 294q^{77} + 1136q^{79} + 320q^{80} + 81q^{81} + 156q^{83} + 168q^{84} + 330q^{85} + 774q^{87} - 1038q^{89} + 140q^{91} - 96q^{92} - 438q^{93} + 190q^{95} + 1208q^{97} + 378q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −3.00000 −8.00000 5.00000 0 7.00000 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(1\)
\(5\) \(-1\)
\(7\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 105.4.a.a 1
3.b odd 2 1 315.4.a.d 1
4.b odd 2 1 1680.4.a.s 1
5.b even 2 1 525.4.a.e 1
5.c odd 4 2 525.4.d.f 2
7.b odd 2 1 735.4.a.c 1
15.d odd 2 1 1575.4.a.f 1
21.c even 2 1 2205.4.a.o 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.4.a.a 1 1.a even 1 1 trivial
315.4.a.d 1 3.b odd 2 1
525.4.a.e 1 5.b even 2 1
525.4.d.f 2 5.c odd 4 2
735.4.a.c 1 7.b odd 2 1
1575.4.a.f 1 15.d odd 2 1
1680.4.a.s 1 4.b odd 2 1
2205.4.a.o 1 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(105))\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \)
$3$ \( 3 + T \)
$5$ \( -5 + T \)
$7$ \( -7 + T \)
$11$ \( -42 + T \)
$13$ \( -20 + T \)
$17$ \( -66 + T \)
$19$ \( -38 + T \)
$23$ \( -12 + T \)
$29$ \( 258 + T \)
$31$ \( -146 + T \)
$37$ \( -434 + T \)
$41$ \( 282 + T \)
$43$ \( -20 + T \)
$47$ \( 72 + T \)
$53$ \( -336 + T \)
$59$ \( 360 + T \)
$61$ \( 682 + T \)
$67$ \( -812 + T \)
$71$ \( -810 + T \)
$73$ \( 124 + T \)
$79$ \( -1136 + T \)
$83$ \( -156 + T \)
$89$ \( 1038 + T \)
$97$ \( -1208 + T \)
show more
show less