Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [105,3,Mod(17,105)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(105, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([6, 3, 2]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("105.17");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 105 = 3 \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 105.w (of order \(12\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.86104277578\) |
Analytic rank: | \(0\) |
Dimension: | \(112\) |
Relative dimension: | \(28\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
17.1 | −3.72728 | − | 0.998723i | 2.12159 | + | 2.12105i | 9.43110 | + | 5.44505i | 4.76718 | + | 1.50798i | −5.78944 | − | 10.0246i | −6.13877 | + | 3.36385i | −18.8000 | − | 18.8000i | 0.00230342 | + | 9.00000i | −16.2626 | − | 10.3818i |
17.2 | −3.32412 | − | 0.890695i | −2.80275 | − | 1.06987i | 6.79233 | + | 3.92155i | 3.30138 | − | 3.75512i | 8.36374 | + | 6.05276i | 3.32240 | − | 6.16130i | −9.35192 | − | 9.35192i | 6.71077 | + | 5.99713i | −14.3188 | + | 9.54193i |
17.3 | −3.26791 | − | 0.875634i | −2.44299 | + | 1.74120i | 6.44841 | + | 3.72299i | −4.71757 | + | 1.65668i | 9.50814 | − | 3.55093i | 1.33404 | + | 6.87171i | −8.24376 | − | 8.24376i | 2.93642 | − | 8.50749i | 16.8672 | − | 1.28301i |
17.4 | −3.02468 | − | 0.810462i | −0.664693 | − | 2.92544i | 5.02776 | + | 2.90278i | −2.83293 | + | 4.12001i | −0.360468 | + | 9.38723i | −5.96475 | − | 3.66357i | −3.99791 | − | 3.99791i | −8.11637 | + | 3.88904i | 11.9078 | − | 10.1658i |
17.5 | −2.63032 | − | 0.704792i | 1.27430 | + | 2.71591i | 2.95775 | + | 1.70766i | −2.97248 | − | 4.02050i | −1.43765 | − | 8.04182i | 6.12741 | − | 3.38450i | 1.12583 | + | 1.12583i | −5.75234 | + | 6.92175i | 4.98495 | + | 12.6702i |
17.6 | −2.58075 | − | 0.691511i | 1.70571 | − | 2.46791i | 2.71800 | + | 1.56924i | 4.71996 | + | 1.64985i | −6.10859 | + | 5.18955i | 6.61831 | + | 2.27990i | 1.62763 | + | 1.62763i | −3.18114 | − | 8.41905i | −11.0402 | − | 7.52176i |
17.7 | −2.40293 | − | 0.643864i | 2.79517 | − | 1.08950i | 1.89543 | + | 1.09433i | −1.28155 | − | 4.83297i | −7.41810 | + | 0.818277i | −6.92060 | − | 1.05130i | 3.18629 | + | 3.18629i | 6.62599 | − | 6.09067i | −0.0322977 | + | 12.4385i |
17.8 | −1.98706 | − | 0.532431i | −0.853896 | + | 2.87591i | 0.200820 | + | 0.115943i | 1.13457 | + | 4.86958i | 3.22797 | − | 5.25996i | −2.37777 | − | 6.58378i | 5.48120 | + | 5.48120i | −7.54172 | − | 4.91146i | 0.338264 | − | 10.2802i |
17.9 | −1.55206 | − | 0.415874i | −2.55828 | + | 1.56691i | −1.22815 | − | 0.709073i | 3.76090 | − | 3.29479i | 4.62225 | − | 1.36802i | −5.75785 | + | 3.98085i | 6.15604 | + | 6.15604i | 4.08961 | − | 8.01718i | −7.20738 | + | 3.54966i |
17.10 | −1.40147 | − | 0.375522i | −1.48402 | − | 2.60724i | −1.64101 | − | 0.947435i | −3.73472 | − | 3.32444i | 1.10073 | + | 4.21124i | 2.97299 | + | 6.33730i | 6.04782 | + | 6.04782i | −4.59537 | + | 7.73838i | 3.98568 | + | 6.06157i |
17.11 | −1.31040 | − | 0.351121i | 2.87804 | + | 0.846693i | −1.87023 | − | 1.07978i | −2.09369 | + | 4.54054i | −3.47410 | − | 2.12005i | 1.11647 | + | 6.91039i | 5.90875 | + | 5.90875i | 7.56622 | + | 4.87363i | 4.33785 | − | 5.21479i |
17.12 | −0.667244 | − | 0.178787i | −2.94454 | − | 0.574167i | −3.05085 | − | 1.76141i | 1.04868 | + | 4.88879i | 1.86207 | + | 0.909557i | 6.73061 | − | 1.92324i | 3.67457 | + | 3.67457i | 8.34066 | + | 3.38132i | 0.174326 | − | 3.44951i |
17.13 | −0.161935 | − | 0.0433902i | −1.19649 | − | 2.75108i | −3.43976 | − | 1.98595i | 4.97108 | + | 0.537016i | 0.0743827 | + | 0.497410i | −6.97488 | − | 0.592480i | 0.945023 | + | 0.945023i | −6.13684 | + | 6.58325i | −0.781688 | − | 0.302658i |
17.14 | −0.0875643 | − | 0.0234628i | 2.77616 | + | 1.13706i | −3.45698 | − | 1.99589i | 4.80744 | − | 1.37424i | −0.216414 | − | 0.164703i | 2.18034 | − | 6.65178i | 0.512285 | + | 0.512285i | 6.41417 | + | 6.31335i | −0.453203 | + | 0.00753886i |
17.15 | 0.0875643 | + | 0.0234628i | 1.83570 | − | 2.37281i | −3.45698 | − | 1.99589i | −4.80744 | + | 1.37424i | 0.216414 | − | 0.164703i | 2.18034 | − | 6.65178i | −0.512285 | − | 0.512285i | −2.26044 | − | 8.71151i | −0.453203 | + | 0.00753886i |
17.16 | 0.161935 | + | 0.0433902i | 0.339350 | + | 2.98075i | −3.43976 | − | 1.98595i | −4.97108 | − | 0.537016i | −0.0743827 | + | 0.497410i | −6.97488 | − | 0.592480i | −0.945023 | − | 0.945023i | −8.76968 | + | 2.02303i | −0.781688 | − | 0.302658i |
17.17 | 0.667244 | + | 0.178787i | −2.26297 | + | 1.96951i | −3.05085 | − | 1.76141i | −1.04868 | − | 4.88879i | −1.86207 | + | 0.909557i | 6.73061 | − | 1.92324i | −3.67457 | − | 3.67457i | 1.24202 | − | 8.91389i | 0.174326 | − | 3.44951i |
17.18 | 1.31040 | + | 0.351121i | 2.06911 | − | 2.17228i | −1.87023 | − | 1.07978i | 2.09369 | − | 4.54054i | 3.47410 | − | 2.12005i | 1.11647 | + | 6.91039i | −5.90875 | − | 5.90875i | −0.437576 | − | 8.98936i | 4.33785 | − | 5.21479i |
17.19 | 1.40147 | + | 0.375522i | 0.0184202 | + | 2.99994i | −1.64101 | − | 0.947435i | 3.73472 | + | 3.32444i | −1.10073 | + | 4.21124i | 2.97299 | + | 6.33730i | −6.04782 | − | 6.04782i | −8.99932 | + | 0.110519i | 3.98568 | + | 6.06157i |
17.20 | 1.55206 | + | 0.415874i | −2.99899 | − | 0.0778404i | −1.22815 | − | 0.709073i | −3.76090 | + | 3.29479i | −4.62225 | − | 1.36802i | −5.75785 | + | 3.98085i | −6.15604 | − | 6.15604i | 8.98788 | + | 0.466885i | −7.20738 | + | 3.54966i |
See next 80 embeddings (of 112 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.c | odd | 4 | 1 | inner |
7.d | odd | 6 | 1 | inner |
15.e | even | 4 | 1 | inner |
21.g | even | 6 | 1 | inner |
35.k | even | 12 | 1 | inner |
105.w | odd | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 105.3.w.a | ✓ | 112 |
3.b | odd | 2 | 1 | inner | 105.3.w.a | ✓ | 112 |
5.c | odd | 4 | 1 | inner | 105.3.w.a | ✓ | 112 |
7.d | odd | 6 | 1 | inner | 105.3.w.a | ✓ | 112 |
15.e | even | 4 | 1 | inner | 105.3.w.a | ✓ | 112 |
21.g | even | 6 | 1 | inner | 105.3.w.a | ✓ | 112 |
35.k | even | 12 | 1 | inner | 105.3.w.a | ✓ | 112 |
105.w | odd | 12 | 1 | inner | 105.3.w.a | ✓ | 112 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
105.3.w.a | ✓ | 112 | 1.a | even | 1 | 1 | trivial |
105.3.w.a | ✓ | 112 | 3.b | odd | 2 | 1 | inner |
105.3.w.a | ✓ | 112 | 5.c | odd | 4 | 1 | inner |
105.3.w.a | ✓ | 112 | 7.d | odd | 6 | 1 | inner |
105.3.w.a | ✓ | 112 | 15.e | even | 4 | 1 | inner |
105.3.w.a | ✓ | 112 | 21.g | even | 6 | 1 | inner |
105.3.w.a | ✓ | 112 | 35.k | even | 12 | 1 | inner |
105.3.w.a | ✓ | 112 | 105.w | odd | 12 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(105, [\chi])\).