Properties

Label 105.3.w
Level $105$
Weight $3$
Character orbit 105.w
Rep. character $\chi_{105}(17,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $112$
Newform subspaces $1$
Sturm bound $48$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.w (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 105 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(48\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(105, [\chi])\).

Total New Old
Modular forms 144 144 0
Cusp forms 112 112 0
Eisenstein series 32 32 0

Trace form

\( 112 q - 6 q^{3} - 16 q^{7} - 60 q^{10} - 30 q^{12} - 20 q^{15} + 120 q^{16} + 46 q^{18} - 96 q^{21} - 80 q^{22} + 28 q^{25} - 136 q^{28} - 80 q^{30} - 24 q^{31} - 36 q^{33} - 272 q^{36} + 60 q^{37} - 72 q^{40}+ \cdots + 2184 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(105, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
105.3.w.a 105.w 105.w $112$ $2.861$ None 105.3.w.a \(0\) \(-6\) \(0\) \(-16\) $\mathrm{SU}(2)[C_{12}]$