Properties

Label 105.3.v.a.88.4
Level 105
Weight 3
Character 105.88
Analytic conductor 2.861
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 88.4
Character \(\chi\) \(=\) 105.88
Dual form 105.3.v.a.37.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-2.38023 - 0.637781i) q^{2} +(-1.67303 + 0.448288i) q^{3} +(1.79464 + 1.03614i) q^{4} +(2.91424 + 4.06291i) q^{5} +4.26812 q^{6} +(-4.25379 - 5.55925i) q^{7} +(3.35897 + 3.35897i) q^{8} +(2.59808 - 1.50000i) q^{9} +O(q^{10})\) \(q+(-2.38023 - 0.637781i) q^{2} +(-1.67303 + 0.448288i) q^{3} +(1.79464 + 1.03614i) q^{4} +(2.91424 + 4.06291i) q^{5} +4.26812 q^{6} +(-4.25379 - 5.55925i) q^{7} +(3.35897 + 3.35897i) q^{8} +(2.59808 - 1.50000i) q^{9} +(-4.34532 - 11.5293i) q^{10} +(4.95365 - 8.57997i) q^{11} +(-3.46698 - 0.928974i) q^{12} +(-14.1612 - 14.1612i) q^{13} +(6.57942 + 15.9453i) q^{14} +(-6.69697 - 5.49096i) q^{15} +(-9.99739 - 17.3160i) q^{16} +(-4.22139 - 15.7544i) q^{17} +(-7.14070 + 1.91334i) q^{18} +(23.3583 - 13.4859i) q^{19} +(1.02028 + 10.3110i) q^{20} +(9.60887 + 7.39389i) q^{21} +(-17.2630 + 17.2630i) q^{22} +(1.79608 - 6.70305i) q^{23} +(-7.12545 - 4.11388i) q^{24} +(-8.01443 + 23.6806i) q^{25} +(24.6752 + 42.7387i) q^{26} +(-3.67423 + 3.67423i) q^{27} +(-1.87388 - 14.3844i) q^{28} +18.5702i q^{29} +(12.4383 + 17.3410i) q^{30} +(19.6183 - 33.9798i) q^{31} +(7.83442 + 29.2385i) q^{32} +(-4.44132 + 16.5752i) q^{33} +40.1915i q^{34} +(10.1902 - 33.4837i) q^{35} +6.21682 q^{36} +(42.8463 + 11.4806i) q^{37} +(-64.1994 + 17.2022i) q^{38} +(30.0404 + 17.3439i) q^{39} +(-3.85835 + 23.4360i) q^{40} -55.1266 q^{41} +(-18.1557 - 23.7275i) q^{42} +(-36.0471 - 36.0471i) q^{43} +(17.7800 - 10.2653i) q^{44} +(13.6658 + 6.18439i) q^{45} +(-8.55017 + 14.8093i) q^{46} +(24.5013 + 6.56509i) q^{47} +(24.4885 + 24.4885i) q^{48} +(-12.8106 + 47.2958i) q^{49} +(34.1792 - 51.2538i) q^{50} +(14.1250 + 24.4653i) q^{51} +(-10.7413 - 40.0872i) q^{52} +(15.4837 - 4.14884i) q^{53} +(11.0889 - 6.40217i) q^{54} +(49.2957 - 4.87786i) q^{55} +(4.38501 - 32.9617i) q^{56} +(-33.0337 + 33.0337i) q^{57} +(11.8437 - 44.2013i) q^{58} +(-36.0497 - 20.8133i) q^{59} +(-6.32927 - 16.7933i) q^{60} +(-51.6108 - 89.3925i) q^{61} +(-68.3677 + 68.3677i) q^{62} +(-19.3905 - 8.06268i) q^{63} +5.38813i q^{64} +(16.2665 - 98.8047i) q^{65} +(21.1427 - 36.6203i) q^{66} +(1.98123 + 7.39406i) q^{67} +(8.74787 - 32.6475i) q^{68} +12.0196i q^{69} +(-45.6103 + 73.2000i) q^{70} +58.5591 q^{71} +(13.7653 + 3.68841i) q^{72} +(-19.6506 + 5.26536i) q^{73} +(-94.6621 - 54.6532i) q^{74} +(2.79270 - 43.2111i) q^{75} +55.8931 q^{76} +(-68.7699 + 8.95880i) q^{77} +(-60.4416 - 60.4416i) q^{78} +(-47.2373 + 27.2725i) q^{79} +(41.2185 - 91.0814i) q^{80} +(4.50000 - 7.79423i) q^{81} +(131.214 + 35.1587i) q^{82} +(40.8378 + 40.8378i) q^{83} +(9.58340 + 23.2255i) q^{84} +(51.7067 - 63.0633i) q^{85} +(62.8103 + 108.791i) q^{86} +(-8.32477 - 31.0685i) q^{87} +(45.4590 - 12.1807i) q^{88} +(-49.6991 + 28.6938i) q^{89} +(-28.5834 - 23.4361i) q^{90} +(-18.4869 + 138.964i) q^{91} +(10.1686 - 10.1686i) q^{92} +(-17.5892 + 65.6439i) q^{93} +(-54.1316 - 31.2529i) q^{94} +(122.864 + 55.6015i) q^{95} +(-26.2145 - 45.4048i) q^{96} +(37.4558 - 37.4558i) q^{97} +(60.6565 - 104.405i) q^{98} -29.7219i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} + O(q^{10}) \) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} - 16q^{10} + 16q^{11} - 48q^{15} + 80q^{16} + 56q^{17} + 24q^{21} - 96q^{22} + 72q^{23} - 4q^{25} - 288q^{26} - 380q^{28} - 48q^{30} - 136q^{31} - 48q^{32} - 72q^{33} + 76q^{35} + 384q^{36} - 28q^{37} - 68q^{38} + 164q^{40} + 128q^{41} - 12q^{42} + 344q^{43} + 240q^{46} + 412q^{47} - 288q^{48} - 72q^{50} - 24q^{51} + 388q^{52} - 40q^{53} - 8q^{55} - 864q^{56} - 192q^{57} + 56q^{58} - 180q^{60} - 216q^{61} - 912q^{62} - 84q^{63} + 20q^{65} - 72q^{66} - 368q^{67} - 492q^{68} + 416q^{70} + 784q^{71} + 36q^{72} - 316q^{73} + 96q^{75} - 32q^{76} + 844q^{77} + 624q^{78} + 908q^{80} + 288q^{81} + 556q^{82} + 1408q^{83} - 536q^{85} + 1024q^{86} + 108q^{87} + 372q^{88} + 216q^{90} - 1064q^{91} - 1704q^{92} + 144q^{93} + 260q^{95} + 352q^{97} + 272q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.38023 0.637781i −1.19012 0.318891i −0.391184 0.920312i \(-0.627935\pi\)
−0.798932 + 0.601422i \(0.794601\pi\)
\(3\) −1.67303 + 0.448288i −0.557678 + 0.149429i
\(4\) 1.79464 + 1.03614i 0.448660 + 0.259034i
\(5\) 2.91424 + 4.06291i 0.582848 + 0.812581i
\(6\) 4.26812 0.711353
\(7\) −4.25379 5.55925i −0.607684 0.794179i
\(8\) 3.35897 + 3.35897i 0.419871 + 0.419871i
\(9\) 2.59808 1.50000i 0.288675 0.166667i
\(10\) −4.34532 11.5293i −0.434532 1.15293i
\(11\) 4.95365 8.57997i 0.450331 0.779997i −0.548075 0.836429i \(-0.684639\pi\)
0.998406 + 0.0564323i \(0.0179725\pi\)
\(12\) −3.46698 0.928974i −0.288915 0.0774145i
\(13\) −14.1612 14.1612i −1.08932 1.08932i −0.995598 0.0937246i \(-0.970123\pi\)
−0.0937246 0.995598i \(-0.529877\pi\)
\(14\) 6.57942 + 15.9453i 0.469959 + 1.13895i
\(15\) −6.69697 5.49096i −0.446464 0.366064i
\(16\) −9.99739 17.3160i −0.624837 1.08225i
\(17\) −4.22139 15.7544i −0.248317 0.926731i −0.971687 0.236271i \(-0.924075\pi\)
0.723370 0.690460i \(-0.242592\pi\)
\(18\) −7.14070 + 1.91334i −0.396705 + 0.106297i
\(19\) 23.3583 13.4859i 1.22939 0.709787i 0.262485 0.964936i \(-0.415458\pi\)
0.966902 + 0.255150i \(0.0821247\pi\)
\(20\) 1.02028 + 10.3110i 0.0510142 + 0.515550i
\(21\) 9.60887 + 7.39389i 0.457565 + 0.352090i
\(22\) −17.2630 + 17.2630i −0.784680 + 0.784680i
\(23\) 1.79608 6.70305i 0.0780903 0.291437i −0.915826 0.401575i \(-0.868463\pi\)
0.993916 + 0.110138i \(0.0351294\pi\)
\(24\) −7.12545 4.11388i −0.296894 0.171412i
\(25\) −8.01443 + 23.6806i −0.320577 + 0.947222i
\(26\) 24.6752 + 42.7387i 0.949046 + 1.64380i
\(27\) −3.67423 + 3.67423i −0.136083 + 0.136083i
\(28\) −1.87388 14.3844i −0.0669243 0.513727i
\(29\) 18.5702i 0.640350i 0.947358 + 0.320175i \(0.103742\pi\)
−0.947358 + 0.320175i \(0.896258\pi\)
\(30\) 12.4383 + 17.3410i 0.414610 + 0.578032i
\(31\) 19.6183 33.9798i 0.632847 1.09612i −0.354120 0.935200i \(-0.615220\pi\)
0.986967 0.160923i \(-0.0514470\pi\)
\(32\) 7.83442 + 29.2385i 0.244826 + 0.913702i
\(33\) −4.44132 + 16.5752i −0.134585 + 0.502279i
\(34\) 40.1915i 1.18210i
\(35\) 10.1902 33.4837i 0.291148 0.956678i
\(36\) 6.21682 0.172689
\(37\) 42.8463 + 11.4806i 1.15801 + 0.310288i 0.786170 0.618010i \(-0.212061\pi\)
0.371839 + 0.928297i \(0.378727\pi\)
\(38\) −64.1994 + 17.2022i −1.68946 + 0.452689i
\(39\) 30.0404 + 17.3439i 0.770268 + 0.444714i
\(40\) −3.85835 + 23.4360i −0.0964587 + 0.585901i
\(41\) −55.1266 −1.34455 −0.672275 0.740301i \(-0.734683\pi\)
−0.672275 + 0.740301i \(0.734683\pi\)
\(42\) −18.1557 23.7275i −0.432278 0.564941i
\(43\) −36.0471 36.0471i −0.838304 0.838304i 0.150331 0.988636i \(-0.451966\pi\)
−0.988636 + 0.150331i \(0.951966\pi\)
\(44\) 17.7800 10.2653i 0.404091 0.233302i
\(45\) 13.6658 + 6.18439i 0.303684 + 0.137431i
\(46\) −8.55017 + 14.8093i −0.185873 + 0.321942i
\(47\) 24.5013 + 6.56509i 0.521303 + 0.139683i 0.509869 0.860252i \(-0.329694\pi\)
0.0114339 + 0.999935i \(0.496360\pi\)
\(48\) 24.4885 + 24.4885i 0.510177 + 0.510177i
\(49\) −12.8106 + 47.2958i −0.261440 + 0.965220i
\(50\) 34.1792 51.2538i 0.683585 1.02508i
\(51\) 14.1250 + 24.4653i 0.276962 + 0.479712i
\(52\) −10.7413 40.0872i −0.206564 0.770907i
\(53\) 15.4837 4.14884i 0.292145 0.0782800i −0.109770 0.993957i \(-0.535011\pi\)
0.401915 + 0.915677i \(0.368345\pi\)
\(54\) 11.0889 6.40217i 0.205350 0.118559i
\(55\) 49.2957 4.87786i 0.896286 0.0886884i
\(56\) 4.38501 32.9617i 0.0783038 0.588602i
\(57\) −33.0337 + 33.0337i −0.579538 + 0.579538i
\(58\) 11.8437 44.2013i 0.204202 0.762091i
\(59\) −36.0497 20.8133i −0.611011 0.352767i 0.162350 0.986733i \(-0.448093\pi\)
−0.773361 + 0.633966i \(0.781426\pi\)
\(60\) −6.32927 16.7933i −0.105488 0.279888i
\(61\) −51.6108 89.3925i −0.846078 1.46545i −0.884682 0.466196i \(-0.845624\pi\)
0.0386035 0.999255i \(-0.487709\pi\)
\(62\) −68.3677 + 68.3677i −1.10270 + 1.10270i
\(63\) −19.3905 8.06268i −0.307786 0.127979i
\(64\) 5.38813i 0.0841895i
\(65\) 16.2665 98.8047i 0.250254 1.52007i
\(66\) 21.1427 36.6203i 0.320344 0.554853i
\(67\) 1.98123 + 7.39406i 0.0295706 + 0.110359i 0.979134 0.203217i \(-0.0651396\pi\)
−0.949563 + 0.313576i \(0.898473\pi\)
\(68\) 8.74787 32.6475i 0.128645 0.480110i
\(69\) 12.0196i 0.174197i
\(70\) −45.6103 + 73.2000i −0.651575 + 1.04571i
\(71\) 58.5591 0.824776 0.412388 0.911008i \(-0.364695\pi\)
0.412388 + 0.911008i \(0.364695\pi\)
\(72\) 13.7653 + 3.68841i 0.191185 + 0.0512279i
\(73\) −19.6506 + 5.26536i −0.269186 + 0.0721282i −0.390887 0.920439i \(-0.627832\pi\)
0.121701 + 0.992567i \(0.461165\pi\)
\(74\) −94.6621 54.6532i −1.27922 0.738557i
\(75\) 2.79270 43.2111i 0.0372361 0.576148i
\(76\) 55.8931 0.735435
\(77\) −68.7699 + 8.95880i −0.893116 + 0.116348i
\(78\) −60.4416 60.4416i −0.774893 0.774893i
\(79\) −47.2373 + 27.2725i −0.597940 + 0.345221i −0.768231 0.640173i \(-0.778863\pi\)
0.170291 + 0.985394i \(0.445529\pi\)
\(80\) 41.2185 91.0814i 0.515231 1.13852i
\(81\) 4.50000 7.79423i 0.0555556 0.0962250i
\(82\) 131.214 + 35.1587i 1.60017 + 0.428765i
\(83\) 40.8378 + 40.8378i 0.492022 + 0.492022i 0.908943 0.416921i \(-0.136891\pi\)
−0.416921 + 0.908943i \(0.636891\pi\)
\(84\) 9.58340 + 23.2255i 0.114088 + 0.276494i
\(85\) 51.7067 63.0633i 0.608314 0.741921i
\(86\) 62.8103 + 108.791i 0.730352 + 1.26501i
\(87\) −8.32477 31.0685i −0.0956871 0.357109i
\(88\) 45.4590 12.1807i 0.516580 0.138417i
\(89\) −49.6991 + 28.6938i −0.558416 + 0.322402i −0.752510 0.658581i \(-0.771157\pi\)
0.194093 + 0.980983i \(0.437824\pi\)
\(90\) −28.5834 23.4361i −0.317594 0.260401i
\(91\) −18.4869 + 138.964i −0.203153 + 1.52708i
\(92\) 10.1686 10.1686i 0.110528 0.110528i
\(93\) −17.5892 + 65.6439i −0.189132 + 0.705849i
\(94\) −54.1316 31.2529i −0.575868 0.332478i
\(95\) 122.864 + 55.6015i 1.29330 + 0.585279i
\(96\) −26.2145 45.4048i −0.273068 0.472967i
\(97\) 37.4558 37.4558i 0.386142 0.386142i −0.487167 0.873309i \(-0.661970\pi\)
0.873309 + 0.487167i \(0.161970\pi\)
\(98\) 60.6565 104.405i 0.618944 1.06535i
\(99\) 29.7219i 0.300221i
\(100\) −38.9193 + 34.1940i −0.389193 + 0.341940i
\(101\) −63.1499 + 109.379i −0.625247 + 1.08296i 0.363246 + 0.931693i \(0.381668\pi\)
−0.988493 + 0.151266i \(0.951665\pi\)
\(102\) −18.0174 67.2418i −0.176641 0.659233i
\(103\) −27.2007 + 101.514i −0.264085 + 0.985578i 0.698724 + 0.715392i \(0.253752\pi\)
−0.962808 + 0.270186i \(0.912915\pi\)
\(104\) 95.1341i 0.914751i
\(105\) −2.03814 + 60.5875i −0.0194109 + 0.577024i
\(106\) −39.5008 −0.372649
\(107\) 32.6136 + 8.73879i 0.304800 + 0.0816709i 0.407977 0.912992i \(-0.366234\pi\)
−0.103177 + 0.994663i \(0.532901\pi\)
\(108\) −10.4009 + 2.78692i −0.0963050 + 0.0258048i
\(109\) 35.1577 + 20.2983i 0.322548 + 0.186223i 0.652528 0.757765i \(-0.273709\pi\)
−0.329980 + 0.943988i \(0.607042\pi\)
\(110\) −120.446 19.8294i −1.09497 0.180268i
\(111\) −76.8299 −0.692162
\(112\) −53.7371 + 129.237i −0.479796 + 1.15390i
\(113\) 106.341 + 106.341i 0.941068 + 0.941068i 0.998358 0.0572893i \(-0.0182457\pi\)
−0.0572893 + 0.998358i \(0.518246\pi\)
\(114\) 99.6961 57.5596i 0.874527 0.504909i
\(115\) 32.4681 12.2370i 0.282331 0.106409i
\(116\) −19.2412 + 33.3268i −0.165873 + 0.287300i
\(117\) −58.0337 15.5501i −0.496014 0.132907i
\(118\) 72.5323 + 72.5323i 0.614680 + 0.614680i
\(119\) −69.6260 + 90.4838i −0.585092 + 0.760368i
\(120\) −4.05094 40.9389i −0.0337579 0.341157i
\(121\) 11.4228 + 19.7849i 0.0944033 + 0.163511i
\(122\) 65.8328 + 245.691i 0.539613 + 2.01386i
\(123\) 92.2286 24.7126i 0.749826 0.200915i
\(124\) 70.4154 40.6544i 0.567866 0.327858i
\(125\) −119.568 + 36.4489i −0.956543 + 0.291591i
\(126\) 41.0118 + 31.5580i 0.325490 + 0.250460i
\(127\) 128.619 128.619i 1.01275 1.01275i 0.0128332 0.999918i \(-0.495915\pi\)
0.999918 0.0128332i \(-0.00408505\pi\)
\(128\) 34.7741 129.779i 0.271673 1.01390i
\(129\) 76.4674 + 44.1485i 0.592771 + 0.342236i
\(130\) −101.734 + 224.804i −0.782569 + 1.72926i
\(131\) −59.4366 102.947i −0.453715 0.785857i 0.544899 0.838502i \(-0.316568\pi\)
−0.998613 + 0.0526451i \(0.983235\pi\)
\(132\) −25.1448 + 25.1448i −0.190491 + 0.190491i
\(133\) −174.333 72.4885i −1.31078 0.545027i
\(134\) 18.8632i 0.140770i
\(135\) −25.6357 4.22048i −0.189894 0.0312628i
\(136\) 38.7392 67.0982i 0.284847 0.493369i
\(137\) −30.9311 115.436i −0.225774 0.842600i −0.982093 0.188397i \(-0.939671\pi\)
0.756319 0.654203i \(-0.226996\pi\)
\(138\) 7.66587 28.6094i 0.0555498 0.207315i
\(139\) 141.309i 1.01661i −0.861176 0.508307i \(-0.830271\pi\)
0.861176 0.508307i \(-0.169729\pi\)
\(140\) 52.9814 49.5329i 0.378439 0.353806i
\(141\) −43.9344 −0.311592
\(142\) −139.384 37.3479i −0.981580 0.263013i
\(143\) −191.652 + 51.3530i −1.34022 + 0.359112i
\(144\) −51.9480 29.9922i −0.360750 0.208279i
\(145\) −75.4488 + 54.1179i −0.520337 + 0.373227i
\(146\) 50.1311 0.343364
\(147\) 0.230370 84.8702i 0.00156714 0.577348i
\(148\) 64.9983 + 64.9983i 0.439177 + 0.439177i
\(149\) 138.446 79.9316i 0.929165 0.536453i 0.0426173 0.999091i \(-0.486430\pi\)
0.886547 + 0.462638i \(0.153097\pi\)
\(150\) −34.2065 + 101.071i −0.228044 + 0.673809i
\(151\) 36.6513 63.4819i 0.242724 0.420410i −0.718765 0.695253i \(-0.755292\pi\)
0.961489 + 0.274843i \(0.0886258\pi\)
\(152\) 123.759 + 33.1611i 0.814203 + 0.218165i
\(153\) −34.5991 34.5991i −0.226138 0.226138i
\(154\) 169.402 + 22.5362i 1.10001 + 0.146339i
\(155\) 195.229 19.3181i 1.25954 0.124633i
\(156\) 35.9412 + 62.2520i 0.230392 + 0.399051i
\(157\) −21.2192 79.1910i −0.135154 0.504401i −0.999997 0.00235945i \(-0.999249\pi\)
0.864843 0.502042i \(-0.167418\pi\)
\(158\) 129.830 34.7877i 0.821706 0.220175i
\(159\) −24.0448 + 13.8823i −0.151225 + 0.0873100i
\(160\) −95.9618 + 117.038i −0.599761 + 0.731490i
\(161\) −44.9041 + 18.5285i −0.278907 + 0.115084i
\(162\) −15.6821 + 15.6821i −0.0968028 + 0.0968028i
\(163\) −11.9897 + 44.7462i −0.0735564 + 0.274516i −0.992902 0.118934i \(-0.962052\pi\)
0.919346 + 0.393451i \(0.128719\pi\)
\(164\) −98.9324 57.1187i −0.603246 0.348284i
\(165\) −80.2866 + 30.2595i −0.486586 + 0.183391i
\(166\) −71.1579 123.249i −0.428662 0.742464i
\(167\) 60.5283 60.5283i 0.362445 0.362445i −0.502267 0.864712i \(-0.667501\pi\)
0.864712 + 0.502267i \(0.167501\pi\)
\(168\) 7.44007 + 57.1118i 0.0442861 + 0.339951i
\(169\) 232.079i 1.37325i
\(170\) −163.295 + 117.128i −0.960556 + 0.688987i
\(171\) 40.4578 70.0750i 0.236596 0.409795i
\(172\) −27.3419 102.041i −0.158964 0.593263i
\(173\) −28.2921 + 105.588i −0.163538 + 0.610333i 0.834684 + 0.550729i \(0.185650\pi\)
−0.998222 + 0.0596036i \(0.981016\pi\)
\(174\) 79.2596i 0.455515i
\(175\) 165.738 56.1778i 0.947074 0.321016i
\(176\) −198.094 −1.12553
\(177\) 69.6426 + 18.6607i 0.393461 + 0.105428i
\(178\) 136.596 36.6007i 0.767391 0.205622i
\(179\) −218.631 126.227i −1.22140 0.705177i −0.256185 0.966628i \(-0.582466\pi\)
−0.965217 + 0.261451i \(0.915799\pi\)
\(180\) 18.1173 + 25.2584i 0.100652 + 0.140324i
\(181\) 119.101 0.658017 0.329008 0.944327i \(-0.393286\pi\)
0.329008 + 0.944327i \(0.393286\pi\)
\(182\) 132.632 318.977i 0.728748 1.75262i
\(183\) 126.420 + 126.420i 0.690820 + 0.690820i
\(184\) 28.5483 16.4824i 0.155154 0.0895782i
\(185\) 78.2196 + 207.538i 0.422809 + 1.12183i
\(186\) 83.7330 145.030i 0.450177 0.779730i
\(187\) −156.084 41.8225i −0.834673 0.223650i
\(188\) 37.1686 + 37.1686i 0.197705 + 0.197705i
\(189\) 36.0554 + 4.79658i 0.190769 + 0.0253787i
\(190\) −256.983 210.705i −1.35254 1.10897i
\(191\) 26.3773 + 45.6869i 0.138101 + 0.239198i 0.926778 0.375610i \(-0.122567\pi\)
−0.788677 + 0.614808i \(0.789233\pi\)
\(192\) −2.41543 9.01451i −0.0125804 0.0469506i
\(193\) 177.369 47.5259i 0.919010 0.246248i 0.231848 0.972752i \(-0.425523\pi\)
0.687162 + 0.726504i \(0.258856\pi\)
\(194\) −113.042 + 65.2649i −0.582692 + 0.336417i
\(195\) 17.0785 + 172.596i 0.0875821 + 0.885106i
\(196\) −71.9952 + 71.6054i −0.367322 + 0.365334i
\(197\) −121.992 + 121.992i −0.619251 + 0.619251i −0.945339 0.326088i \(-0.894269\pi\)
0.326088 + 0.945339i \(0.394269\pi\)
\(198\) −18.9561 + 70.7450i −0.0957377 + 0.357298i
\(199\) 80.9671 + 46.7464i 0.406870 + 0.234906i 0.689444 0.724339i \(-0.257855\pi\)
−0.282574 + 0.959245i \(0.591188\pi\)
\(200\) −106.463 + 52.6221i −0.532313 + 0.263110i
\(201\) −6.62933 11.4823i −0.0329818 0.0571261i
\(202\) 220.071 220.071i 1.08946 1.08946i
\(203\) 103.236 78.9935i 0.508553 0.389131i
\(204\) 58.5419i 0.286970i
\(205\) −160.652 223.974i −0.783668 1.09256i
\(206\) 129.488 224.280i 0.628583 1.08874i
\(207\) −5.38823 20.1092i −0.0260301 0.0971457i
\(208\) −103.640 + 386.790i −0.498270 + 1.85957i
\(209\) 267.218i 1.27856i
\(210\) 43.4928 142.912i 0.207109 0.680536i
\(211\) 21.8880 0.103735 0.0518674 0.998654i \(-0.483483\pi\)
0.0518674 + 0.998654i \(0.483483\pi\)
\(212\) 32.0864 + 8.59753i 0.151351 + 0.0405544i
\(213\) −97.9713 + 26.2513i −0.459959 + 0.123246i
\(214\) −72.0545 41.6007i −0.336703 0.194396i
\(215\) 41.4062 251.506i 0.192587 1.16979i
\(216\) −24.6833 −0.114275
\(217\) −272.354 + 35.4801i −1.25509 + 0.163503i
\(218\) −70.7377 70.7377i −0.324485 0.324485i
\(219\) 30.5157 17.6182i 0.139341 0.0804485i
\(220\) 93.5222 + 42.3231i 0.425101 + 0.192378i
\(221\) −163.322 + 282.882i −0.739012 + 1.28001i
\(222\) 182.873 + 49.0007i 0.823753 + 0.220724i
\(223\) −88.4889 88.4889i −0.396811 0.396811i 0.480295 0.877107i \(-0.340529\pi\)
−0.877107 + 0.480295i \(0.840529\pi\)
\(224\) 129.218 167.928i 0.576866 0.749677i
\(225\) 14.6987 + 73.5455i 0.0653277 + 0.326869i
\(226\) −185.294 320.938i −0.819883 1.42008i
\(227\) 4.21650 + 15.7362i 0.0185749 + 0.0693225i 0.974591 0.223991i \(-0.0719087\pi\)
−0.956016 + 0.293314i \(0.905242\pi\)
\(228\) −93.5110 + 25.0562i −0.410136 + 0.109896i
\(229\) 345.781 199.637i 1.50996 0.871776i 0.510028 0.860158i \(-0.329635\pi\)
0.999933 0.0116184i \(-0.00369834\pi\)
\(230\) −85.0861 + 8.41936i −0.369940 + 0.0366059i
\(231\) 111.038 45.8171i 0.480685 0.198342i
\(232\) −62.3766 + 62.3766i −0.268865 + 0.268865i
\(233\) −46.2513 + 172.612i −0.198503 + 0.740825i 0.792829 + 0.609445i \(0.208607\pi\)
−0.991332 + 0.131380i \(0.958059\pi\)
\(234\) 128.216 + 74.0256i 0.547932 + 0.316349i
\(235\) 44.7291 + 118.679i 0.190337 + 0.505015i
\(236\) −43.1308 74.7047i −0.182758 0.316545i
\(237\) 66.8036 66.8036i 0.281872 0.281872i
\(238\) 223.435 170.966i 0.938802 0.718346i
\(239\) 372.693i 1.55938i 0.626164 + 0.779692i \(0.284624\pi\)
−0.626164 + 0.779692i \(0.715376\pi\)
\(240\) −28.1292 + 170.860i −0.117205 + 0.711916i
\(241\) 0.499495 0.865151i 0.00207259 0.00358984i −0.864987 0.501794i \(-0.832674\pi\)
0.867060 + 0.498204i \(0.166007\pi\)
\(242\) −14.5705 54.3778i −0.0602087 0.224702i
\(243\) −4.03459 + 15.0573i −0.0166032 + 0.0619642i
\(244\) 213.903i 0.876652i
\(245\) −229.491 + 85.7830i −0.936699 + 0.350135i
\(246\) −235.287 −0.956450
\(247\) −521.759 139.805i −2.11239 0.566012i
\(248\) 180.034 48.2401i 0.725945 0.194516i
\(249\) −86.6301 50.0159i −0.347912 0.200867i
\(250\) 307.846 10.4987i 1.23138 0.0419946i
\(251\) −40.4760 −0.161259 −0.0806296 0.996744i \(-0.525693\pi\)
−0.0806296 + 0.996744i \(0.525693\pi\)
\(252\) −26.4450 34.5609i −0.104941 0.137146i
\(253\) −48.6148 48.6148i −0.192153 0.192153i
\(254\) −388.175 + 224.113i −1.52825 + 0.882334i
\(255\) −58.2365 + 128.686i −0.228378 + 0.504653i
\(256\) −154.765 + 268.060i −0.604550 + 1.04711i
\(257\) 485.965 + 130.214i 1.89091 + 0.506669i 0.998457 + 0.0555353i \(0.0176865\pi\)
0.892457 + 0.451133i \(0.148980\pi\)
\(258\) −153.853 153.853i −0.596330 0.596330i
\(259\) −118.435 287.030i −0.457280 1.10822i
\(260\) 131.568 160.465i 0.506030 0.617172i
\(261\) 27.8552 + 48.2467i 0.106725 + 0.184853i
\(262\) 75.8151 + 282.946i 0.289371 + 1.07995i
\(263\) 302.228 80.9818i 1.14916 0.307916i 0.366530 0.930406i \(-0.380546\pi\)
0.782627 + 0.622491i \(0.213879\pi\)
\(264\) −70.5939 + 40.7574i −0.267401 + 0.154384i
\(265\) 61.9795 + 50.8180i 0.233885 + 0.191766i
\(266\) 368.722 + 283.726i 1.38617 + 1.06664i
\(267\) 70.2851 70.2851i 0.263240 0.263240i
\(268\) −4.10565 + 15.3225i −0.0153196 + 0.0571735i
\(269\) 274.266 + 158.348i 1.01958 + 0.588653i 0.913981 0.405756i \(-0.132992\pi\)
0.105596 + 0.994409i \(0.466325\pi\)
\(270\) 58.3271 + 26.3957i 0.216026 + 0.0977618i
\(271\) 83.6427 + 144.873i 0.308645 + 0.534588i 0.978066 0.208295i \(-0.0667913\pi\)
−0.669421 + 0.742883i \(0.733458\pi\)
\(272\) −230.601 + 230.601i −0.847797 + 0.847797i
\(273\) −31.3668 240.779i −0.114897 0.881976i
\(274\) 294.492i 1.07479i
\(275\) 163.478 + 186.069i 0.594464 + 0.676613i
\(276\) −12.4539 + 21.5708i −0.0451229 + 0.0781552i
\(277\) 67.5940 + 252.264i 0.244022 + 0.910701i 0.973873 + 0.227095i \(0.0729227\pi\)
−0.729851 + 0.683606i \(0.760411\pi\)
\(278\) −90.1245 + 336.349i −0.324189 + 1.20989i
\(279\) 117.710i 0.421898i
\(280\) 146.699 78.2424i 0.523926 0.279437i
\(281\) −288.113 −1.02531 −0.512657 0.858594i \(-0.671339\pi\)
−0.512657 + 0.858594i \(0.671339\pi\)
\(282\) 104.574 + 28.0206i 0.370830 + 0.0993637i
\(283\) −311.860 + 83.5625i −1.10198 + 0.295274i −0.763570 0.645726i \(-0.776555\pi\)
−0.338408 + 0.941000i \(0.609888\pi\)
\(284\) 105.093 + 60.6752i 0.370044 + 0.213645i
\(285\) −230.481 37.9448i −0.808705 0.133140i
\(286\) 488.929 1.70954
\(287\) 234.497 + 306.463i 0.817062 + 1.06781i
\(288\) 64.2121 + 64.2121i 0.222959 + 0.222959i
\(289\) 19.8992 11.4888i 0.0688555 0.0397538i
\(290\) 214.101 80.6932i 0.738280 0.278253i
\(291\) −45.8738 + 79.4558i −0.157642 + 0.273044i
\(292\) −40.7214 10.9113i −0.139457 0.0373673i
\(293\) 98.1765 + 98.1765i 0.335074 + 0.335074i 0.854509 0.519436i \(-0.173858\pi\)
−0.519436 + 0.854509i \(0.673858\pi\)
\(294\) −54.6770 + 201.864i −0.185976 + 0.686612i
\(295\) −20.4949 207.121i −0.0694741 0.702106i
\(296\) 105.356 + 182.483i 0.355934 + 0.616496i
\(297\) 13.3240 + 49.7257i 0.0448618 + 0.167426i
\(298\) −380.511 + 101.958i −1.27688 + 0.342140i
\(299\) −120.358 + 69.4886i −0.402535 + 0.232403i
\(300\) 49.7845 74.6548i 0.165948 0.248849i
\(301\) −47.0581 + 353.731i −0.156339 + 1.17519i
\(302\) −127.726 + 127.726i −0.422934 + 0.422934i
\(303\) 56.6187 211.304i 0.186860 0.697372i
\(304\) −467.045 269.648i −1.53633 0.887001i
\(305\) 212.787 470.201i 0.697663 1.54164i
\(306\) 60.2873 + 104.421i 0.197017 + 0.341244i
\(307\) −38.0161 + 38.0161i −0.123831 + 0.123831i −0.766306 0.642475i \(-0.777907\pi\)
0.642475 + 0.766306i \(0.277907\pi\)
\(308\) −132.700 55.1772i −0.430844 0.179147i
\(309\) 182.031i 0.589096i
\(310\) −477.011 78.5319i −1.53875 0.253329i
\(311\) 182.194 315.569i 0.585832 1.01469i −0.408939 0.912562i \(-0.634101\pi\)
0.994771 0.102129i \(-0.0325656\pi\)
\(312\) 42.6475 + 159.162i 0.136691 + 0.510136i
\(313\) 61.0959 228.013i 0.195195 0.728476i −0.797022 0.603951i \(-0.793592\pi\)
0.992216 0.124526i \(-0.0397409\pi\)
\(314\) 202.026i 0.643396i
\(315\) −23.7508 102.279i −0.0753992 0.324694i
\(316\) −113.032 −0.357696
\(317\) −306.481 82.1214i −0.966818 0.259058i −0.259334 0.965788i \(-0.583503\pi\)
−0.707484 + 0.706730i \(0.750170\pi\)
\(318\) 66.0861 17.7077i 0.207818 0.0556847i
\(319\) 159.331 + 91.9900i 0.499471 + 0.288370i
\(320\) −21.8915 + 15.7023i −0.0684108 + 0.0490696i
\(321\) −58.4811 −0.182184
\(322\) 118.699 15.4632i 0.368632 0.0480224i
\(323\) −311.068 311.068i −0.963059 0.963059i
\(324\) 16.1518 9.32523i 0.0498511 0.0287816i
\(325\) 448.839 221.851i 1.38104 0.682619i
\(326\) 57.0765 98.8595i 0.175081 0.303250i
\(327\) −67.9195 18.1990i −0.207705 0.0556544i
\(328\) −185.169 185.169i −0.564539 0.564539i
\(329\) −67.7262 164.135i −0.205855 0.498891i
\(330\) 210.400 20.8193i 0.637575 0.0630887i
\(331\) 258.974 + 448.556i 0.782399 + 1.35515i 0.930541 + 0.366189i \(0.119338\pi\)
−0.148142 + 0.988966i \(0.547329\pi\)
\(332\) 30.9756 + 115.603i 0.0933001 + 0.348201i
\(333\) 128.539 34.4419i 0.386003 0.103429i
\(334\) −182.675 + 105.468i −0.546932 + 0.315771i
\(335\) −24.2676 + 29.5976i −0.0724406 + 0.0883511i
\(336\) 31.9688 240.307i 0.0951453 0.715198i
\(337\) 153.115 153.115i 0.454348 0.454348i −0.442447 0.896795i \(-0.645889\pi\)
0.896795 + 0.442447i \(0.145889\pi\)
\(338\) 148.016 552.402i 0.437916 1.63432i
\(339\) −225.583 130.240i −0.665436 0.384190i
\(340\) 158.137 59.6008i 0.465109 0.175296i
\(341\) −194.364 336.648i −0.569982 0.987237i
\(342\) −140.992 + 140.992i −0.412256 + 0.412256i
\(343\) 317.422 129.969i 0.925430 0.378919i
\(344\) 242.162i 0.703960i
\(345\) −48.8345 + 35.0279i −0.141549 + 0.101530i
\(346\) 134.684 233.279i 0.389259 0.674216i
\(347\) −106.451 397.282i −0.306777 1.14491i −0.931405 0.363984i \(-0.881416\pi\)
0.624629 0.780922i \(-0.285250\pi\)
\(348\) 17.2512 64.3823i 0.0495724 0.185007i
\(349\) 338.935i 0.971160i 0.874192 + 0.485580i \(0.161391\pi\)
−0.874192 + 0.485580i \(0.838609\pi\)
\(350\) −430.324 + 28.0118i −1.22950 + 0.0800337i
\(351\) 104.063 0.296476
\(352\) 289.674 + 77.6179i 0.822937 + 0.220505i
\(353\) −452.404 + 121.221i −1.28160 + 0.343403i −0.834464 0.551063i \(-0.814222\pi\)
−0.447135 + 0.894466i \(0.647556\pi\)
\(354\) −153.864 88.8335i −0.434644 0.250942i
\(355\) 170.655 + 237.920i 0.480719 + 0.670198i
\(356\) −118.923 −0.334052
\(357\) 75.9237 182.595i 0.212672 0.511470i
\(358\) 439.887 + 439.887i 1.22874 + 1.22874i
\(359\) 303.691 175.336i 0.845935 0.488401i −0.0133422 0.999911i \(-0.504247\pi\)
0.859277 + 0.511510i \(0.170914\pi\)
\(360\) 25.1298 + 66.6761i 0.0698049 + 0.185211i
\(361\) 183.241 317.383i 0.507594 0.879178i
\(362\) −283.488 75.9604i −0.783116 0.209835i
\(363\) −27.9800 27.9800i −0.0770800 0.0770800i
\(364\) −177.163 + 230.236i −0.486713 + 0.632517i
\(365\) −78.6591 64.4940i −0.215504 0.176696i
\(366\) −220.281 381.537i −0.601860 1.04245i
\(367\) 104.910 + 391.530i 0.285859 + 1.06684i 0.948210 + 0.317645i \(0.102892\pi\)
−0.662351 + 0.749194i \(0.730441\pi\)
\(368\) −134.026 + 35.9122i −0.364201 + 0.0975874i
\(369\) −143.223 + 82.6899i −0.388138 + 0.224092i
\(370\) −53.8170 543.876i −0.145451 1.46993i
\(371\) −88.9287 68.4294i −0.239700 0.184446i
\(372\) −99.5824 + 99.5824i −0.267695 + 0.267695i
\(373\) 19.7292 73.6304i 0.0528933 0.197401i −0.934423 0.356165i \(-0.884084\pi\)
0.987317 + 0.158764i \(0.0507509\pi\)
\(374\) 344.842 + 199.095i 0.922038 + 0.532339i
\(375\) 183.701 114.581i 0.489870 0.305549i
\(376\) 60.2471 + 104.351i 0.160232 + 0.277529i
\(377\) 262.976 262.976i 0.697548 0.697548i
\(378\) −82.7611 34.4124i −0.218945 0.0910382i
\(379\) 503.251i 1.32784i 0.747804 + 0.663919i \(0.231108\pi\)
−0.747804 + 0.663919i \(0.768892\pi\)
\(380\) 162.886 + 227.088i 0.428647 + 0.597601i
\(381\) −157.526 + 272.843i −0.413454 + 0.716123i
\(382\) −33.6459 125.568i −0.0880784 0.328713i
\(383\) 193.815 723.327i 0.506044 1.88858i 0.0497332 0.998763i \(-0.484163\pi\)
0.456311 0.889820i \(-0.349170\pi\)
\(384\) 232.713i 0.606024i
\(385\) −236.811 253.298i −0.615093 0.657917i
\(386\) −452.490 −1.17226
\(387\) −147.724 39.5824i −0.381715 0.102280i
\(388\) 106.029 28.4104i 0.273271 0.0732227i
\(389\) −385.145 222.364i −0.990091 0.571629i −0.0847892 0.996399i \(-0.527022\pi\)
−0.905301 + 0.424770i \(0.860355\pi\)
\(390\) 69.4274 421.710i 0.178019 1.08131i
\(391\) −113.185 −0.289475
\(392\) −201.895 + 115.835i −0.515039 + 0.295497i
\(393\) 145.589 + 145.589i 0.370456 + 0.370456i
\(394\) 368.175 212.566i 0.934454 0.539507i
\(395\) −248.466 112.442i −0.629028 0.284664i
\(396\) 30.7959 53.3401i 0.0777674 0.134697i
\(397\) −652.508 174.839i −1.64360 0.440400i −0.685786 0.727803i \(-0.740542\pi\)
−0.957810 + 0.287403i \(0.907208\pi\)
\(398\) −162.906 162.906i −0.409313 0.409313i
\(399\) 324.161 + 43.1242i 0.812433 + 0.108081i
\(400\) 490.176 97.9659i 1.22544 0.244915i
\(401\) 195.581 + 338.757i 0.487734 + 0.844780i 0.999901 0.0141063i \(-0.00449034\pi\)
−0.512167 + 0.858886i \(0.671157\pi\)
\(402\) 8.45613 + 31.5587i 0.0210352 + 0.0785043i
\(403\) −759.013 + 203.377i −1.88341 + 0.504657i
\(404\) −226.663 + 130.864i −0.561047 + 0.323920i
\(405\) 44.7813 4.43115i 0.110571 0.0109411i
\(406\) −296.107 + 122.181i −0.729327 + 0.300938i
\(407\) 310.749 310.749i 0.763511 0.763511i
\(408\) −34.7326 + 129.624i −0.0851289 + 0.317705i
\(409\) −150.958 87.1558i −0.369091 0.213095i 0.303970 0.952682i \(-0.401688\pi\)
−0.673061 + 0.739587i \(0.735021\pi\)
\(410\) 239.543 + 635.572i 0.584250 + 1.55017i
\(411\) 103.497 + 179.263i 0.251818 + 0.436162i
\(412\) −153.998 + 153.998i −0.373782 + 0.373782i
\(413\) 37.6414 + 288.944i 0.0911414 + 0.699623i
\(414\) 51.3010i 0.123915i
\(415\) −46.9091 + 284.931i −0.113034 + 0.686581i
\(416\) 303.107 524.996i 0.728622 1.26201i
\(417\) 63.3473 + 236.415i 0.151912 + 0.566943i
\(418\) −170.427 + 636.042i −0.407720 + 1.52163i
\(419\) 190.392i 0.454396i 0.973849 + 0.227198i \(0.0729564\pi\)
−0.973849 + 0.227198i \(0.927044\pi\)
\(420\) −66.4346 + 106.621i −0.158178 + 0.253860i
\(421\) 581.913 1.38222 0.691108 0.722751i \(-0.257123\pi\)
0.691108 + 0.722751i \(0.257123\pi\)
\(422\) −52.0986 13.9598i −0.123456 0.0330800i
\(423\) 73.5038 19.6953i 0.173768 0.0465609i
\(424\) 65.9451 + 38.0734i 0.155531 + 0.0897958i
\(425\) 406.906 + 26.2980i 0.957426 + 0.0618777i
\(426\) 249.937 0.586707
\(427\) −277.414 + 667.174i −0.649681 + 1.56247i
\(428\) 49.4751 + 49.4751i 0.115596 + 0.115596i
\(429\) 297.619 171.831i 0.693751 0.400537i
\(430\) −258.962 + 572.234i −0.602237 + 1.33078i
\(431\) 286.895 496.916i 0.665649 1.15294i −0.313460 0.949601i \(-0.601488\pi\)
0.979109 0.203336i \(-0.0651785\pi\)
\(432\) 100.356 + 26.8902i 0.232305 + 0.0622459i
\(433\) 267.818 + 267.818i 0.618518 + 0.618518i 0.945151 0.326633i \(-0.105914\pi\)
−0.326633 + 0.945151i \(0.605914\pi\)
\(434\) 670.895 + 89.2515i 1.54584 + 0.205649i
\(435\) 101.968 124.364i 0.234409 0.285894i
\(436\) 42.0637 + 72.8564i 0.0964763 + 0.167102i
\(437\) −48.4436 180.794i −0.110855 0.413716i
\(438\) −83.8710 + 22.4732i −0.191486 + 0.0513086i
\(439\) 334.556 193.156i 0.762086 0.439991i −0.0679581 0.997688i \(-0.521648\pi\)
0.830044 + 0.557698i \(0.188315\pi\)
\(440\) 181.967 + 149.198i 0.413562 + 0.339087i
\(441\) 37.6608 + 142.094i 0.0853987 + 0.322208i
\(442\) 569.160 569.160i 1.28769 1.28769i
\(443\) −125.217 + 467.317i −0.282657 + 1.05489i 0.667877 + 0.744271i \(0.267203\pi\)
−0.950534 + 0.310619i \(0.899464\pi\)
\(444\) −137.882 79.6063i −0.310545 0.179293i
\(445\) −261.415 118.302i −0.587449 0.265848i
\(446\) 154.188 + 267.061i 0.345712 + 0.598791i
\(447\) −195.792 + 195.792i −0.438012 + 0.438012i
\(448\) 29.9540 22.9200i 0.0668615 0.0511606i
\(449\) 213.080i 0.474566i 0.971441 + 0.237283i \(0.0762569\pi\)
−0.971441 + 0.237283i \(0.923743\pi\)
\(450\) 11.9196 184.430i 0.0264880 0.409845i
\(451\) −273.078 + 472.984i −0.605494 + 1.04875i
\(452\) 80.6599 + 301.027i 0.178451 + 0.665989i
\(453\) −32.8607 + 122.638i −0.0725401 + 0.270723i
\(454\) 40.1450i 0.0884252i
\(455\) −618.475 + 329.865i −1.35929 + 0.724977i
\(456\) −221.918 −0.486663
\(457\) 740.545 + 198.429i 1.62045 + 0.434198i 0.951134 0.308780i \(-0.0999206\pi\)
0.669316 + 0.742978i \(0.266587\pi\)
\(458\) −950.364 + 254.649i −2.07503 + 0.556003i
\(459\) 73.3959 + 42.3751i 0.159904 + 0.0923205i
\(460\) 70.9477 + 11.6803i 0.154234 + 0.0253921i
\(461\) 332.527 0.721317 0.360659 0.932698i \(-0.382552\pi\)
0.360659 + 0.932698i \(0.382552\pi\)
\(462\) −293.518 + 38.2372i −0.635321 + 0.0827645i
\(463\) −394.630 394.630i −0.852332 0.852332i 0.138088 0.990420i \(-0.455904\pi\)
−0.990420 + 0.138088i \(0.955904\pi\)
\(464\) 321.561 185.653i 0.693018 0.400114i
\(465\) −317.965 + 119.839i −0.683795 + 0.257717i
\(466\) 220.178 381.359i 0.472484 0.818367i
\(467\) −594.918 159.408i −1.27392 0.341345i −0.442386 0.896825i \(-0.645868\pi\)
−0.831530 + 0.555480i \(0.812534\pi\)
\(468\) −88.0376 88.0376i −0.188114 0.188114i
\(469\) 32.6777 42.4670i 0.0696753 0.0905479i
\(470\) −30.7747 311.010i −0.0654782 0.661723i
\(471\) 71.0007 + 122.977i 0.150745 + 0.261097i
\(472\) −51.1786 191.001i −0.108429 0.404663i
\(473\) −487.847 + 130.718i −1.03139 + 0.276360i
\(474\) −201.614 + 116.402i −0.425346 + 0.245574i
\(475\) 132.151 + 661.221i 0.278212 + 1.39204i
\(476\) −218.707 + 90.2439i −0.459469 + 0.189588i
\(477\) 34.0045 34.0045i 0.0712883 0.0712883i
\(478\) 237.696 887.095i 0.497273 1.85585i
\(479\) 219.614 + 126.794i 0.458484 + 0.264706i 0.711407 0.702781i \(-0.248058\pi\)
−0.252923 + 0.967487i \(0.581392\pi\)
\(480\) 108.080 238.827i 0.225167 0.497557i
\(481\) −444.176 769.335i −0.923442 1.59945i
\(482\) −1.74069 + 1.74069i −0.00361139 + 0.00361139i
\(483\) 66.8199 51.1288i 0.138343 0.105857i
\(484\) 47.3423i 0.0978147i
\(485\) 261.335 + 43.0244i 0.538834 + 0.0887100i
\(486\) 19.2065 33.2667i 0.0395196 0.0684499i
\(487\) 107.670 + 401.832i 0.221089 + 0.825116i 0.983934 + 0.178534i \(0.0571355\pi\)
−0.762845 + 0.646582i \(0.776198\pi\)
\(488\) 126.908 473.626i 0.260057 0.970545i
\(489\) 80.2366i 0.164083i
\(490\) 600.954 57.8182i 1.22644 0.117996i
\(491\) −283.991 −0.578392 −0.289196 0.957270i \(-0.593388\pi\)
−0.289196 + 0.957270i \(0.593388\pi\)
\(492\) 191.123 + 51.2112i 0.388461 + 0.104088i
\(493\) 292.562 78.3918i 0.593433 0.159010i
\(494\) 1152.74 + 665.537i 2.33349 + 1.34724i
\(495\) 120.757 86.6166i 0.243954 0.174983i
\(496\) −784.525 −1.58170
\(497\) −249.098 325.545i −0.501203 0.655020i
\(498\) 174.300 + 174.300i 0.350001 + 0.350001i
\(499\) −716.123 + 413.454i −1.43512 + 0.828565i −0.997505 0.0705988i \(-0.977509\pi\)
−0.437612 + 0.899164i \(0.644176\pi\)
\(500\) −252.347 58.4760i −0.504695 0.116952i
\(501\) −74.1318 + 128.400i −0.147968 + 0.256287i
\(502\) 96.3424 + 25.8149i 0.191917 + 0.0514240i
\(503\) 118.670 + 118.670i 0.235924 + 0.235924i 0.815160 0.579236i \(-0.196649\pi\)
−0.579236 + 0.815160i \(0.696649\pi\)
\(504\) −38.0500 92.2146i −0.0754960 0.182965i
\(505\) −628.430 + 62.1838i −1.24442 + 0.123136i
\(506\) 84.7090 + 146.720i 0.167409 + 0.289961i
\(507\) −104.038 388.276i −0.205203 0.765830i
\(508\) 364.093 97.5583i 0.716718 0.192044i
\(509\) −154.005 + 88.9151i −0.302565 + 0.174686i −0.643594 0.765367i \(-0.722558\pi\)
0.341030 + 0.940052i \(0.389224\pi\)
\(510\) 220.690 269.161i 0.432726 0.527767i
\(511\) 112.861 + 86.8448i 0.220863 + 0.169951i
\(512\) 159.321 159.321i 0.311175 0.311175i
\(513\) −36.2735 + 135.375i −0.0707086 + 0.263888i
\(514\) −1073.66 619.879i −2.08883 1.20599i
\(515\) −491.713 + 185.323i −0.954783 + 0.359851i
\(516\) 91.4877 + 158.461i 0.177302 + 0.307096i
\(517\) 177.699 177.699i 0.343711 0.343711i
\(518\) 98.8418 + 758.734i 0.190814 + 1.46474i
\(519\) 189.334i 0.364806i
\(520\) 386.521 277.243i 0.743310 0.533160i
\(521\) 376.277 651.731i 0.722221 1.25092i −0.237887 0.971293i \(-0.576455\pi\)
0.960108 0.279631i \(-0.0902120\pi\)
\(522\) −35.5311 132.604i −0.0680672 0.254030i
\(523\) 141.063 526.453i 0.269718 1.00660i −0.689580 0.724209i \(-0.742205\pi\)
0.959299 0.282393i \(-0.0911284\pi\)
\(524\) 246.338i 0.470110i
\(525\) −252.101 + 168.286i −0.480192 + 0.320544i
\(526\) −771.022 −1.46582
\(527\) −618.149 165.633i −1.17296 0.314293i
\(528\) 331.418 88.8031i 0.627685 0.168188i
\(529\) 416.422 + 240.422i 0.787188 + 0.454483i
\(530\) −115.115 160.488i −0.217198 0.302808i
\(531\) −124.880 −0.235178
\(532\) −237.757 310.724i −0.446912 0.584067i
\(533\) 780.658 + 780.658i 1.46465 + 1.46465i
\(534\) −212.121 + 122.468i −0.397231 + 0.229341i
\(535\) 59.5389 + 157.973i 0.111288 + 0.295277i
\(536\) −18.1815 + 31.4913i −0.0339208 + 0.0587525i
\(537\) 422.363 + 113.172i 0.786522 + 0.210748i
\(538\) −551.826 551.826i −1.02570 1.02570i
\(539\) 342.337 + 344.201i 0.635134 + 0.638591i
\(540\) −41.6338 34.1363i −0.0770997 0.0632154i
\(541\) −30.4507 52.7421i −0.0562859 0.0974901i 0.836510 0.547952i \(-0.184593\pi\)
−0.892795 + 0.450462i \(0.851259\pi\)
\(542\) −106.692 398.178i −0.196848 0.734646i
\(543\) −199.260 + 53.3915i −0.366961 + 0.0983269i
\(544\) 427.563 246.854i 0.785962 0.453775i
\(545\) 19.9878 + 201.997i 0.0366748 + 0.370636i
\(546\) −78.9043 + 593.116i −0.144513 + 1.08629i
\(547\) 219.616 219.616i 0.401492 0.401492i −0.477266 0.878759i \(-0.658372\pi\)
0.878759 + 0.477266i \(0.158372\pi\)
\(548\) 64.0976 239.215i 0.116966 0.436524i
\(549\) −268.177 154.832i −0.488483 0.282026i
\(550\) −270.444 547.150i −0.491716 0.994818i
\(551\) 250.436 + 433.768i 0.454512 + 0.787238i
\(552\) −40.3734 + 40.3734i −0.0731403 + 0.0731403i
\(553\) 352.552 + 146.593i 0.637526 + 0.265086i
\(554\) 643.557i 1.16166i
\(555\) −223.901 312.153i −0.403425 0.562438i
\(556\) 146.416 253.600i 0.263338 0.456115i
\(557\) 257.028 + 959.243i 0.461451 + 1.72216i 0.668395 + 0.743807i \(0.266982\pi\)
−0.206943 + 0.978353i \(0.566352\pi\)
\(558\) −75.0729 + 280.176i −0.134539 + 0.502108i
\(559\) 1020.94i 1.82637i
\(560\) −681.679 + 158.297i −1.21728 + 0.282673i
\(561\) 279.882 0.498898
\(562\) 685.776 + 183.753i 1.22024 + 0.326963i
\(563\) 275.338 73.7765i 0.489055 0.131042i −0.00586099 0.999983i \(-0.501866\pi\)
0.494916 + 0.868941i \(0.335199\pi\)
\(564\) −78.8465 45.5221i −0.139799 0.0807129i
\(565\) −122.150 + 741.955i −0.216195 + 1.31319i
\(566\) 795.593 1.40564
\(567\) −62.4721 + 8.13837i −0.110180 + 0.0143534i
\(568\) 196.698 + 196.698i 0.346300 + 0.346300i
\(569\) 231.224 133.497i 0.406368 0.234617i −0.282860 0.959161i \(-0.591283\pi\)
0.689228 + 0.724544i \(0.257950\pi\)
\(570\) 524.397 + 237.314i 0.919996 + 0.416340i
\(571\) 104.149 180.391i 0.182397 0.315921i −0.760299 0.649573i \(-0.774948\pi\)
0.942696 + 0.333652i \(0.108281\pi\)
\(572\) −397.155 106.417i −0.694328 0.186045i
\(573\) −64.6110 64.6110i −0.112759 0.112759i
\(574\) −362.701 879.010i −0.631883 1.53138i
\(575\) 144.338 + 96.2533i 0.251022 + 0.167397i
\(576\) 8.08219 + 13.9988i 0.0140316 + 0.0243034i
\(577\) −41.0956 153.371i −0.0712228 0.265807i 0.921128 0.389261i \(-0.127270\pi\)
−0.992350 + 0.123454i \(0.960603\pi\)
\(578\) −54.6922 + 14.6547i −0.0946232 + 0.0253542i
\(579\) −275.439 + 159.025i −0.475715 + 0.274654i
\(580\) −191.477 + 18.9468i −0.330133 + 0.0326670i
\(581\) 53.3122 400.743i 0.0917594 0.689747i
\(582\) 159.866 159.866i 0.274684 0.274684i
\(583\) 41.1038 153.401i 0.0705039 0.263124i
\(584\) −83.6919 48.3196i −0.143308 0.0827390i
\(585\) −105.945 281.102i −0.181103 0.480516i
\(586\) −171.068 296.298i −0.291925 0.505628i
\(587\) 20.2654 20.2654i 0.0345236 0.0345236i −0.689634 0.724158i \(-0.742229\pi\)
0.724158 + 0.689634i \(0.242229\pi\)
\(588\) 88.3505 152.073i 0.150256 0.258627i
\(589\) 1058.28i 1.79674i
\(590\) −83.3156 + 506.068i −0.141213 + 0.857743i
\(591\) 149.410 258.785i 0.252808 0.437877i
\(592\) −229.553 856.703i −0.387758 1.44713i
\(593\) −189.157 + 705.944i −0.318983 + 1.19046i 0.601240 + 0.799068i \(0.294673\pi\)
−0.920223 + 0.391393i \(0.871993\pi\)
\(594\) 126.856i 0.213563i
\(595\) −570.534 19.1926i −0.958881 0.0322564i
\(596\) 331.280 0.555839
\(597\) −156.416 41.9116i −0.262004 0.0702037i
\(598\) 330.798 88.6371i 0.553174 0.148223i
\(599\) −728.928 420.847i −1.21691 0.702583i −0.252653 0.967557i \(-0.581303\pi\)
−0.964256 + 0.264974i \(0.914637\pi\)
\(600\) 154.526 135.764i 0.257543 0.226274i
\(601\) −374.471 −0.623079 −0.311540 0.950233i \(-0.600845\pi\)
−0.311540 + 0.950233i \(0.600845\pi\)
\(602\) 337.613 811.950i 0.560818 1.34875i
\(603\) 16.2385 + 16.2385i 0.0269295 + 0.0269295i
\(604\) 131.552 75.9515i 0.217801 0.125747i
\(605\) −47.0953 + 104.068i −0.0778435 + 0.172013i
\(606\) −269.531 + 466.842i −0.444771 + 0.770366i
\(607\) 488.562 + 130.910i 0.804880 + 0.215667i 0.637725 0.770264i \(-0.279875\pi\)
0.167155 + 0.985931i \(0.446542\pi\)
\(608\) 577.307 + 577.307i 0.949519 + 0.949519i
\(609\) −137.306 + 178.438i −0.225461 + 0.293002i
\(610\) −806.368 + 983.475i −1.32192 + 1.61225i
\(611\) −253.997 439.937i −0.415708 0.720027i
\(612\) −26.2436 97.9424i −0.0428817 0.160037i
\(613\) 660.473 176.973i 1.07744 0.288700i 0.323896 0.946093i \(-0.395007\pi\)
0.753548 + 0.657393i \(0.228341\pi\)
\(614\) 114.733 66.2412i 0.186862 0.107885i
\(615\) 369.181 + 302.698i 0.600294 + 0.492192i
\(616\) −261.089 200.904i −0.423845 0.326143i
\(617\) 5.21905 5.21905i 0.00845875 0.00845875i −0.702865 0.711324i \(-0.748096\pi\)
0.711324 + 0.702865i \(0.248096\pi\)
\(618\) −116.096 + 433.276i −0.187857 + 0.701093i
\(619\) −803.223 463.741i −1.29761 0.749178i −0.317622 0.948217i \(-0.602884\pi\)
−0.979991 + 0.199040i \(0.936218\pi\)
\(620\) 370.382 + 167.615i 0.597391 + 0.270347i
\(621\) 18.0294 + 31.2278i 0.0290328 + 0.0502863i
\(622\) −634.928 + 634.928i −1.02078 + 1.02078i
\(623\) 370.925 + 154.232i 0.595386 + 0.247564i
\(624\) 693.573i 1.11150i
\(625\) −496.538 379.573i −0.794460 0.607316i
\(626\) −290.845 + 503.758i −0.464609 + 0.804726i
\(627\) 119.791 + 447.065i 0.191054 + 0.713022i
\(628\) 43.9719 164.105i 0.0700189 0.261314i
\(629\) 723.484i 1.15021i
\(630\) −8.69902 + 258.595i −0.0138080 + 0.410468i
\(631\) −659.617 −1.04535 −0.522676 0.852531i \(-0.675066\pi\)
−0.522676 + 0.852531i \(0.675066\pi\)
\(632\) −250.276 67.0613i −0.396006 0.106110i
\(633\) −36.6194 + 9.81213i −0.0578505 + 0.0155010i
\(634\) 677.121 + 390.936i 1.06801 + 0.616619i
\(635\) 897.396 + 147.741i 1.41322 + 0.232663i
\(636\) −57.5358 −0.0904650
\(637\) 851.177 488.352i 1.33623 0.766643i
\(638\) −320.576 320.576i −0.502470 0.502470i
\(639\) 152.141 87.8387i 0.238092 0.137463i
\(640\) 628.619 236.922i 0.982218 0.370191i
\(641\) −115.909 + 200.760i −0.180825 + 0.313198i −0.942162 0.335159i \(-0.891210\pi\)
0.761337 + 0.648357i \(0.224543\pi\)
\(642\) 139.199 + 37.2982i 0.216820 + 0.0580968i
\(643\) −207.642 207.642i −0.322927 0.322927i 0.526962 0.849889i \(-0.323331\pi\)
−0.849889 + 0.526962i \(0.823331\pi\)
\(644\) −99.7848 13.2747i −0.154945 0.0206129i
\(645\) 43.4730 + 439.339i 0.0674001 + 0.681146i
\(646\) 542.021 + 938.808i 0.839042 + 1.45326i
\(647\) 119.193 + 444.834i 0.184224 + 0.687534i 0.994795 + 0.101894i \(0.0324902\pi\)
−0.810571 + 0.585640i \(0.800843\pi\)
\(648\) 41.2960 11.0652i 0.0637283 0.0170760i
\(649\) −357.154 + 206.203i −0.550315 + 0.317725i
\(650\) −1209.83 + 241.796i −1.86128 + 0.371994i
\(651\) 439.752 181.452i 0.675503 0.278729i
\(652\) −67.8803 + 67.8803i −0.104111 + 0.104111i
\(653\) 211.888 790.779i 0.324485 1.21099i −0.590344 0.807152i \(-0.701008\pi\)
0.914829 0.403842i \(-0.132325\pi\)
\(654\) 150.057 + 86.6356i 0.229445 + 0.132470i
\(655\) 245.053 541.498i 0.374126 0.826715i
\(656\) 551.122 + 954.571i 0.840125 + 1.45514i
\(657\) −43.1557 + 43.1557i −0.0656860 + 0.0656860i
\(658\) 56.5217 + 433.874i 0.0858992 + 0.659383i
\(659\) 472.040i 0.716297i 0.933665 + 0.358149i \(0.116592\pi\)
−0.933665 + 0.358149i \(0.883408\pi\)
\(660\) −175.439 28.8830i −0.265816 0.0437621i
\(661\) 20.0334 34.6989i 0.0303078 0.0524946i −0.850474 0.526018i \(-0.823685\pi\)
0.880781 + 0.473523i \(0.157018\pi\)
\(662\) −330.338 1232.84i −0.499000 1.86229i
\(663\) 146.430 546.485i 0.220860 0.824261i
\(664\) 274.346i 0.413172i
\(665\) −213.534 919.549i −0.321104 1.38278i
\(666\) −327.919 −0.492371
\(667\) 124.477 + 33.3534i 0.186622 + 0.0500052i
\(668\) 171.342 45.9110i 0.256500 0.0687291i
\(669\) 187.713 + 108.376i 0.280588 + 0.161998i
\(670\) 76.6394 54.9718i 0.114387 0.0820475i
\(671\) −1022.65 −1.52406
\(672\) −140.906 + 338.875i −0.209681 + 0.504279i
\(673\) −170.430 170.430i −0.253239 0.253239i 0.569059 0.822297i \(-0.307308\pi\)
−0.822297 + 0.569059i \(0.807308\pi\)
\(674\) −462.104 + 266.796i −0.685614 + 0.395839i
\(675\) −57.5610 116.455i −0.0852756 0.172526i
\(676\) −240.465 + 416.498i −0.355718 + 0.616122i
\(677\) 873.260 + 233.989i 1.28990 + 0.345627i 0.837621 0.546251i \(-0.183946\pi\)
0.452276 + 0.891878i \(0.350612\pi\)
\(678\) 453.875 + 453.875i 0.669432 + 0.669432i
\(679\) −367.555 48.8972i −0.541319 0.0720135i
\(680\) 385.509 38.1465i 0.566925 0.0560978i
\(681\) −14.1087 24.4370i −0.0207176 0.0358840i
\(682\) 247.923 + 925.262i 0.363524 + 1.35669i
\(683\) −370.963 + 99.3993i −0.543138 + 0.145533i −0.519948 0.854198i \(-0.674049\pi\)
−0.0231896 + 0.999731i \(0.507382\pi\)
\(684\) 145.215 83.8396i 0.212302 0.122573i
\(685\) 378.866 462.079i 0.553090 0.674568i
\(686\) −838.431 + 106.911i −1.22220 + 0.155846i
\(687\) −489.008 + 489.008i −0.711802 + 0.711802i
\(688\) −263.814 + 984.567i −0.383451 + 1.43106i
\(689\) −278.020 160.515i −0.403512 0.232968i
\(690\) 138.578 52.2289i 0.200837 0.0756941i
\(691\) −143.113 247.880i −0.207111 0.358726i 0.743693 0.668522i \(-0.233073\pi\)
−0.950803 + 0.309796i \(0.899739\pi\)
\(692\) −160.177 + 160.177i −0.231470 + 0.231470i
\(693\) −165.231 + 126.431i −0.238429 + 0.182439i
\(694\) 1013.52i 1.46040i
\(695\) 574.127 411.809i 0.826082 0.592531i
\(696\) 76.3955 132.321i 0.109764 0.190116i
\(697\) 232.711 + 868.488i 0.333875 + 1.24604i
\(698\) 216.166 806.743i 0.309694 1.15579i
\(699\) 309.520i 0.442803i
\(700\) 355.648 + 70.9080i 0.508068 + 0.101297i
\(701\) −737.080 −1.05147 −0.525735 0.850648i \(-0.676210\pi\)
−0.525735 + 0.850648i \(0.676210\pi\)
\(702\) −247.694 66.3695i −0.352841 0.0945435i
\(703\) 1155.65 309.655i 1.64388 0.440476i
\(704\) 46.2299 + 26.6909i 0.0656675 + 0.0379132i
\(705\) −128.035 178.502i −0.181611 0.253194i
\(706\) 1154.14 1.63476
\(707\) 876.691 114.208i 1.24002 0.161539i
\(708\) 105.648 + 105.648i 0.149221 + 0.149221i
\(709\) 777.250 448.745i 1.09626 0.632927i 0.161025 0.986950i \(-0.448520\pi\)
0.935237 + 0.354023i \(0.115187\pi\)
\(710\) −254.458 675.146i −0.358391 0.950910i
\(711\) −81.8174 + 141.712i −0.115074 + 0.199313i
\(712\) −263.319 70.5562i −0.369830 0.0990958i
\(713\) −192.533 192.533i −0.270032 0.270032i
\(714\) −297.172 + 386.195i −0.416207 + 0.540890i
\(715\) −767.162 629.010i −1.07295 0.879734i
\(716\) −261.576 453.063i −0.365330 0.632769i
\(717\) −167.073 623.527i −0.233017 0.869633i
\(718\) −834.680 + 223.652i −1.16251 + 0.311493i
\(719\) 86.3910 49.8778i 0.120154 0.0693711i −0.438718 0.898625i \(-0.644567\pi\)
0.558873 + 0.829254i \(0.311234\pi\)
\(720\) −29.5333 298.464i −0.0410185 0.414533i
\(721\) 680.051 280.606i 0.943205 0.389189i
\(722\) −638.578 + 638.578i −0.884457 + 0.884457i
\(723\) −0.447835 + 1.67134i −0.000619412 + 0.00231168i
\(724\) 213.744 + 123.405i 0.295226 + 0.170449i
\(725\) −439.752 148.829i −0.606554 0.205282i
\(726\) 48.7538 + 84.4441i 0.0671540 + 0.116314i
\(727\) −794.241 + 794.241i −1.09249 + 1.09249i −0.0972298 + 0.995262i \(0.530998\pi\)
−0.995262 + 0.0972298i \(0.969002\pi\)
\(728\) −528.874 + 404.680i −0.726476 + 0.555880i
\(729\) 27.0000i 0.0370370i
\(730\) 146.094 + 203.678i 0.200129 + 0.279011i
\(731\) −415.733 + 720.070i −0.568718 + 0.985048i
\(732\) 95.8901 + 357.867i 0.130997 + 0.488889i
\(733\) −100.435 + 374.828i −0.137019 + 0.511362i 0.862963 + 0.505268i \(0.168606\pi\)
−0.999981 + 0.00609363i \(0.998060\pi\)
\(734\) 998.842i 1.36082i
\(735\) 345.491 246.396i 0.470056 0.335233i
\(736\) 210.058 0.285405
\(737\) 73.2551 + 19.6287i 0.0993964 + 0.0266332i
\(738\) 393.642 105.476i 0.533391 0.142922i
\(739\) −994.736 574.311i −1.34606 0.777147i −0.358369 0.933580i \(-0.616667\pi\)
−0.987689 + 0.156433i \(0.950000\pi\)
\(740\) −74.6615 + 453.502i −0.100894 + 0.612841i
\(741\) 935.593 1.26261
\(742\) 168.028 + 219.595i 0.226453 + 0.295950i
\(743\) 720.519 + 720.519i 0.969743 + 0.969743i 0.999556 0.0298125i \(-0.00949103\pi\)
−0.0298125 + 0.999556i \(0.509491\pi\)
\(744\) −279.578 + 161.414i −0.375777 + 0.216955i
\(745\) 728.218 + 329.552i 0.977473 + 0.442351i
\(746\) −93.9202 + 162.675i −0.125898 + 0.218062i
\(747\) 167.356 + 44.8430i 0.224038 + 0.0600308i
\(748\) −236.780 236.780i −0.316551 0.316551i
\(749\) −90.1503 218.480i −0.120361 0.291696i
\(750\) −510.330 + 155.568i −0.680440 + 0.207424i
\(751\) 301.457 + 522.139i 0.401407 + 0.695258i 0.993896 0.110321i \(-0.0351878\pi\)
−0.592489 + 0.805579i \(0.701854\pi\)
\(752\) −131.268 489.897i −0.174558 0.651459i
\(753\) 67.7177 18.1449i 0.0899306 0.0240968i
\(754\) −793.664 + 458.222i −1.05260 + 0.607722i
\(755\) 364.732 36.0906i 0.483088 0.0478021i
\(756\) 59.7366 + 45.9664i 0.0790167 + 0.0608022i
\(757\) 590.863 590.863i 0.780532 0.780532i −0.199389 0.979921i \(-0.563896\pi\)
0.979921 + 0.199389i \(0.0638956\pi\)
\(758\) 320.964 1197.85i 0.423435 1.58028i
\(759\) 103.128 + 59.5408i 0.135873 + 0.0784463i
\(760\) 225.932 + 599.460i 0.297280 + 0.788764i
\(761\) −104.936 181.755i −0.137892