Properties

Label 105.3.w.a.17.5
Level $105$
Weight $3$
Character 105.17
Analytic conductor $2.861$
Analytic rank $0$
Dimension $112$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [105,3,Mod(17,105)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(105, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 3, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("105.17");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.w (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(112\)
Relative dimension: \(28\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 17.5
Character \(\chi\) \(=\) 105.17
Dual form 105.3.w.a.68.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.63032 - 0.704792i) q^{2} +(1.27430 + 2.71591i) q^{3} +(2.95775 + 1.70766i) q^{4} +(-2.97248 - 4.02050i) q^{5} +(-1.43765 - 8.04182i) q^{6} +(6.12741 - 3.38450i) q^{7} +(1.12583 + 1.12583i) q^{8} +(-5.75234 + 6.92175i) q^{9} +(4.98495 + 12.6702i) q^{10} +(5.63427 + 3.25295i) q^{11} +(-0.868794 + 10.2090i) q^{12} +(13.0639 + 13.0639i) q^{13} +(-18.5024 + 4.58376i) q^{14} +(7.13149 - 13.1963i) q^{15} +(-8.99845 - 15.5858i) q^{16} +(30.7094 - 8.22856i) q^{17} +(20.0089 - 14.1522i) q^{18} +(4.50822 + 7.80847i) q^{19} +(-1.92621 - 16.9676i) q^{20} +(17.0001 + 12.3286i) q^{21} +(-12.5273 - 12.5273i) q^{22} +(0.794284 - 2.96431i) q^{23} +(-1.62302 + 4.49231i) q^{24} +(-7.32876 + 23.9017i) q^{25} +(-25.1549 - 43.5695i) q^{26} +(-26.1290 - 6.80247i) q^{27} +(23.9029 + 0.453019i) q^{28} +21.7392 q^{29} +(-28.0587 + 29.6842i) q^{30} +(-15.7113 - 9.07093i) q^{31} +(11.0357 + 41.1859i) q^{32} +(-1.65498 + 19.4474i) q^{33} -86.5750 q^{34} +(-31.8209 - 14.5749i) q^{35} +(-28.8339 + 10.6498i) q^{36} +(5.32041 - 19.8560i) q^{37} +(-6.35472 - 23.7161i) q^{38} +(-18.8331 + 52.1276i) q^{39} +(1.17989 - 7.87293i) q^{40} -60.4331 q^{41} +(-36.0266 - 44.4098i) q^{42} +(16.3358 - 16.3358i) q^{43} +(11.1098 + 19.2428i) q^{44} +(44.9275 + 2.55250i) q^{45} +(-4.17844 + 7.23727i) q^{46} +(-9.02511 + 33.6822i) q^{47} +(30.8629 - 44.2999i) q^{48} +(26.0903 - 41.4764i) q^{49} +(36.1227 - 57.7037i) q^{50} +(61.4809 + 72.9184i) q^{51} +(16.3310 + 60.9483i) q^{52} +(15.7852 - 4.22963i) q^{53} +(63.9334 + 36.3082i) q^{54} +(-3.66928 - 32.3219i) q^{55} +(10.7088 + 3.08807i) q^{56} +(-15.4623 + 22.1942i) q^{57} +(-57.1811 - 15.3216i) q^{58} +(-55.9306 - 32.2915i) q^{59} +(43.6278 - 26.8531i) q^{60} +(52.7606 - 30.4613i) q^{61} +(34.9327 + 34.9327i) q^{62} +(-11.8203 + 61.8812i) q^{63} -44.1224i q^{64} +(13.6912 - 91.3554i) q^{65} +(18.0595 - 49.9865i) q^{66} +(-6.94415 + 1.86068i) q^{67} +(104.882 + 28.1031i) q^{68} +(9.06294 - 1.62020i) q^{69} +(73.4270 + 60.7637i) q^{70} +40.3109i q^{71} +(-14.2689 + 1.31656i) q^{72} +(-85.5456 + 22.9219i) q^{73} +(-27.9887 + 48.4779i) q^{74} +(-74.2538 + 10.5535i) q^{75} +30.7940i q^{76} +(45.5331 + 0.862966i) q^{77} +(86.2761 - 123.839i) q^{78} +(34.2910 - 19.7979i) q^{79} +(-35.9148 + 82.5065i) q^{80} +(-14.8212 - 79.6325i) q^{81} +(158.958 + 42.5928i) q^{82} +(-16.2867 + 16.2867i) q^{83} +(29.2290 + 65.4954i) q^{84} +(-124.366 - 99.0078i) q^{85} +(-54.4817 + 31.4550i) q^{86} +(27.7022 + 59.0418i) q^{87} +(2.68098 + 10.0055i) q^{88} +(5.70943 - 3.29634i) q^{89} +(-116.375 - 38.3785i) q^{90} +(124.262 + 35.8331i) q^{91} +(7.41130 - 7.41130i) q^{92} +(4.61496 - 54.2296i) q^{93} +(47.4778 - 82.2340i) q^{94} +(17.9933 - 41.3358i) q^{95} +(-97.7944 + 82.4551i) q^{96} +(-56.3794 + 56.3794i) q^{97} +(-97.8582 + 90.7080i) q^{98} +(-54.9264 + 20.2870i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 112 q - 6 q^{3} - 16 q^{7} - 60 q^{10} - 30 q^{12} - 20 q^{15} + 120 q^{16} + 46 q^{18} - 96 q^{21} - 80 q^{22} + 28 q^{25} - 136 q^{28} - 80 q^{30} - 24 q^{31} - 36 q^{33} - 272 q^{36} + 60 q^{37} - 72 q^{40}+ \cdots + 2184 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.63032 0.704792i −1.31516 0.352396i −0.467997 0.883730i \(-0.655024\pi\)
−0.847162 + 0.531334i \(0.821691\pi\)
\(3\) 1.27430 + 2.71591i 0.424765 + 0.905303i
\(4\) 2.95775 + 1.70766i 0.739437 + 0.426914i
\(5\) −2.97248 4.02050i −0.594495 0.804099i
\(6\) −1.43765 8.04182i −0.239609 1.34030i
\(7\) 6.12741 3.38450i 0.875344 0.483500i
\(8\) 1.12583 + 1.12583i 0.140729 + 0.140729i
\(9\) −5.75234 + 6.92175i −0.639149 + 0.769083i
\(10\) 4.98495 + 12.6702i 0.498495 + 1.26702i
\(11\) 5.63427 + 3.25295i 0.512207 + 0.295723i 0.733740 0.679430i \(-0.237773\pi\)
−0.221534 + 0.975153i \(0.571106\pi\)
\(12\) −0.868794 + 10.2090i −0.0723995 + 0.850753i
\(13\) 13.0639 + 13.0639i 1.00491 + 1.00491i 0.999988 + 0.00492615i \(0.00156805\pi\)
0.00492615 + 0.999988i \(0.498432\pi\)
\(14\) −18.5024 + 4.58376i −1.32160 + 0.327412i
\(15\) 7.13149 13.1963i 0.475432 0.879752i
\(16\) −8.99845 15.5858i −0.562403 0.974110i
\(17\) 30.7094 8.22856i 1.80644 0.484033i 0.811483 0.584376i \(-0.198661\pi\)
0.994953 + 0.100343i \(0.0319939\pi\)
\(18\) 20.0089 14.1522i 1.11160 0.786234i
\(19\) 4.50822 + 7.80847i 0.237275 + 0.410972i 0.959931 0.280235i \(-0.0904125\pi\)
−0.722657 + 0.691207i \(0.757079\pi\)
\(20\) −1.92621 16.9676i −0.0963106 0.848379i
\(21\) 17.0001 + 12.3286i 0.809530 + 0.587078i
\(22\) −12.5273 12.5273i −0.569422 0.569422i
\(23\) 0.794284 2.96431i 0.0345341 0.128883i −0.946507 0.322684i \(-0.895415\pi\)
0.981041 + 0.193801i \(0.0620816\pi\)
\(24\) −1.62302 + 4.49231i −0.0676258 + 0.187180i
\(25\) −7.32876 + 23.9017i −0.293150 + 0.956066i
\(26\) −25.1549 43.5695i −0.967495 1.67575i
\(27\) −26.1290 6.80247i −0.967742 0.251943i
\(28\) 23.9029 + 0.453019i 0.853674 + 0.0161793i
\(29\) 21.7392 0.749629 0.374814 0.927100i \(-0.377706\pi\)
0.374814 + 0.927100i \(0.377706\pi\)
\(30\) −28.0587 + 29.6842i −0.935291 + 0.989474i
\(31\) −15.7113 9.07093i −0.506817 0.292611i 0.224708 0.974426i \(-0.427857\pi\)
−0.731524 + 0.681816i \(0.761191\pi\)
\(32\) 11.0357 + 41.1859i 0.344867 + 1.28706i
\(33\) −1.65498 + 19.4474i −0.0501510 + 0.589315i
\(34\) −86.5750 −2.54632
\(35\) −31.8209 14.5749i −0.909170 0.416425i
\(36\) −28.8339 + 10.6498i −0.800942 + 0.295827i
\(37\) 5.32041 19.8560i 0.143795 0.536650i −0.856011 0.516957i \(-0.827065\pi\)
0.999806 0.0196925i \(-0.00626871\pi\)
\(38\) −6.35472 23.7161i −0.167229 0.624109i
\(39\) −18.8331 + 52.1276i −0.482899 + 1.33660i
\(40\) 1.17989 7.87293i 0.0294974 0.196823i
\(41\) −60.4331 −1.47398 −0.736989 0.675904i \(-0.763753\pi\)
−0.736989 + 0.675904i \(0.763753\pi\)
\(42\) −36.0266 44.4098i −0.857777 1.05738i
\(43\) 16.3358 16.3358i 0.379902 0.379902i −0.491165 0.871067i \(-0.663429\pi\)
0.871067 + 0.491165i \(0.163429\pi\)
\(44\) 11.1098 + 19.2428i 0.252496 + 0.437336i
\(45\) 44.9275 + 2.55250i 0.998390 + 0.0567223i
\(46\) −4.17844 + 7.23727i −0.0908356 + 0.157332i
\(47\) −9.02511 + 33.6822i −0.192024 + 0.716642i 0.800994 + 0.598673i \(0.204305\pi\)
−0.993017 + 0.117969i \(0.962362\pi\)
\(48\) 30.8629 44.2999i 0.642976 0.922914i
\(49\) 26.0903 41.4764i 0.532456 0.846458i
\(50\) 36.1227 57.7037i 0.722454 1.15407i
\(51\) 61.4809 + 72.9184i 1.20551 + 1.42977i
\(52\) 16.3310 + 60.9483i 0.314058 + 1.17208i
\(53\) 15.7852 4.22963i 0.297834 0.0798044i −0.106808 0.994280i \(-0.534063\pi\)
0.404642 + 0.914475i \(0.367396\pi\)
\(54\) 63.9334 + 36.3082i 1.18395 + 0.672374i
\(55\) −3.66928 32.3219i −0.0667142 0.587671i
\(56\) 10.7088 + 3.08807i 0.191229 + 0.0551440i
\(57\) −15.4623 + 22.1942i −0.271268 + 0.389373i
\(58\) −57.1811 15.3216i −0.985882 0.264166i
\(59\) −55.9306 32.2915i −0.947976 0.547314i −0.0555241 0.998457i \(-0.517683\pi\)
−0.892451 + 0.451143i \(0.851016\pi\)
\(60\) 43.6278 26.8531i 0.727131 0.447552i
\(61\) 52.7606 30.4613i 0.864927 0.499366i −0.000732064 1.00000i \(-0.500233\pi\)
0.865659 + 0.500634i \(0.166900\pi\)
\(62\) 34.9327 + 34.9327i 0.563430 + 0.563430i
\(63\) −11.8203 + 61.8812i −0.187624 + 0.982241i
\(64\) 44.1224i 0.689412i
\(65\) 13.6912 91.3554i 0.210634 1.40547i
\(66\) 18.0595 49.9865i 0.273629 0.757371i
\(67\) −6.94415 + 1.86068i −0.103644 + 0.0277713i −0.310268 0.950649i \(-0.600419\pi\)
0.206624 + 0.978420i \(0.433752\pi\)
\(68\) 104.882 + 28.1031i 1.54239 + 0.413281i
\(69\) 9.06294 1.62020i 0.131347 0.0234812i
\(70\) 73.4270 + 60.7637i 1.04896 + 0.868053i
\(71\) 40.3109i 0.567759i 0.958860 + 0.283879i \(0.0916215\pi\)
−0.958860 + 0.283879i \(0.908378\pi\)
\(72\) −14.2689 + 1.31656i −0.198180 + 0.0182856i
\(73\) −85.5456 + 22.9219i −1.17186 + 0.313998i −0.791692 0.610920i \(-0.790800\pi\)
−0.380165 + 0.924919i \(0.624133\pi\)
\(74\) −27.9887 + 48.4779i −0.378226 + 0.655107i
\(75\) −74.2538 + 10.5535i −0.990050 + 0.140714i
\(76\) 30.7940i 0.405184i
\(77\) 45.5331 + 0.862966i 0.591339 + 0.0112074i
\(78\) 86.2761 123.839i 1.10610 1.58768i
\(79\) 34.2910 19.7979i 0.434064 0.250607i −0.267013 0.963693i \(-0.586037\pi\)
0.701076 + 0.713086i \(0.252703\pi\)
\(80\) −35.9148 + 82.5065i −0.448935 + 1.03133i
\(81\) −14.8212 79.6325i −0.182978 0.983117i
\(82\) 158.958 + 42.5928i 1.93852 + 0.519424i
\(83\) −16.2867 + 16.2867i −0.196226 + 0.196226i −0.798380 0.602154i \(-0.794309\pi\)
0.602154 + 0.798380i \(0.294309\pi\)
\(84\) 29.2290 + 65.4954i 0.347964 + 0.779707i
\(85\) −124.366 99.0078i −1.46313 1.16480i
\(86\) −54.4817 + 31.4550i −0.633508 + 0.365756i
\(87\) 27.7022 + 59.0418i 0.318416 + 0.678642i
\(88\) 2.68098 + 10.0055i 0.0304657 + 0.113699i
\(89\) 5.70943 3.29634i 0.0641509 0.0370376i −0.467581 0.883950i \(-0.654875\pi\)
0.531732 + 0.846912i \(0.321541\pi\)
\(90\) −116.375 38.3785i −1.29305 0.426427i
\(91\) 124.262 + 35.8331i 1.36552 + 0.393770i
\(92\) 7.41130 7.41130i 0.0805577 0.0805577i
\(93\) 4.61496 54.2296i 0.0496233 0.583114i
\(94\) 47.4778 82.2340i 0.505083 0.874830i
\(95\) 17.9933 41.3358i 0.189403 0.435114i
\(96\) −97.7944 + 82.4551i −1.01869 + 0.858907i
\(97\) −56.3794 + 56.3794i −0.581230 + 0.581230i −0.935241 0.354011i \(-0.884818\pi\)
0.354011 + 0.935241i \(0.384818\pi\)
\(98\) −97.8582 + 90.7080i −0.998553 + 0.925592i
\(99\) −54.9264 + 20.2870i −0.554812 + 0.204919i
\(100\) −62.4924 + 58.1800i −0.624924 + 0.581800i
\(101\) −49.1726 + 85.1694i −0.486857 + 0.843261i −0.999886 0.0151103i \(-0.995190\pi\)
0.513029 + 0.858371i \(0.328523\pi\)
\(102\) −110.322 235.130i −1.08159 2.30520i
\(103\) −19.5269 + 72.8754i −0.189582 + 0.707528i 0.804022 + 0.594600i \(0.202690\pi\)
−0.993603 + 0.112928i \(0.963977\pi\)
\(104\) 29.4155i 0.282842i
\(105\) −0.965253 104.996i −0.00919289 0.999958i
\(106\) −44.5011 −0.419822
\(107\) 98.3911 + 26.3638i 0.919543 + 0.246391i 0.687390 0.726288i \(-0.258756\pi\)
0.232153 + 0.972679i \(0.425423\pi\)
\(108\) −65.6668 64.7394i −0.608026 0.599439i
\(109\) 65.6120 + 37.8811i 0.601945 + 0.347533i 0.769806 0.638278i \(-0.220353\pi\)
−0.167862 + 0.985811i \(0.553686\pi\)
\(110\) −13.1288 + 87.6030i −0.119353 + 0.796391i
\(111\) 60.7070 10.8527i 0.546910 0.0977723i
\(112\) −107.887 65.0452i −0.963279 0.580760i
\(113\) −10.8560 10.8560i −0.0960709 0.0960709i 0.657438 0.753509i \(-0.271640\pi\)
−0.753509 + 0.657438i \(0.771640\pi\)
\(114\) 56.3131 47.4802i 0.493974 0.416493i
\(115\) −14.2790 + 5.61792i −0.124165 + 0.0488515i
\(116\) 64.2991 + 37.1231i 0.554303 + 0.320027i
\(117\) −165.573 + 15.2771i −1.41515 + 0.130573i
\(118\) 124.356 + 124.356i 1.05387 + 1.05387i
\(119\) 160.320 154.356i 1.34722 1.29711i
\(120\) 22.8857 6.82796i 0.190714 0.0568996i
\(121\) −39.3366 68.1330i −0.325096 0.563083i
\(122\) −160.246 + 42.9378i −1.31349 + 0.351949i
\(123\) −77.0097 164.131i −0.626095 1.33440i
\(124\) −30.9801 53.6590i −0.249839 0.432734i
\(125\) 117.881 41.5819i 0.943049 0.332655i
\(126\) 74.7045 154.436i 0.592893 1.22569i
\(127\) 88.1969 + 88.1969i 0.694464 + 0.694464i 0.963211 0.268747i \(-0.0866095\pi\)
−0.268747 + 0.963211i \(0.586609\pi\)
\(128\) 13.0458 48.6876i 0.101920 0.380372i
\(129\) 65.1832 + 23.5499i 0.505296 + 0.182557i
\(130\) −100.399 + 230.644i −0.772298 + 1.77419i
\(131\) −49.7973 86.2514i −0.380132 0.658407i 0.610949 0.791670i \(-0.290788\pi\)
−0.991081 + 0.133262i \(0.957455\pi\)
\(132\) −38.1045 + 54.6944i −0.288670 + 0.414351i
\(133\) 54.0515 + 32.5876i 0.406402 + 0.245020i
\(134\) 19.5767 0.146095
\(135\) 50.3187 + 125.272i 0.372731 + 0.927940i
\(136\) 43.8377 + 25.3097i 0.322336 + 0.186101i
\(137\) −10.7816 40.2375i −0.0786979 0.293704i 0.915348 0.402663i \(-0.131915\pi\)
−0.994046 + 0.108958i \(0.965249\pi\)
\(138\) −24.9803 2.12584i −0.181017 0.0154046i
\(139\) −231.245 −1.66363 −0.831817 0.555051i \(-0.812699\pi\)
−0.831817 + 0.555051i \(0.812699\pi\)
\(140\) −69.2294 97.4480i −0.494496 0.696057i
\(141\) −102.978 + 18.4097i −0.730343 + 0.130565i
\(142\) 28.4108 106.030i 0.200076 0.746693i
\(143\) 31.1093 + 116.102i 0.217548 + 0.811900i
\(144\) 159.643 + 27.3696i 1.10863 + 0.190067i
\(145\) −64.6194 87.4025i −0.445651 0.602776i
\(146\) 241.167 1.65183
\(147\) 145.893 + 18.0057i 0.992470 + 0.122488i
\(148\) 49.6437 49.6437i 0.335430 0.335430i
\(149\) −12.3181 21.3355i −0.0826715 0.143191i 0.821725 0.569884i \(-0.193012\pi\)
−0.904397 + 0.426693i \(0.859679\pi\)
\(150\) 202.749 + 24.5743i 1.35166 + 0.163829i
\(151\) 40.7301 70.5465i 0.269735 0.467196i −0.699058 0.715065i \(-0.746397\pi\)
0.968793 + 0.247869i \(0.0797304\pi\)
\(152\) −3.71553 + 13.8666i −0.0244443 + 0.0912274i
\(153\) −119.695 + 259.896i −0.782319 + 1.69867i
\(154\) −119.158 34.3613i −0.773756 0.223125i
\(155\) 10.2319 + 90.1304i 0.0660122 + 0.581486i
\(156\) −144.719 + 122.020i −0.927689 + 0.782178i
\(157\) −47.6860 177.967i −0.303732 1.13354i −0.934031 0.357192i \(-0.883734\pi\)
0.630299 0.776353i \(-0.282932\pi\)
\(158\) −104.150 + 27.9068i −0.659176 + 0.176626i
\(159\) 31.6023 + 37.4814i 0.198757 + 0.235732i
\(160\) 132.784 166.793i 0.829902 1.04246i
\(161\) −5.16579 20.8518i −0.0320857 0.129514i
\(162\) −17.1397 + 219.905i −0.105801 + 1.35744i
\(163\) −173.547 46.5018i −1.06471 0.285287i −0.316390 0.948629i \(-0.602471\pi\)
−0.748316 + 0.663342i \(0.769137\pi\)
\(164\) −178.746 103.199i −1.08991 0.629262i
\(165\) 83.1076 51.1531i 0.503682 0.310019i
\(166\) 54.3181 31.3605i 0.327217 0.188919i
\(167\) −64.3049 64.3049i −0.385059 0.385059i 0.487862 0.872921i \(-0.337777\pi\)
−0.872921 + 0.487862i \(0.837777\pi\)
\(168\) 5.25932 + 33.0193i 0.0313055 + 0.196544i
\(169\) 172.330i 1.01970i
\(170\) 257.342 + 348.074i 1.51378 + 2.04750i
\(171\) −79.9811 13.7122i −0.467726 0.0801881i
\(172\) 76.2130 20.4212i 0.443099 0.118728i
\(173\) −221.298 59.2966i −1.27918 0.342755i −0.445638 0.895213i \(-0.647023\pi\)
−0.833540 + 0.552459i \(0.813690\pi\)
\(174\) −31.2535 174.823i −0.179618 1.00473i
\(175\) 35.9888 + 171.259i 0.205650 + 0.978626i
\(176\) 117.086i 0.665261i
\(177\) 16.4288 193.051i 0.0928179 1.09069i
\(178\) −17.3409 + 4.64647i −0.0974206 + 0.0261038i
\(179\) −27.9871 + 48.4751i −0.156352 + 0.270810i −0.933551 0.358445i \(-0.883307\pi\)
0.777198 + 0.629256i \(0.216640\pi\)
\(180\) 128.525 + 84.2704i 0.714031 + 0.468169i
\(181\) 59.2423i 0.327306i −0.986518 0.163653i \(-0.947672\pi\)
0.986518 0.163653i \(-0.0523277\pi\)
\(182\) −301.595 181.832i −1.65712 0.999075i
\(183\) 149.963 + 104.476i 0.819469 + 0.570908i
\(184\) 4.23155 2.44309i 0.0229976 0.0132776i
\(185\) −95.6459 + 37.6309i −0.517005 + 0.203410i
\(186\) −50.3594 + 139.388i −0.270749 + 0.749401i
\(187\) 199.792 + 53.5342i 1.06841 + 0.286279i
\(188\) −84.2115 + 84.2115i −0.447934 + 0.447934i
\(189\) −183.126 + 46.7521i −0.968922 + 0.247366i
\(190\) −76.4613 + 96.0448i −0.402428 + 0.505499i
\(191\) −178.680 + 103.161i −0.935496 + 0.540109i −0.888546 0.458788i \(-0.848284\pi\)
−0.0469507 + 0.998897i \(0.514950\pi\)
\(192\) 119.832 56.2250i 0.624127 0.292839i
\(193\) −51.2434 191.243i −0.265510 0.990897i −0.961938 0.273269i \(-0.911895\pi\)
0.696428 0.717627i \(-0.254772\pi\)
\(194\) 188.031 108.560i 0.969234 0.559588i
\(195\) 265.560 79.2298i 1.36184 0.406307i
\(196\) 147.996 78.1235i 0.755082 0.398589i
\(197\) 237.400 237.400i 1.20508 1.20508i 0.232476 0.972602i \(-0.425317\pi\)
0.972602 0.232476i \(-0.0746827\pi\)
\(198\) 158.772 14.6496i 0.801878 0.0739877i
\(199\) −51.7490 + 89.6320i −0.260045 + 0.450412i −0.966254 0.257592i \(-0.917071\pi\)
0.706208 + 0.708004i \(0.250404\pi\)
\(200\) −35.1603 + 18.6583i −0.175801 + 0.0932917i
\(201\) −13.9023 16.4886i −0.0691659 0.0820330i
\(202\) 189.366 189.366i 0.937456 0.937456i
\(203\) 133.205 73.5764i 0.656183 0.362445i
\(204\) 57.3255 + 320.662i 0.281007 + 1.57187i
\(205\) 179.636 + 242.971i 0.876273 + 1.18522i
\(206\) 102.724 177.923i 0.498660 0.863705i
\(207\) 15.9492 + 22.5495i 0.0770493 + 0.108935i
\(208\) 86.0560 321.165i 0.413731 1.54406i
\(209\) 58.6601i 0.280670i
\(210\) −71.4611 + 276.852i −0.340291 + 1.31834i
\(211\) −28.8210 −0.136592 −0.0682962 0.997665i \(-0.521756\pi\)
−0.0682962 + 0.997665i \(0.521756\pi\)
\(212\) 53.9114 + 14.4455i 0.254299 + 0.0681392i
\(213\) −109.481 + 51.3680i −0.513994 + 0.241164i
\(214\) −240.219 138.691i −1.12252 0.648087i
\(215\) −114.236 17.1202i −0.531329 0.0796288i
\(216\) −21.7585 37.0754i −0.100734 0.171645i
\(217\) −126.970 2.40640i −0.585116 0.0110894i
\(218\) −145.882 145.882i −0.669184 0.669184i
\(219\) −171.264 203.125i −0.782028 0.927511i
\(220\) 44.3419 101.866i 0.201554 0.463026i
\(221\) 508.681 + 293.687i 2.30172 + 1.32890i
\(222\) −167.328 14.2397i −0.753728 0.0641427i
\(223\) 313.729 + 313.729i 1.40686 + 1.40686i 0.775455 + 0.631402i \(0.217520\pi\)
0.631402 + 0.775455i \(0.282480\pi\)
\(224\) 207.014 + 215.013i 0.924170 + 0.959877i
\(225\) −123.284 188.218i −0.547928 0.836526i
\(226\) 20.9036 + 36.2060i 0.0924936 + 0.160204i
\(227\) 134.195 35.9575i 0.591169 0.158403i 0.0491817 0.998790i \(-0.484339\pi\)
0.541987 + 0.840387i \(0.317672\pi\)
\(228\) −83.6336 + 39.2406i −0.366814 + 0.172108i
\(229\) −86.9426 150.589i −0.379662 0.657594i 0.611351 0.791359i \(-0.290626\pi\)
−0.991013 + 0.133766i \(0.957293\pi\)
\(230\) 41.5177 4.71322i 0.180512 0.0204923i
\(231\) 55.6790 + 124.764i 0.241034 + 0.540102i
\(232\) 24.4748 + 24.4748i 0.105495 + 0.105495i
\(233\) 67.5582 252.131i 0.289950 1.08211i −0.655197 0.755458i \(-0.727414\pi\)
0.945146 0.326648i \(-0.105919\pi\)
\(234\) 446.276 + 76.5108i 1.90716 + 0.326969i
\(235\) 162.246 63.8341i 0.690408 0.271634i
\(236\) −110.286 191.020i −0.467312 0.809408i
\(237\) 97.4663 + 67.9029i 0.411250 + 0.286510i
\(238\) −530.481 + 293.013i −2.22891 + 1.23115i
\(239\) −267.401 −1.11883 −0.559416 0.828887i \(-0.688975\pi\)
−0.559416 + 0.828887i \(0.688975\pi\)
\(240\) −269.847 + 7.59636i −1.12436 + 0.0316515i
\(241\) −92.0246 53.1304i −0.381845 0.220458i 0.296776 0.954947i \(-0.404089\pi\)
−0.678621 + 0.734489i \(0.737422\pi\)
\(242\) 55.4483 + 206.936i 0.229125 + 0.855107i
\(243\) 197.388 141.729i 0.812296 0.583245i
\(244\) 208.070 0.852745
\(245\) −244.309 + 18.3917i −0.997178 + 0.0750681i
\(246\) 86.8820 + 485.993i 0.353179 + 1.97558i
\(247\) −43.1140 + 160.904i −0.174551 + 0.651432i
\(248\) −7.47597 27.9007i −0.0301450 0.112503i
\(249\) −64.9874 23.4792i −0.260994 0.0942939i
\(250\) −339.371 + 26.2920i −1.35749 + 0.105168i
\(251\) −162.554 −0.647625 −0.323812 0.946121i \(-0.604965\pi\)
−0.323812 + 0.946121i \(0.604965\pi\)
\(252\) −140.633 + 162.844i −0.558068 + 0.646206i
\(253\) 14.1180 14.1180i 0.0558022 0.0558022i
\(254\) −169.826 294.147i −0.668605 1.15806i
\(255\) 110.417 463.932i 0.433009 1.81934i
\(256\) −156.874 + 271.714i −0.612789 + 1.06138i
\(257\) 52.4492 195.743i 0.204082 0.761646i −0.785645 0.618678i \(-0.787669\pi\)
0.989727 0.142968i \(-0.0456647\pi\)
\(258\) −154.855 107.884i −0.600212 0.418156i
\(259\) −34.6024 139.673i −0.133600 0.539278i
\(260\) 196.499 246.826i 0.755764 0.949331i
\(261\) −125.051 + 150.474i −0.479124 + 0.576527i
\(262\) 70.1934 + 261.965i 0.267914 + 0.999868i
\(263\) −277.759 + 74.4253i −1.05612 + 0.282986i −0.744778 0.667313i \(-0.767445\pi\)
−0.311340 + 0.950299i \(0.600778\pi\)
\(264\) −23.7578 + 20.0313i −0.0899917 + 0.0758762i
\(265\) −63.9264 50.8918i −0.241232 0.192045i
\(266\) −119.205 123.811i −0.448140 0.465455i
\(267\) 16.2281 + 11.3058i 0.0607793 + 0.0423438i
\(268\) −23.7164 6.35480i −0.0884942 0.0237119i
\(269\) 154.500 + 89.2008i 0.574351 + 0.331602i 0.758885 0.651225i \(-0.225744\pi\)
−0.184534 + 0.982826i \(0.559078\pi\)
\(270\) −44.0635 364.969i −0.163198 1.35174i
\(271\) −408.653 + 235.936i −1.50794 + 0.870612i −0.507987 + 0.861364i \(0.669610\pi\)
−0.999957 + 0.00924779i \(0.997056\pi\)
\(272\) −404.586 404.586i −1.48745 1.48745i
\(273\) 61.0278 + 383.148i 0.223545 + 1.40347i
\(274\) 113.436i 0.414001i
\(275\) −119.043 + 110.828i −0.432884 + 0.403012i
\(276\) 29.5726 + 10.6842i 0.107147 + 0.0387110i
\(277\) −24.9091 + 6.67437i −0.0899245 + 0.0240952i −0.303501 0.952831i \(-0.598155\pi\)
0.213576 + 0.976926i \(0.431489\pi\)
\(278\) 608.248 + 162.980i 2.18794 + 0.586258i
\(279\) 153.163 56.5707i 0.548973 0.202762i
\(280\) −19.4162 52.2340i −0.0693436 0.186550i
\(281\) 216.505i 0.770481i −0.922816 0.385240i \(-0.874119\pi\)
0.922816 0.385240i \(-0.125881\pi\)
\(282\) 283.841 + 24.1550i 1.00653 + 0.0856561i
\(283\) 456.038 122.195i 1.61144 0.431784i 0.662969 0.748647i \(-0.269296\pi\)
0.948471 + 0.316863i \(0.102630\pi\)
\(284\) −68.8371 + 119.229i −0.242384 + 0.419822i
\(285\) 135.193 3.80578i 0.474362 0.0133536i
\(286\) 327.310i 1.14444i
\(287\) −370.299 + 204.536i −1.29024 + 0.712668i
\(288\) −348.560 160.529i −1.21028 0.557391i
\(289\) 625.078 360.889i 2.16290 1.24875i
\(290\) 108.369 + 275.440i 0.373686 + 0.949792i
\(291\) −224.965 81.2773i −0.773077 0.279303i
\(292\) −292.165 78.2853i −1.00056 0.268100i
\(293\) 106.940 106.940i 0.364983 0.364983i −0.500661 0.865644i \(-0.666910\pi\)
0.865644 + 0.500661i \(0.166910\pi\)
\(294\) −371.055 150.185i −1.26209 0.510834i
\(295\) 36.4244 + 320.854i 0.123473 + 1.08764i
\(296\) 28.3445 16.3647i 0.0957585 0.0552862i
\(297\) −125.090 123.323i −0.421179 0.415230i
\(298\) 17.3633 + 64.8008i 0.0582662 + 0.217452i
\(299\) 49.1018 28.3489i 0.164220 0.0948125i
\(300\) −237.646 95.5852i −0.792152 0.318617i
\(301\) 44.8076 155.385i 0.148863 0.516228i
\(302\) −156.854 + 156.854i −0.519383 + 0.519383i
\(303\) −293.973 25.0172i −0.970207 0.0825651i
\(304\) 81.1340 140.528i 0.266888 0.462264i
\(305\) −279.299 121.578i −0.915735 0.398616i
\(306\) 498.009 599.250i 1.62748 1.95833i
\(307\) −269.533 + 269.533i −0.877959 + 0.877959i −0.993323 0.115364i \(-0.963196\pi\)
0.115364 + 0.993323i \(0.463196\pi\)
\(308\) 133.202 + 80.3073i 0.432473 + 0.260738i
\(309\) −222.806 + 39.8315i −0.721055 + 0.128905i
\(310\) 36.6100 244.283i 0.118097 0.788010i
\(311\) −44.2605 + 76.6614i −0.142317 + 0.246500i −0.928369 0.371661i \(-0.878788\pi\)
0.786052 + 0.618160i \(0.212122\pi\)
\(312\) −79.8900 + 37.4841i −0.256058 + 0.120141i
\(313\) −116.641 + 435.312i −0.372656 + 1.39077i 0.484083 + 0.875022i \(0.339153\pi\)
−0.856739 + 0.515750i \(0.827513\pi\)
\(314\) 501.718i 1.59783i
\(315\) 283.929 136.417i 0.901360 0.433070i
\(316\) 135.232 0.427950
\(317\) 154.877 + 41.4992i 0.488572 + 0.130912i 0.494691 0.869069i \(-0.335281\pi\)
−0.00611946 + 0.999981i \(0.501948\pi\)
\(318\) −56.7076 120.861i −0.178326 0.380066i
\(319\) 122.485 + 70.7166i 0.383965 + 0.221682i
\(320\) −177.394 + 131.153i −0.554356 + 0.409852i
\(321\) 53.7777 + 300.817i 0.167532 + 0.937124i
\(322\) −1.10849 + 58.4876i −0.00344250 + 0.181639i
\(323\) 202.697 + 202.697i 0.627546 + 0.627546i
\(324\) 92.1474 260.842i 0.284406 0.805069i
\(325\) −407.991 + 216.506i −1.25536 + 0.666173i
\(326\) 423.710 + 244.629i 1.29972 + 0.750396i
\(327\) −19.2725 + 226.468i −0.0589374 + 0.692562i
\(328\) −68.0377 68.0377i −0.207432 0.207432i
\(329\) 58.6967 + 236.930i 0.178409 + 0.720152i
\(330\) −254.652 + 75.9755i −0.771672 + 0.230229i
\(331\) 8.64458 + 14.9729i 0.0261166 + 0.0452352i 0.878788 0.477212i \(-0.158353\pi\)
−0.852672 + 0.522447i \(0.825019\pi\)
\(332\) −75.9841 + 20.3599i −0.228868 + 0.0613250i
\(333\) 106.834 + 151.045i 0.320822 + 0.453589i
\(334\) 123.821 + 214.464i 0.370721 + 0.642108i
\(335\) 28.1222 + 22.3881i 0.0839468 + 0.0668302i
\(336\) 39.1766 375.899i 0.116597 1.11875i
\(337\) 409.047 + 409.047i 1.21379 + 1.21379i 0.969770 + 0.244020i \(0.0784662\pi\)
0.244020 + 0.969770i \(0.421534\pi\)
\(338\) 121.457 453.283i 0.359340 1.34107i
\(339\) 15.6502 43.3178i 0.0461657 0.127781i
\(340\) −198.772 505.214i −0.584622 1.48592i
\(341\) −59.0146 102.216i −0.173063 0.299754i
\(342\) 200.712 + 92.4374i 0.586876 + 0.270285i
\(343\) 19.4893 342.446i 0.0568200 0.998384i
\(344\) 36.7828 0.106927
\(345\) −33.4534 31.6215i −0.0969664 0.0916565i
\(346\) 540.292 + 311.938i 1.56154 + 0.901554i
\(347\) 96.5884 + 360.473i 0.278353 + 1.03883i 0.953561 + 0.301200i \(0.0973871\pi\)
−0.675208 + 0.737627i \(0.735946\pi\)
\(348\) −18.8869 + 221.937i −0.0542727 + 0.637749i
\(349\) −44.3368 −0.127040 −0.0635198 0.997981i \(-0.520233\pi\)
−0.0635198 + 0.997981i \(0.520233\pi\)
\(350\) 26.0403 475.832i 0.0744007 1.35952i
\(351\) −252.480 430.213i −0.719316 1.22568i
\(352\) −71.7974 + 267.951i −0.203970 + 0.761225i
\(353\) −69.3915 258.973i −0.196577 0.733634i −0.991853 0.127387i \(-0.959341\pi\)
0.795277 0.606247i \(-0.207326\pi\)
\(354\) −179.274 + 496.208i −0.506424 + 1.40172i
\(355\) 162.070 119.823i 0.456534 0.337530i
\(356\) 22.5161 0.0632474
\(357\) 623.511 + 238.719i 1.74653 + 0.668680i
\(358\) 107.780 107.780i 0.301061 0.301061i
\(359\) 257.188 + 445.463i 0.716401 + 1.24084i 0.962417 + 0.271578i \(0.0875454\pi\)
−0.246015 + 0.969266i \(0.579121\pi\)
\(360\) 47.7073 + 53.4547i 0.132520 + 0.148485i
\(361\) 139.852 242.231i 0.387401 0.670999i
\(362\) −41.7535 + 155.826i −0.115341 + 0.430459i
\(363\) 134.917 193.656i 0.371671 0.533489i
\(364\) 306.346 + 318.183i 0.841611 + 0.874128i
\(365\) 346.440 + 275.801i 0.949149 + 0.755619i
\(366\) −320.816 380.498i −0.876547 1.03961i
\(367\) −170.774 637.338i −0.465325 1.73662i −0.655810 0.754926i \(-0.727673\pi\)
0.190485 0.981690i \(-0.438994\pi\)
\(368\) −53.3483 + 14.2946i −0.144968 + 0.0388441i
\(369\) 347.632 418.303i 0.942091 1.13361i
\(370\) 278.101 31.5709i 0.751625 0.0853268i
\(371\) 82.4072 79.3417i 0.222122 0.213859i
\(372\) 106.255 152.517i 0.285633 0.409991i
\(373\) 174.593 + 46.7821i 0.468078 + 0.125421i 0.485146 0.874433i \(-0.338766\pi\)
−0.0170677 + 0.999854i \(0.505433\pi\)
\(374\) −487.787 281.624i −1.30424 0.753006i
\(375\) 263.148 + 267.167i 0.701728 + 0.712445i
\(376\) −48.0813 + 27.7598i −0.127876 + 0.0738292i
\(377\) 283.999 + 283.999i 0.753313 + 0.753313i
\(378\) 514.631 + 6.09285i 1.36146 + 0.0161186i
\(379\) 559.197i 1.47545i −0.675100 0.737726i \(-0.735899\pi\)
0.675100 0.737726i \(-0.264101\pi\)
\(380\) 123.807 91.5343i 0.325808 0.240880i
\(381\) −127.146 + 351.924i −0.333716 + 0.923685i
\(382\) 542.692 145.414i 1.42066 0.380665i
\(383\) 352.612 + 94.4821i 0.920658 + 0.246689i 0.687866 0.725837i \(-0.258547\pi\)
0.232791 + 0.972527i \(0.425214\pi\)
\(384\) 148.855 26.6112i 0.387645 0.0693001i
\(385\) −131.877 185.631i −0.342537 0.482158i
\(386\) 539.146i 1.39675i
\(387\) 19.1033 + 207.041i 0.0493625 + 0.534990i
\(388\) −263.032 + 70.4793i −0.677918 + 0.181648i
\(389\) 338.245 585.857i 0.869524 1.50606i 0.00703925 0.999975i \(-0.497759\pi\)
0.862484 0.506084i \(-0.168907\pi\)
\(390\) −754.347 + 21.2354i −1.93422 + 0.0544497i
\(391\) 97.5679i 0.249534i
\(392\) 76.0690 17.3222i 0.194054 0.0441893i
\(393\) 170.795 245.155i 0.434592 0.623803i
\(394\) −791.757 + 457.121i −2.00953 + 1.16021i
\(395\) −181.527 79.0180i −0.459561 0.200046i
\(396\) −197.101 33.7916i −0.497731 0.0853323i
\(397\) −349.363 93.6114i −0.880007 0.235797i −0.209597 0.977788i \(-0.567215\pi\)
−0.670410 + 0.741991i \(0.733882\pi\)
\(398\) 199.288 199.288i 0.500725 0.500725i
\(399\) −19.6275 + 188.325i −0.0491916 + 0.471993i
\(400\) 438.473 100.853i 1.09618 0.252134i
\(401\) −438.147 + 252.965i −1.09264 + 0.630834i −0.934277 0.356547i \(-0.883954\pi\)
−0.158360 + 0.987381i \(0.550621\pi\)
\(402\) 24.9466 + 53.1686i 0.0620561 + 0.132260i
\(403\) −86.7492 323.752i −0.215258 0.803356i
\(404\) −290.880 + 167.940i −0.720000 + 0.415692i
\(405\) −276.106 + 296.294i −0.681744 + 0.731591i
\(406\) −402.228 + 99.6475i −0.990710 + 0.245437i
\(407\) 94.5673 94.5673i 0.232352 0.232352i
\(408\) −12.8767 + 151.311i −0.0315605 + 0.370861i
\(409\) −279.434 + 483.994i −0.683212 + 1.18336i 0.290783 + 0.956789i \(0.406084\pi\)
−0.973995 + 0.226569i \(0.927249\pi\)
\(410\) −301.256 765.697i −0.734771 1.86755i
\(411\) 95.5425 80.5564i 0.232464 0.196001i
\(412\) −182.202 + 182.202i −0.442237 + 0.442237i
\(413\) −452.000 8.56653i −1.09443 0.0207422i
\(414\) −26.0588 70.5533i −0.0629439 0.170419i
\(415\) 113.893 + 17.0688i 0.274440 + 0.0411296i
\(416\) −393.878 + 682.217i −0.946823 + 1.63995i
\(417\) −294.675 628.041i −0.706654 1.50609i
\(418\) 41.3432 154.295i 0.0989071 0.369126i
\(419\) 356.671i 0.851244i 0.904901 + 0.425622i \(0.139945\pi\)
−0.904901 + 0.425622i \(0.860055\pi\)
\(420\) 176.441 312.199i 0.420098 0.743330i
\(421\) −73.1717 −0.173805 −0.0869023 0.996217i \(-0.527697\pi\)
−0.0869023 + 0.996217i \(0.527697\pi\)
\(422\) 75.8084 + 20.3128i 0.179641 + 0.0481346i
\(423\) −181.224 256.221i −0.428426 0.605723i
\(424\) 22.5334 + 13.0097i 0.0531448 + 0.0306832i
\(425\) −28.3857 + 794.311i −0.0667898 + 1.86897i
\(426\) 324.173 57.9531i 0.760969 0.136040i
\(427\) 220.189 365.217i 0.515666 0.855309i
\(428\) 245.996 + 245.996i 0.574756 + 0.574756i
\(429\) −275.679 + 232.438i −0.642609 + 0.541814i
\(430\) 288.410 + 125.544i 0.670721 + 0.291963i
\(431\) −263.266 151.997i −0.610826 0.352661i 0.162462 0.986715i \(-0.448056\pi\)
−0.773289 + 0.634054i \(0.781390\pi\)
\(432\) 129.099 + 468.453i 0.298840 + 1.08438i
\(433\) −284.409 284.409i −0.656834 0.656834i 0.297796 0.954630i \(-0.403749\pi\)
−0.954630 + 0.297796i \(0.903749\pi\)
\(434\) 332.276 + 95.8172i 0.765613 + 0.220777i
\(435\) 155.033 286.877i 0.356398 0.659488i
\(436\) 129.376 + 224.085i 0.296733 + 0.513957i
\(437\) 26.7275 7.16161i 0.0611613 0.0163881i
\(438\) 307.319 + 654.989i 0.701641 + 1.49541i
\(439\) 162.341 + 281.183i 0.369797 + 0.640507i 0.989534 0.144303i \(-0.0460940\pi\)
−0.619737 + 0.784810i \(0.712761\pi\)
\(440\) 32.2581 40.5201i 0.0733139 0.0920912i
\(441\) 137.009 + 419.177i 0.310678 + 0.950515i
\(442\) −1131.01 1131.01i −2.55884 2.55884i
\(443\) −56.1075 + 209.396i −0.126654 + 0.472678i −0.999893 0.0146134i \(-0.995348\pi\)
0.873240 + 0.487291i \(0.162015\pi\)
\(444\) 198.089 + 71.5670i 0.446145 + 0.161187i
\(445\) −30.2241 13.1564i −0.0679193 0.0295650i
\(446\) −604.094 1046.32i −1.35447 2.34601i
\(447\) 42.2484 60.6425i 0.0945155 0.135666i
\(448\) −149.332 270.356i −0.333331 0.603473i
\(449\) −180.775 −0.402617 −0.201309 0.979528i \(-0.564519\pi\)
−0.201309 + 0.979528i \(0.564519\pi\)
\(450\) 191.621 + 581.963i 0.425825 + 1.29325i
\(451\) −340.497 196.586i −0.754982 0.435889i
\(452\) −13.5710 50.6477i −0.0300243 0.112052i
\(453\) 243.500 + 20.7220i 0.537528 + 0.0457439i
\(454\) −378.319 −0.833302
\(455\) −225.301 606.110i −0.495166 1.33211i
\(456\) −42.3950 + 7.57905i −0.0929715 + 0.0166207i
\(457\) −53.7265 + 200.510i −0.117564 + 0.438753i −0.999466 0.0326790i \(-0.989596\pi\)
0.881902 + 0.471432i \(0.156263\pi\)
\(458\) 122.553 + 457.373i 0.267583 + 0.998632i
\(459\) −858.382 + 6.10451i −1.87011 + 0.0132996i
\(460\) −51.8270 7.76718i −0.112667 0.0168852i
\(461\) 264.361 0.573452 0.286726 0.958013i \(-0.407433\pi\)
0.286726 + 0.958013i \(0.407433\pi\)
\(462\) −58.5211 367.410i −0.126669 0.795260i
\(463\) −532.588 + 532.588i −1.15030 + 1.15030i −0.163804 + 0.986493i \(0.552377\pi\)
−0.986493 + 0.163804i \(0.947623\pi\)
\(464\) −195.619 338.823i −0.421593 0.730221i
\(465\) −231.748 + 142.642i −0.498382 + 0.306756i
\(466\) −355.400 + 615.570i −0.762660 + 1.32097i
\(467\) −31.6587 + 118.152i −0.0677917 + 0.253002i −0.991502 0.130089i \(-0.958474\pi\)
0.923711 + 0.383091i \(0.125140\pi\)
\(468\) −515.810 237.556i −1.10216 0.507597i
\(469\) −36.2522 + 34.9036i −0.0772968 + 0.0744214i
\(470\) −471.748 + 53.5543i −1.00372 + 0.113945i
\(471\) 422.575 356.293i 0.897187 0.756461i
\(472\) −26.6136 99.3235i −0.0563848 0.210431i
\(473\) 145.180 38.9008i 0.306934 0.0822427i
\(474\) −208.510 247.300i −0.439895 0.521729i
\(475\) −219.675 + 50.5276i −0.462474 + 0.106374i
\(476\) 737.771 182.774i 1.54994 0.383980i
\(477\) −61.5253 + 133.591i −0.128984 + 0.280066i
\(478\) 703.350 + 188.462i 1.47144 + 0.394272i
\(479\) −606.632 350.239i −1.26645 0.731188i −0.292139 0.956376i \(-0.594367\pi\)
−0.974315 + 0.225188i \(0.927700\pi\)
\(480\) 622.202 + 148.086i 1.29625 + 0.308513i
\(481\) 328.902 189.892i 0.683788 0.394785i
\(482\) 204.608 + 204.608i 0.424498 + 0.424498i
\(483\) 50.0488 40.6012i 0.103621 0.0840604i
\(484\) 268.694i 0.555152i
\(485\) 394.259 + 59.0866i 0.812906 + 0.121828i
\(486\) −619.083 + 233.674i −1.27383 + 0.480810i
\(487\) 164.196 43.9961i 0.337157 0.0903410i −0.0862682 0.996272i \(-0.527494\pi\)
0.423426 + 0.905931i \(0.360828\pi\)
\(488\) 93.6941 + 25.1052i 0.191996 + 0.0514452i
\(489\) −94.8557 530.596i −0.193979 1.08506i
\(490\) 655.572 + 123.811i 1.33790 + 0.252675i
\(491\) 246.029i 0.501078i 0.968107 + 0.250539i \(0.0806078\pi\)
−0.968107 + 0.250539i \(0.919392\pi\)
\(492\) 52.5039 616.964i 0.106715 1.25399i
\(493\) 667.599 178.883i 1.35416 0.362845i
\(494\) 226.807 392.842i 0.459124 0.795227i
\(495\) 244.831 + 160.529i 0.494608 + 0.324300i
\(496\) 326.497i 0.658260i
\(497\) 136.432 + 247.001i 0.274511 + 0.496984i
\(498\) 154.390 + 107.560i 0.310020 + 0.215985i
\(499\) −235.800 + 136.139i −0.472545 + 0.272824i −0.717304 0.696760i \(-0.754624\pi\)
0.244760 + 0.969584i \(0.421291\pi\)
\(500\) 419.670 + 78.3116i 0.839340 + 0.156623i
\(501\) 92.7028 256.590i 0.185036 0.512155i
\(502\) 427.569 + 114.567i 0.851730 + 0.228220i
\(503\) −19.6309 + 19.6309i −0.0390277 + 0.0390277i −0.726351 0.687324i \(-0.758785\pi\)
0.687324 + 0.726351i \(0.258785\pi\)
\(504\) −82.9757 + 56.3603i −0.164634 + 0.111826i
\(505\) 488.587 55.4660i 0.967500 0.109834i
\(506\) −47.0849 + 27.1845i −0.0930533 + 0.0537243i
\(507\) −468.033 + 219.600i −0.923142 + 0.433135i
\(508\) 110.254 + 411.474i 0.217036 + 0.809989i
\(509\) −107.234 + 61.9115i −0.210676 + 0.121634i −0.601625 0.798778i \(-0.705480\pi\)
0.390950 + 0.920412i \(0.372147\pi\)
\(510\) −617.408 + 1142.47i −1.21060 + 2.24013i
\(511\) −446.594 + 429.981i −0.873961 + 0.841449i
\(512\) 461.563 461.563i 0.901491 0.901491i
\(513\) −64.6786 234.695i −0.126079 0.457495i
\(514\) −275.916 + 477.901i −0.536802 + 0.929768i
\(515\) 351.038 138.113i 0.681628 0.268180i
\(516\) 152.580 + 180.965i 0.295698 + 0.350707i
\(517\) −160.416 + 160.416i −0.310283 + 0.310283i
\(518\) −7.42506 + 391.772i −0.0143341 + 0.756317i
\(519\) −120.955 676.586i −0.233054 1.30363i
\(520\) 118.265 87.4370i 0.227433 0.168148i
\(521\) 406.692 704.411i 0.780598 1.35204i −0.150996 0.988534i \(-0.548248\pi\)
0.931594 0.363501i \(-0.118419\pi\)
\(522\) 434.978 307.658i 0.833291 0.589384i
\(523\) −55.9284 + 208.728i −0.106938 + 0.399097i −0.998558 0.0536874i \(-0.982903\pi\)
0.891620 + 0.452784i \(0.149569\pi\)
\(524\) 340.146i 0.649134i
\(525\) −419.265 + 315.978i −0.798600 + 0.601862i
\(526\) 783.049 1.48869
\(527\) −557.126 149.281i −1.05716 0.283267i
\(528\) 317.995 149.202i 0.602263 0.282580i
\(529\) 449.971 + 259.791i 0.850607 + 0.491098i
\(530\) 132.279 + 178.917i 0.249582 + 0.337578i
\(531\) 545.245 201.386i 1.02683 0.379257i
\(532\) 104.222 + 188.687i 0.195906 + 0.354675i
\(533\) −789.491 789.491i −1.48122 1.48122i
\(534\) −34.7168 41.1753i −0.0650128 0.0771072i
\(535\) −186.470 473.947i −0.348541 0.885882i
\(536\) −9.91278 5.72315i −0.0184940 0.0106775i
\(537\) −167.318 14.2388i −0.311579 0.0265155i
\(538\) −343.517 343.517i −0.638508 0.638508i
\(539\) 281.921 148.819i 0.523044 0.276102i
\(540\) −65.0913 + 456.449i −0.120540 + 0.845276i
\(541\) −266.695 461.929i −0.492966 0.853843i 0.507001 0.861946i \(-0.330754\pi\)
−0.999967 + 0.00810293i \(0.997421\pi\)
\(542\) 1241.17 332.571i 2.28999 0.613600i
\(543\) 160.897 75.4923i 0.296311 0.139028i
\(544\) 677.802 + 1173.99i 1.24596 + 2.15806i
\(545\) −42.7293 376.393i −0.0784025 0.690630i
\(546\) 109.517 1050.81i 0.200580 1.92457i
\(547\) −447.038 447.038i −0.817255 0.817255i 0.168455 0.985709i \(-0.446122\pi\)
−0.985709 + 0.168455i \(0.946122\pi\)
\(548\) 36.8226 137.424i 0.0671944 0.250773i
\(549\) −92.6509 + 540.419i −0.168763 + 0.984370i
\(550\) 391.232 207.613i 0.711332 0.377479i
\(551\) 98.0053 + 169.750i 0.177868 + 0.308077i
\(552\) 12.0275 + 8.37930i 0.0217889 + 0.0151799i
\(553\) 143.109 237.368i 0.258787 0.429237i
\(554\) 70.2229 0.126756
\(555\) −224.083 211.813i −0.403754 0.381645i
\(556\) −683.964 394.887i −1.23015 0.710228i
\(557\) −2.64549 9.87310i −0.00474953 0.0177255i 0.963510 0.267671i \(-0.0862540\pi\)
−0.968260 + 0.249945i \(0.919587\pi\)
\(558\) −442.739 + 40.8507i −0.793440 + 0.0732091i
\(559\) 426.818 0.763538
\(560\) 59.1784 + 627.105i 0.105676 + 1.11983i
\(561\) 109.201 + 610.837i 0.194654 + 1.08884i
\(562\) −152.591 + 569.477i −0.271514 + 1.01330i
\(563\) 131.002 + 488.906i 0.232686 + 0.868395i 0.979178 + 0.203001i \(0.0650696\pi\)
−0.746493 + 0.665394i \(0.768264\pi\)
\(564\) −336.021 121.400i −0.595783 0.215249i
\(565\) −11.3773 + 75.9158i −0.0201368 + 0.134364i
\(566\) −1285.65 −2.27146
\(567\) −360.332 437.778i −0.635506 0.772096i
\(568\) −45.3834 + 45.3834i −0.0799003 + 0.0799003i
\(569\) 367.085 + 635.811i 0.645141 + 1.11742i 0.984269 + 0.176677i \(0.0565348\pi\)
−0.339128 + 0.940740i \(0.610132\pi\)
\(570\) −358.283 85.2726i −0.628567 0.149601i
\(571\) 382.351 662.252i 0.669617 1.15981i −0.308394 0.951259i \(-0.599792\pi\)
0.978011 0.208552i \(-0.0668751\pi\)
\(572\) −106.248 + 396.523i −0.185748 + 0.693223i
\(573\) −507.867 353.821i −0.886329 0.617488i
\(574\) 1118.16 277.011i 1.94801 0.482598i
\(575\) 65.0307 + 40.7094i 0.113097 + 0.0707989i
\(576\) 305.404 + 253.807i 0.530216 + 0.440637i
\(577\) 267.247 + 997.379i 0.463166 + 1.72856i 0.662899 + 0.748709i \(0.269326\pi\)
−0.199733 + 0.979850i \(0.564007\pi\)
\(578\) −1898.50 + 508.703i −3.28461 + 0.880109i
\(579\) 454.100 382.873i 0.784283 0.661266i
\(580\) −41.8744 368.862i −0.0721972 0.635969i
\(581\) −44.6731 + 154.918i −0.0768900 + 0.266640i
\(582\) 534.447 + 372.339i 0.918294 + 0.639757i
\(583\) 102.697 + 27.5176i 0.176153 + 0.0471999i
\(584\) −122.116 70.5039i −0.209103 0.120726i
\(585\) 553.583 + 620.274i 0.946295 + 1.06030i
\(586\) −356.657 + 205.916i −0.608629 + 0.351392i
\(587\) −513.474 513.474i −0.874743 0.874743i 0.118242 0.992985i \(-0.462274\pi\)
−0.992985 + 0.118242i \(0.962274\pi\)
\(588\) 400.767 + 302.392i 0.681577 + 0.514271i
\(589\) 163.575i 0.277717i
\(590\) 130.328 869.621i 0.220895 1.47393i
\(591\) 947.277 + 342.240i 1.60284 + 0.579086i
\(592\) −357.347 + 95.7508i −0.603627 + 0.161741i
\(593\) −594.948 159.416i −1.00329 0.268829i −0.280464 0.959865i \(-0.590488\pi\)
−0.722821 + 0.691035i \(0.757155\pi\)
\(594\) 242.109 + 412.542i 0.407592 + 0.694516i
\(595\) −1097.13 185.745i −1.84392 0.312177i
\(596\) 84.1400i 0.141174i
\(597\) −309.376 26.3281i −0.518218 0.0441006i
\(598\) −149.133 + 39.9602i −0.249387 + 0.0668231i
\(599\) −224.017 + 388.008i −0.373985 + 0.647760i −0.990174 0.139837i \(-0.955342\pi\)
0.616190 + 0.787598i \(0.288675\pi\)
\(600\) −95.4790 71.7159i −0.159132 0.119527i
\(601\) 461.606i 0.768063i 0.923320 + 0.384031i \(0.125465\pi\)
−0.923320 + 0.384031i \(0.874535\pi\)
\(602\) −227.372 + 377.131i −0.377695 + 0.626463i
\(603\) 27.0659 58.7689i 0.0448855 0.0974609i
\(604\) 240.938 139.106i 0.398905 0.230308i
\(605\) −157.001 + 360.677i −0.259506 + 0.596160i
\(606\) 755.610 + 272.993i 1.24688 + 0.450483i
\(607\) 234.564 + 62.8512i 0.386431 + 0.103544i 0.446804 0.894632i \(-0.352562\pi\)
−0.0603725 + 0.998176i \(0.519229\pi\)
\(608\) −271.847 + 271.847i −0.447117 + 0.447117i
\(609\) 369.570 + 268.015i 0.606847 + 0.440091i
\(610\) 648.959 + 516.637i 1.06387 + 0.846945i
\(611\) −557.923 + 322.117i −0.913131 + 0.527196i
\(612\) −797.840 + 564.310i −1.30366 + 0.922075i
\(613\) 102.796 + 383.639i 0.167693 + 0.625838i 0.997681 + 0.0680576i \(0.0216801\pi\)
−0.829989 + 0.557780i \(0.811653\pi\)
\(614\) 898.924 518.994i 1.46405 0.845267i
\(615\) −430.978 + 797.493i −0.700777 + 1.29674i
\(616\) 50.2912 + 52.2343i 0.0816416 + 0.0847960i
\(617\) −382.119 + 382.119i −0.619317 + 0.619317i −0.945356 0.326039i \(-0.894286\pi\)
0.326039 + 0.945356i \(0.394286\pi\)
\(618\) 614.124 + 52.2623i 0.993728 + 0.0845668i
\(619\) 340.936 590.519i 0.550785 0.953988i −0.447433 0.894318i \(-0.647662\pi\)
0.998218 0.0596706i \(-0.0190050\pi\)
\(620\) −123.648 + 284.055i −0.199433 + 0.458154i
\(621\) −40.9185 + 72.0514i −0.0658913 + 0.116025i
\(622\) 170.449 170.449i 0.274034 0.274034i
\(623\) 23.8276 39.5216i 0.0382465 0.0634376i
\(624\) 981.917 175.539i 1.57358 0.281313i
\(625\) −517.579 350.339i −0.828126 0.560543i
\(626\) 613.608 1062.80i 0.980205 1.69777i
\(627\) −159.316 + 74.7503i −0.254092 + 0.119219i
\(628\) 162.862 607.811i 0.259335 0.967852i
\(629\) 653.547i 1.03902i
\(630\) −842.968 + 158.710i −1.33804 + 0.251920i
\(631\) −138.302 −0.219180 −0.109590 0.993977i \(-0.534954\pi\)
−0.109590 + 0.993977i \(0.534954\pi\)
\(632\) 60.8952 + 16.3168i 0.0963532 + 0.0258178i
\(633\) −36.7265 78.2752i −0.0580197 0.123658i
\(634\) −378.128 218.312i −0.596417 0.344341i
\(635\) 92.4320 616.759i 0.145562 0.971274i
\(636\) 29.4664 + 164.826i 0.0463308 + 0.259161i
\(637\) 882.684 201.002i 1.38569 0.315545i
\(638\) −272.334 272.334i −0.426855 0.426855i
\(639\) −279.022 231.882i −0.436654 0.362882i
\(640\) −234.527 + 92.2723i −0.366448 + 0.144175i
\(641\) 366.999 + 211.887i 0.572541 + 0.330557i 0.758164 0.652064i \(-0.226097\pi\)
−0.185622 + 0.982621i \(0.559430\pi\)
\(642\) 70.5608 829.146i 0.109908 1.29150i
\(643\) −225.887 225.887i −0.351302 0.351302i 0.509292 0.860594i \(-0.329907\pi\)
−0.860594 + 0.509292i \(0.829907\pi\)
\(644\) 20.3286 70.4957i 0.0315661 0.109465i
\(645\) −99.0732 332.070i −0.153602 0.514837i
\(646\) −390.299 676.018i −0.604178 1.04647i
\(647\) 609.042 163.192i 0.941332 0.252229i 0.244652 0.969611i \(-0.421326\pi\)
0.696680 + 0.717382i \(0.254660\pi\)
\(648\) 72.9667 106.339i 0.112603 0.164104i
\(649\) −210.085 363.879i −0.323706 0.560676i
\(650\) 1225.74 281.932i 1.88575 0.433742i
\(651\) −155.262 347.906i −0.238498 0.534418i
\(652\) −433.899 433.899i −0.665490 0.665490i
\(653\) −6.32407 + 23.6018i −0.00968464 + 0.0361436i −0.970599 0.240702i \(-0.922622\pi\)
0.960914 + 0.276846i \(0.0892890\pi\)
\(654\) 210.306 582.100i 0.321568 0.890061i
\(655\) −198.752 + 456.590i −0.303438 + 0.697084i
\(656\) 543.804 + 941.897i 0.828970 + 1.43582i
\(657\) 333.428 723.979i 0.507500 1.10195i
\(658\) 12.5953 664.570i 0.0191417 1.00999i
\(659\) 350.045 0.531176 0.265588 0.964087i \(-0.414434\pi\)
0.265588 + 0.964087i \(0.414434\pi\)
\(660\) 333.163 9.37876i 0.504793 0.0142102i
\(661\) 728.727 + 420.731i 1.10246 + 0.636506i 0.936866 0.349688i \(-0.113712\pi\)
0.165595 + 0.986194i \(0.447046\pi\)
\(662\) −12.1853 45.4760i −0.0184067 0.0686949i
\(663\) −149.417 + 1755.78i −0.225366 + 2.64823i
\(664\) −36.6723 −0.0552294
\(665\) −29.6484 314.180i −0.0445840 0.472451i
\(666\) −174.551 472.593i −0.262089 0.709598i
\(667\) 17.2671 64.4418i 0.0258877 0.0966143i
\(668\) −80.3869 300.008i −0.120340 0.449114i
\(669\) −452.276 + 1251.84i −0.676049 + 1.87122i
\(670\) −58.1914 78.7081i −0.0868528 0.117475i
\(671\) 396.357 0.590695
\(672\) −320.157 + 836.221i −0.476425 + 1.24438i
\(673\) −814.054 + 814.054i −1.20959 + 1.20959i −0.238429 + 0.971160i \(0.576633\pi\)
−0.971160 + 0.238429i \(0.923367\pi\)
\(674\) −787.632 1364.22i −1.16859 2.02406i
\(675\) 354.084 574.674i 0.524569 0.851368i
\(676\) −294.280 + 509.709i −0.435326 + 0.754007i
\(677\) 277.070 1034.04i 0.409262 1.52739i −0.386796 0.922165i \(-0.626418\pi\)
0.796058 0.605220i \(-0.206915\pi\)
\(678\) −71.6950 + 102.909i −0.105745 + 0.151784i
\(679\) −154.644 + 536.275i −0.227752 + 0.789802i
\(680\) −28.5490 251.482i −0.0419838 0.369826i
\(681\) 268.662 + 318.642i 0.394511 + 0.467903i
\(682\) 83.1860 + 310.454i 0.121974 + 0.455212i
\(683\) 793.550 212.631i 1.16186 0.311319i 0.374151 0.927368i \(-0.377934\pi\)
0.787708 + 0.616048i \(0.211267\pi\)
\(684\) −213.148 177.137i −0.311620 0.258973i
\(685\) −129.727 + 162.952i −0.189382 + 0.237887i
\(686\) −292.616 + 887.006i −0.426554 + 1.29301i
\(687\) 298.195 428.023i 0.434054 0.623032i
\(688\) −401.603 107.609i −0.583725 0.156409i
\(689\) 261.471 + 150.961i 0.379494 + 0.219101i
\(690\) 65.7066 + 106.752i 0.0952269 + 0.154714i
\(691\) 347.514 200.637i 0.502914 0.290357i −0.227002 0.973894i \(-0.572892\pi\)
0.729916 + 0.683537i \(0.239559\pi\)
\(692\) −553.285 553.285i −0.799544 0.799544i
\(693\) −267.895 + 310.205i −0.386573 + 0.447626i
\(694\) 1016.23i 1.46431i
\(695\) 687.370 + 929.719i 0.989022 + 1.33773i
\(696\) −35.2832 + 97.6594i −0.0506942 + 0.140315i
\(697\) −1855.87 + 497.278i −2.66265 + 0.713454i
\(698\) 116.620 + 31.2482i 0.167077 + 0.0447682i
\(699\) 770.854 137.807i 1.10280 0.197149i
\(700\) −186.006 + 567.999i −0.265723 + 0.811426i
\(701\) 243.478i 0.347330i −0.984805 0.173665i \(-0.944439\pi\)
0.984805 0.173665i \(-0.0555610\pi\)
\(702\) 360.892 + 1309.54i 0.514091 + 1.86545i
\(703\) 179.031 47.9712i 0.254667 0.0682378i
\(704\) 143.528 248.598i 0.203875 0.353122i
\(705\) 380.117 + 359.302i 0.539173 + 0.509648i
\(706\) 730.088i 1.03412i
\(707\) −13.0449 + 688.292i −0.0184510 + 0.973539i
\(708\) 378.257 542.942i 0.534262 0.766868i
\(709\) 110.473 63.7815i 0.155815 0.0899598i −0.420065 0.907494i \(-0.637993\pi\)
0.575880 + 0.817534i \(0.304659\pi\)
\(710\) −510.745 + 200.948i −0.719360 + 0.283025i
\(711\) −60.2172 + 351.238i −0.0846937 + 0.494006i
\(712\) 10.1390 + 2.71674i 0.0142402 + 0.00381565i
\(713\) −39.3683 + 39.3683i −0.0552150 + 0.0552150i
\(714\) −1471.79 1067.35i −2.06133 1.49489i
\(715\) 374.314 470.184i 0.523517 0.657601i
\(716\) −165.557 + 95.5846i −0.231225 + 0.133498i
\(717\) −340.748 726.237i −0.475241 1.01288i
\(718\) −362.528 1352.97i −0.504914 1.88436i
\(719\) −989.565 + 571.326i −1.37631 + 0.794611i −0.991713 0.128474i \(-0.958992\pi\)
−0.384594 + 0.923086i \(0.625659\pi\)
\(720\) −364.495 723.199i −0.506244 1.00444i
\(721\) 126.997 + 512.626i 0.176141 + 0.710993i
\(722\) −538.577 + 538.577i −0.745952 + 0.745952i
\(723\) 27.0308 317.634i 0.0373871 0.439328i
\(724\) 101.165 175.224i 0.139731 0.242022i
\(725\) −159.322 + 519.604i −0.219754 + 0.716695i
\(726\) −491.362 + 414.290i −0.676807 + 0.570648i
\(727\) −25.5906 + 25.5906i −0.0352003 + 0.0352003i −0.724488 0.689288i \(-0.757924\pi\)
0.689288 + 0.724488i \(0.257924\pi\)
\(728\) 99.5569 + 180.241i 0.136754 + 0.247584i
\(729\) 636.453 + 355.484i 0.873049 + 0.487632i
\(730\) −716.864 969.612i −0.982006 1.32824i
\(731\) 367.242 636.083i 0.502384 0.870154i
\(732\) 265.143 + 565.099i 0.362217 + 0.771993i
\(733\) 282.956 1056.01i 0.386024 1.44066i −0.450521 0.892766i \(-0.648762\pi\)
0.836546 0.547897i \(-0.184572\pi\)
\(734\) 1796.76i 2.44791i
\(735\) −361.272 640.084i −0.491526 0.870863i
\(736\) 130.853 0.177790
\(737\) −45.1780 12.1054i −0.0612998 0.0164252i
\(738\) −1209.20 + 855.262i −1.63848 + 1.15889i
\(739\) 549.581 + 317.301i 0.743682 + 0.429365i 0.823406 0.567452i \(-0.192071\pi\)
−0.0797246 + 0.996817i \(0.525404\pi\)
\(740\) −347.157 52.0275i −0.469131 0.0703074i
\(741\) −491.940 + 87.9453i −0.663887 + 0.118685i
\(742\) −272.677 + 150.614i −0.367489 + 0.202984i
\(743\) 943.968 + 943.968i 1.27048 + 1.27048i 0.945836 + 0.324645i \(0.105245\pi\)
0.324645 + 0.945836i \(0.394755\pi\)
\(744\) 66.2492 55.8578i 0.0890446 0.0750777i
\(745\) −49.1641 + 112.944i −0.0659921 + 0.151603i
\(746\) −426.264 246.104i −0.571400 0.329898i
\(747\) −19.0459 206.419i −0.0254965 0.276331i
\(748\) 499.517 + 499.517i 0.667804 + 0.667804i
\(749\) 692.111 171.463i 0.924047 0.228922i
\(750\) −503.867 888.199i −0.671822 1.18426i
\(751\) 41.5208 + 71.9161i 0.0552873 + 0.0957604i 0.892344 0.451355i \(-0.149059\pi\)
−0.837057 + 0.547115i \(0.815726\pi\)
\(752\) 606.174 162.424i 0.806083 0.215989i
\(753\) −207.142 441.482i −0.275089 0.586297i
\(754\) −546.848 947.168i −0.725262 1.25619i
\(755\) −404.701 + 45.9429i −0.536028 + 0.0608516i
\(756\) −621.478 174.436i −0.822060 0.230735i
\(757\) 498.613 + 498.613i 0.658669 + 0.658669i 0.955065 0.296396i \(-0.0957848\pi\)
−0.296396 + 0.955065i \(0.595785\pi\)
\(758\) −394.117 + 1470.87i −0.519944 + 1.94046i
\(759\) 56.3336 + 20.3526i 0.0742208 + 0.0268151i
\(760\) 66.7948 26.2797i 0.0878878 0.0345786i
\(761\) 22.8760 + 39.6224i 0.0300605 + 0.0520663i 0.880664 0.473741i \(-0.157097\pi\)
−0.850604 + 0.525807i \(0.823763\pi\)
\(762\) 582.468 836.061i 0.764393 1.09719i
\(763\) 530.240 + 10.0494i 0.694941 + 0.0131709i
\(764\) −704.653 −0.922320
\(765\) 1400.70 291.303i 1.83098 0.380789i
\(766\) −860.892 497.036i −1.12388 0.648872i
\(767\) −308.818 1152.52i −0.402630 1.50264i
\(768\) −937.855 79.8119i −1.22116 0.103922i
\(769\) 98.8818 0.128585 0.0642925 0.997931i \(-0.479521\pi\)
0.0642925 + 0.997931i \(0.479521\pi\)
\(770\) 216.046 + 581.214i 0.280580 + 0.754823i
\(771\) 598.456 106.987i 0.776208 0.138764i
\(772\) 175.012 653.154i 0.226700 0.846055i
\(773\) 86.6476 + 323.373i 0.112093 + 0.418335i 0.999053 0.0435102i \(-0.0138541\pi\)
−0.886960 + 0.461846i \(0.847187\pi\)
\(774\) 95.6732 558.048i 0.123609 0.720993i
\(775\) 331.955 309.048i 0.428329 0.398771i
\(776\) −126.948 −0.163592
\(777\) 335.246 271.962i 0.431462 0.350015i
\(778\) −1302.60 + 1302.60i −1.67429 + 1.67429i
\(779\) −272.446 471.890i −0.349738 0.605764i
\(780\) 920.755 + 219.143i 1.18046 + 0.280952i
\(781\) −131.129 + 227.122i −0.167899 + 0.290810i
\(782\) −68.7651 + 256.635i −0.0879349 + 0.328178i
\(783\) −568.025 147.881i −0.725447 0.188864i
\(784\) −881.215 33.4144i −1.12400 0.0426204i
\(785\) −573.768 + 720.723i −0.730915 + 0.918118i
\(786\) −622.027 + 524.461i −0.791383 + 0.667253i
\(787\) −112.939 421.495i −0.143506 0.535572i −0.999817 0.0191119i \(-0.993916\pi\)
0.856311 0.516460i \(-0.172751\pi\)
\(788\) 1107.57 296.772i 1.40554 0.376614i
\(789\) −556.080 659.529i −0.704791 0.835905i
\(790\) 421.782 + 335.781i 0.533901 + 0.425039i
\(791\) −103.261 29.7771i −0.130545 0.0376449i
\(792\) −84.6778 38.9982i −0.106916 0.0492402i
\(793\) 1087.20 + 291.315i 1.37100 + 0.367358i
\(794\) 852.959 + 492.456i 1.07426 + 0.620222i
\(795\) 56.7565 238.470i 0.0713919 0.299962i
\(796\) −306.121 + 176.739i −0.384574 + 0.222034i
\(797\) 65.6167 + 65.6167i 0.0823296 + 0.0823296i 0.747072 0.664743i \(-0.231459\pi\)
−0.664743 + 0.747072i \(0.731459\pi\)
\(798\) 184.357 481.522i 0.231023 0.603412i
\(799\) 1108.62i 1.38751i
\(800\) −1065.29 38.0694i −1.33161 0.0475868i
\(801\) −10.0261 + 58.4809i −0.0125170 + 0.0730099i
\(802\) 1330.75 356.575i 1.65930 0.444607i
\(803\) −556.551 149.127i −0.693090 0.185713i
\(804\) −12.9627 72.5096i −0.0161228 0.0901861i
\(805\) −68.4793 + 82.7505i −0.0850674 + 0.102796i
\(806\) 912.712i 1.13240i
\(807\) −45.3822 + 533.277i −0.0562356 + 0.660815i
\(808\) −151.247 + 40.5265i −0.187187 + 0.0501565i
\(809\) 461.230 798.874i 0.570124 0.987484i −0.426429 0.904521i \(-0.640228\pi\)
0.996553 0.0829625i \(-0.0264382\pi\)
\(810\) 935.073 584.751i 1.15441 0.721915i
\(811\) 1041.32i 1.28400i −0.766705 0.642000i \(-0.778105\pi\)
0.766705 0.642000i \(-0.221895\pi\)
\(812\) 519.630 + 9.84829i 0.639939 + 0.0121284i
\(813\) −1161.53 809.213i −1.42869 0.995341i
\(814\) −315.393 + 182.092i −0.387460 + 0.223700i
\(815\) 328.905 + 835.971i 0.403564 + 1.02573i
\(816\) 583.256 1614.38i 0.714775 1.97841i
\(817\) 201.203 + 53.9121i 0.246270 + 0.0659879i
\(818\) 1076.12 1076.12i 1.31554 1.31554i
\(819\) −962.827 + 653.990i −1.17561 + 0.798522i
\(820\) 116.407 + 1025.40i 0.141960 + 1.25049i
\(821\) −47.0980 + 27.1920i −0.0573666 + 0.0331206i −0.528409 0.848990i \(-0.677211\pi\)
0.471042 + 0.882111i \(0.343878\pi\)
\(822\) −308.083 + 144.551i −0.374797 + 0.175853i
\(823\) 328.153 + 1224.68i 0.398727 + 1.48807i 0.815338 + 0.578986i \(0.196551\pi\)
−0.416610 + 0.909085i \(0.636782\pi\)
\(824\) −104.030 + 60.0616i −0.126250 + 0.0728903i
\(825\) −452.696 182.082i −0.548723 0.220706i
\(826\) 1182.87 + 341.099i 1.43204 + 0.412953i
\(827\) −865.051 + 865.051i −1.04601 + 1.04601i −0.0471223 + 0.998889i \(0.515005\pi\)
−0.998889 + 0.0471223i \(0.984995\pi\)
\(828\) 8.66687 + 93.9315i 0.0104672 + 0.113444i
\(829\) −509.991 + 883.330i −0.615188 + 1.06554i 0.375164 + 0.926959i \(0.377587\pi\)
−0.990352 + 0.138578i \(0.955747\pi\)
\(830\) −287.544 125.167i −0.346439 0.150804i
\(831\) −49.8686 59.1457i −0.0600103 0.0711742i
\(832\) 576.410 576.410i 0.692800 0.692800i
\(833\) 459.928 1488.40i 0.552134 1.78680i
\(834\) 332.451 + 1859.63i 0.398622 + 2.22977i
\(835\) −67.3927 + 449.682i −0.0807098 + 0.538542i
\(836\) −100.171 + 173.502i −0.119822 + 0.207538i
\(837\) 348.817 + 343.890i 0.416746 + 0.410861i
\(838\) 251.379 938.159i 0.299975 1.11952i
\(839\) 574.786i 0.685084i −0.939502 0.342542i \(-0.888712\pi\)
0.939502 0.342542i \(-0.111288\pi\)
\(840\) 117.121 119.294i 0.139430 0.142017i
\(841\) −368.406 −0.438057
\(842\) 192.465 + 51.5708i 0.228581 + 0.0612480i
\(843\) 588.008 275.892i 0.697519 0.327274i
\(844\) −85.2452 49.2163i −0.101001 0.0583132i
\(845\) 692.852 512.247i 0.819943 0.606210i
\(846\) 296.095 + 801.667i 0.349994 + 0.947598i
\(847\) −471.628 284.344i −0.556822 0.335708i
\(848\) −207.964 207.964i −0.245241 0.245241i
\(849\) 912.997 + 1082.84i 1.07538 + 1.27544i
\(850\) 634.487 2069.29i 0.746456 2.43445i
\(851\) −54.6335 31.5427i −0.0641991 0.0370654i
\(852\) −411.535 35.0218i −0.483022 0.0411054i
\(853\) 516.935 + 516.935i 0.606019 + 0.606019i 0.941903 0.335884i \(-0.109035\pi\)
−0.335884 + 0.941903i \(0.609035\pi\)
\(854\) −836.570 + 805.450i −0.979590 + 0.943150i
\(855\) 182.612 + 362.323i 0.213582 + 0.423769i
\(856\) 81.0908 + 140.453i 0.0947322 + 0.164081i
\(857\) −876.518 + 234.862i −1.02278 + 0.274052i −0.730958 0.682422i \(-0.760927\pi\)
−0.291817 + 0.956474i \(0.594260\pi\)
\(858\) 888.945 417.090i 1.03607 0.486119i
\(859\) 235.600 + 408.072i 0.274273 + 0.475054i 0.969951 0.243299i \(-0.0782295\pi\)
−0.695679 + 0.718353i \(0.744896\pi\)
\(860\) −308.645 245.712i −0.358889 0.285712i
\(861\) −1027.37 745.058i −1.19323 0.865341i
\(862\) 585.348 + 585.348i 0.679058 + 0.679058i
\(863\) 262.256 978.754i 0.303889 1.13413i −0.630008 0.776589i \(-0.716948\pi\)
0.933897 0.357541i \(-0.116385\pi\)
\(864\) −8.18705 1151.22i −0.00947575 1.33243i
\(865\) 419.401 + 1065.98i 0.484857 + 1.23235i
\(866\) 547.638 + 948.536i 0.632376 + 1.09531i
\(867\) 1776.68 + 1237.78i 2.04922 + 1.42765i
\(868\) −371.436 223.939i −0.427922 0.257994i
\(869\) 257.607 0.296440
\(870\) −609.975 + 645.312i −0.701121 + 0.741738i
\(871\) −115.025 66.4099i −0.132061 0.0762456i
\(872\) 31.2204 + 116.516i 0.0358032 + 0.133619i
\(873\) −65.9307 714.557i −0.0755220 0.818507i
\(874\) −75.3493 −0.0862120
\(875\) 581.572 653.758i 0.664654 0.747152i
\(876\) −159.689 893.252i −0.182293 1.01969i
\(877\) 410.782 1533.06i 0.468395 1.74807i −0.176987 0.984213i \(-0.556635\pi\)
0.645382 0.763860i \(-0.276698\pi\)
\(878\) −228.833 854.016i −0.260630 0.972684i
\(879\) 426.713 + 154.166i 0.485452 + 0.175388i
\(880\) −470.744 + 348.035i −0.534936 + 0.395495i
\(881\) 821.783 0.932784 0.466392 0.884578i \(-0.345554\pi\)
0.466392 + 0.884578i \(0.345554\pi\)
\(882\) −64.9449 1199.13i −0.0736337 1.35956i
\(883\) 586.983 586.983i 0.664760 0.664760i −0.291738 0.956498i \(-0.594233\pi\)
0.956498 + 0.291738i \(0.0942335\pi\)
\(884\) 1003.03 + 1737.30i 1.13465 + 1.96528i
\(885\) −824.996 + 507.789i −0.932199 + 0.573773i
\(886\) 295.161 511.235i 0.333139 0.577014i
\(887\) −345.442 + 1289.21i −0.389450 + 1.45345i 0.441581 + 0.897222i \(0.354418\pi\)
−0.831031 + 0.556226i \(0.812249\pi\)
\(888\) 80.5644 + 56.1277i 0.0907257 + 0.0632068i
\(889\) 838.921 + 241.916i 0.943669 + 0.272122i
\(890\) 70.2265 + 55.9073i 0.0789061 + 0.0628172i
\(891\) 175.534 496.884i 0.197007 0.557670i
\(892\) 392.190 + 1463.67i 0.439675 + 1.64089i
\(893\) −303.693 + 81.3744i −0.340082 + 0.0911247i
\(894\) −153.867 + 129.733i −0.172111 + 0.145115i
\(895\) 278.085 31.5691i 0.310709 0.0352727i
\(896\) −84.8462 342.483i −0.0946944 0.382235i
\(897\) 139.563 + 97.2311i 0.155589 + 0.108396i
\(898\) 475.496 + 127.409i 0.529506 + 0.141881i
\(899\) −341.552 197.195i −0.379924 0.219349i
\(900\) −43.2302 767.228i −0.0480336 0.852476i
\(901\) 449.951 259.779i 0.499390 0.288323i
\(902\) 757.063 + 757.063i 0.839316 + 0.839316i
\(903\) 479.109 76.3125i 0.530574 0.0845099i
\(904\) 24.4442i 0.0270400i
\(905\) −238.183 + 176.096i −0.263186 + 0.194582i
\(906\) −625.879 226.122i −0.690815 0.249583i
\(907\) −1178.10 + 315.671i −1.29890 + 0.348039i −0.841034 0.540983i \(-0.818052\pi\)
−0.457865 + 0.889022i \(0.651386\pi\)
\(908\) 458.319 + 122.806i 0.504757 + 0.135249i
\(909\) −306.664 830.283i −0.337364 0.913403i
\(910\) 165.431 + 1753.05i 0.181793 + 1.92643i
\(911\) 880.582i 0.966611i −0.875452 0.483305i \(-0.839436\pi\)
0.875452 0.483305i \(-0.160564\pi\)
\(912\) 485.051 + 41.2781i 0.531854 + 0.0452610i
\(913\) −144.744 + 38.7840i −0.158537 + 0.0424797i
\(914\) 282.636 489.540i 0.309230 0.535602i
\(915\) −25.7150 913.478i −0.0281038 0.998336i
\(916\) 593.872i 0.648332i
\(917\) −597.046 359.959i −0.651086 0.392540i
\(918\) 2262.12 + 588.924i 2.46418 + 0.641529i
\(919\) −949.330 + 548.096i −1.03300 + 0.596405i −0.917844 0.396942i \(-0.870071\pi\)
−0.115160 + 0.993347i \(0.536738\pi\)
\(920\) −22.4006 9.75091i −0.0243485 0.0105988i
\(921\) −1075.49 388.563i −1.16775 0.421893i
\(922\) −695.354 186.320i −0.754180 0.202082i
\(923\) −526.616 + 526.616i −0.570549 + 0.570549i
\(924\) −48.3689 + 464.099i −0.0523473 + 0.502272i
\(925\) 435.600 + 272.687i 0.470919 + 0.294796i
\(926\) 1776.24 1025.51i 1.91818 1.10746i
\(927\) −392.100 554.364i −0.422977 0.598020i
\(928\) 239.908 + 895.350i 0.258522 + 0.964817i
\(929\) −1019.88 + 588.828i −1.09783 + 0.633830i −0.935649 0.352932i \(-0.885185\pi\)
−0.162176 + 0.986762i \(0.551851\pi\)
\(930\) 710.103 211.859i 0.763551 0.227806i
\(931\) 441.489 + 16.7406i 0.474209 + 0.0179813i
\(932\) 630.373 630.373i 0.676366 0.676366i
\(933\) −264.606 22.5181i −0.283608 0.0241352i
\(934\) 166.545 288.464i 0.178314 0.308848i
\(935\) −378.644 962.393i −0.404967 1.02930i
\(936\) −203.607 169.208i −0.217529 0.180778i
\(937\) 323.664 323.664i 0.345426 0.345426i −0.512977 0.858402i \(-0.671457\pi\)
0.858402 + 0.512977i \(0.171457\pi\)
\(938\) 119.955 66.2574i 0.127883 0.0706369i
\(939\) −1330.90 + 237.929i −1.41736 + 0.253385i
\(940\) 588.889 + 88.2552i 0.626477 + 0.0938885i
\(941\) −324.061 + 561.290i −0.344379 + 0.596483i −0.985241 0.171174i \(-0.945244\pi\)
0.640861 + 0.767657i \(0.278577\pi\)
\(942\) −1362.62 + 639.337i −1.44652 + 0.678702i
\(943\) −48.0010 + 179.142i −0.0509025 + 0.189971i
\(944\) 1162.29i 1.23124i
\(945\) 732.305 + 597.289i 0.774926 + 0.632051i
\(946\) −409.286 −0.432649
\(947\) −942.342 252.500i −0.995081 0.266631i −0.275698 0.961244i \(-0.588909\pi\)
−0.719383 + 0.694613i \(0.755576\pi\)
\(948\) 172.326 + 367.278i 0.181778 + 0.387425i
\(949\) −1417.01 818.109i −1.49316 0.862075i
\(950\) 613.427 + 21.9216i 0.645713 + 0.0230753i
\(951\) 84.6513 + 473.515i 0.0890129 + 0.497913i
\(952\) 354.272 + 6.71435i 0.372135 + 0.00705288i
\(953\) 764.470 + 764.470i 0.802172 + 0.802172i 0.983435 0.181262i \(-0.0580183\pi\)
−0.181262 + 0.983435i \(0.558018\pi\)
\(954\) 255.986 308.026i 0.268329 0.322878i
\(955\) 945.879 + 411.738i 0.990450 + 0.431139i
\(956\) −790.904 456.629i −0.827305 0.477645i
\(957\) −35.9781 + 422.772i −0.0375947 + 0.441768i
\(958\) 1348.79 + 1348.79i 1.40792 + 1.40792i
\(959\) −202.247 210.061i −0.210894 0.219042i
\(960\) −582.252 314.658i −0.606512 0.327769i
\(961\) −315.936 547.218i −0.328758 0.569426i
\(962\) −998.952 + 267.668i −1.03841 + 0.278242i
\(963\) −748.463 + 529.385i −0.777220 + 0.549725i
\(964\) −181.457 314.292i −0.188233 0.326030i
\(965\) −616.572 + 774.489i −0.638934 + 0.802580i
\(966\) −160.260 + 71.5200i −0.165900 + 0.0740373i
\(967\) −108.209 108.209i −0.111901 0.111901i 0.648939 0.760840i \(-0.275213\pi\)
−0.760840 + 0.648939i \(0.775213\pi\)
\(968\) 32.4200 120.993i 0.0334917 0.124993i
\(969\) −292.211 + 808.804i −0.301560 + 0.834679i
\(970\) −995.384 433.287i −1.02617 0.446688i
\(971\) −527.976 914.482i −0.543745 0.941794i −0.998685 0.0512715i \(-0.983673\pi\)
0.454940 0.890522i \(-0.349661\pi\)
\(972\) 825.847 82.1263i 0.849637 0.0844920i
\(973\) −1416.93 + 782.648i −1.45625 + 0.804366i
\(974\) −462.895 −0.475251
\(975\) −1107.91 832.172i −1.13632 0.853510i
\(976\) −949.526 548.209i −0.972875 0.561690i
\(977\) −138.822 518.091i −0.142090 0.530288i −0.999868 0.0162666i \(-0.994822\pi\)
0.857778 0.514021i \(-0.171845\pi\)
\(978\) −124.459 + 1462.49i −0.127258 + 1.49539i
\(979\) 42.8914 0.0438114
\(980\) −754.010 362.797i −0.769398 0.370201i
\(981\) −639.626 + 236.245i −0.652014 + 0.240820i
\(982\) 173.399 647.135i 0.176578 0.658997i
\(983\) 255.618 + 953.980i 0.260039 + 0.970478i 0.965217 + 0.261448i \(0.0842001\pi\)
−0.705179 + 0.709030i \(0.749133\pi\)
\(984\) 98.0841 271.484i 0.0996789 0.275899i
\(985\) −1660.13 248.800i −1.68542 0.252589i
\(986\) −1882.07 −1.90880
\(987\) −568.683 + 461.334i −0.576174 + 0.467410i
\(988\) −402.289 + 402.289i −0.407175 + 0.407175i
\(989\) −35.4490 61.3995i −0.0358433 0.0620824i
\(990\) −530.844 594.796i −0.536207 0.600804i
\(991\) 423.487 733.501i 0.427333 0.740163i −0.569302 0.822128i \(-0.692787\pi\)
0.996635 + 0.0819659i \(0.0261198\pi\)
\(992\) 200.209 747.189i 0.201823 0.753215i
\(993\) −29.6492 + 42.5578i −0.0298582 + 0.0428578i
\(994\) −184.775 745.848i −0.185891 0.750350i
\(995\) 514.188 58.3722i 0.516772 0.0586655i
\(996\) −152.122 180.422i −0.152733 0.181146i
\(997\) −13.0234 48.6041i −0.0130626 0.0487504i 0.959087 0.283112i \(-0.0913668\pi\)
−0.972150 + 0.234361i \(0.924700\pi\)
\(998\) 716.179 191.900i 0.717614 0.192284i
\(999\) −274.087 + 482.627i −0.274362 + 0.483110i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 105.3.w.a.17.5 112
3.2 odd 2 inner 105.3.w.a.17.24 yes 112
5.3 odd 4 inner 105.3.w.a.38.5 yes 112
7.5 odd 6 inner 105.3.w.a.47.24 yes 112
15.8 even 4 inner 105.3.w.a.38.24 yes 112
21.5 even 6 inner 105.3.w.a.47.5 yes 112
35.33 even 12 inner 105.3.w.a.68.24 yes 112
105.68 odd 12 inner 105.3.w.a.68.5 yes 112
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.3.w.a.17.5 112 1.1 even 1 trivial
105.3.w.a.17.24 yes 112 3.2 odd 2 inner
105.3.w.a.38.5 yes 112 5.3 odd 4 inner
105.3.w.a.38.24 yes 112 15.8 even 4 inner
105.3.w.a.47.5 yes 112 21.5 even 6 inner
105.3.w.a.47.24 yes 112 7.5 odd 6 inner
105.3.w.a.68.5 yes 112 105.68 odd 12 inner
105.3.w.a.68.24 yes 112 35.33 even 12 inner