Properties

Label 105.3.v.a.88.13
Level 105
Weight 3
Character 105.88
Analytic conductor 2.861
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 88.13
Character \(\chi\) \(=\) 105.88
Dual form 105.3.v.a.37.13

$q$-expansion

\(f(q)\) \(=\) \(q+(2.56059 + 0.686107i) q^{2} +(1.67303 - 0.448288i) q^{3} +(2.62176 + 1.51367i) q^{4} +(1.32982 + 4.81992i) q^{5} +4.59152 q^{6} +(0.158915 - 6.99820i) q^{7} +(-1.82323 - 1.82323i) q^{8} +(2.59808 - 1.50000i) q^{9} +O(q^{10})\) \(q+(2.56059 + 0.686107i) q^{2} +(1.67303 - 0.448288i) q^{3} +(2.62176 + 1.51367i) q^{4} +(1.32982 + 4.81992i) q^{5} +4.59152 q^{6} +(0.158915 - 6.99820i) q^{7} +(-1.82323 - 1.82323i) q^{8} +(2.59808 - 1.50000i) q^{9} +(0.0981374 + 13.2542i) q^{10} +(-8.05696 + 13.9551i) q^{11} +(5.06484 + 1.35712i) q^{12} +(-0.148341 - 0.148341i) q^{13} +(5.20843 - 17.8104i) q^{14} +(4.38554 + 7.46773i) q^{15} +(-9.47228 - 16.4065i) q^{16} +(-5.20277 - 19.4170i) q^{17} +(7.68176 - 2.05832i) q^{18} +(10.9984 - 6.34991i) q^{19} +(-3.80931 + 14.6495i) q^{20} +(-2.87134 - 11.7794i) q^{21} +(-30.2052 + 30.2052i) q^{22} +(-4.18723 + 15.6270i) q^{23} +(-3.86765 - 2.23299i) q^{24} +(-21.4632 + 12.8192i) q^{25} +(-0.278063 - 0.481619i) q^{26} +(3.67423 - 3.67423i) q^{27} +(11.0096 - 18.1070i) q^{28} +21.7589i q^{29} +(6.10588 + 22.1307i) q^{30} +(7.17206 - 12.4224i) q^{31} +(-10.3286 - 38.5469i) q^{32} +(-7.22367 + 26.9591i) q^{33} -53.2886i q^{34} +(33.9420 - 8.54037i) q^{35} +9.08203 q^{36} +(-62.8854 - 16.8501i) q^{37} +(32.5190 - 8.71343i) q^{38} +(-0.314680 - 0.181680i) q^{39} +(6.36323 - 11.2124i) q^{40} +2.26939 q^{41} +(0.729660 - 32.1323i) q^{42} +(35.1154 + 35.1154i) q^{43} +(-42.2467 + 24.3912i) q^{44} +(10.6848 + 10.5278i) q^{45} +(-21.4435 + 37.1413i) q^{46} +(55.8413 + 14.9626i) q^{47} +(-23.2023 - 23.2023i) q^{48} +(-48.9495 - 2.22423i) q^{49} +(-63.7536 + 18.0987i) q^{50} +(-17.4088 - 30.1529i) q^{51} +(-0.164375 - 0.613455i) q^{52} +(101.322 - 27.1491i) q^{53} +(11.9291 - 6.88728i) q^{54} +(-77.9765 - 20.2762i) q^{55} +(-13.0490 + 12.4696i) q^{56} +(15.5540 - 15.5540i) q^{57} +(-14.9290 + 55.7156i) q^{58} +(59.5129 + 34.3598i) q^{59} +(0.194116 + 26.2168i) q^{60} +(17.3661 + 30.0790i) q^{61} +(26.8877 - 26.8877i) q^{62} +(-10.0844 - 18.4202i) q^{63} -30.0109i q^{64} +(0.517726 - 0.912260i) q^{65} +(-36.9937 + 64.0749i) q^{66} +(8.56515 + 31.9656i) q^{67} +(15.7506 - 58.7819i) q^{68} +28.0215i q^{69} +(92.7711 + 1.41951i) q^{70} -59.5469 q^{71} +(-7.47172 - 2.00204i) q^{72} +(33.4534 - 8.96382i) q^{73} +(-149.462 - 86.2922i) q^{74} +(-30.1619 + 31.0687i) q^{75} +38.4467 q^{76} +(96.3799 + 58.6018i) q^{77} +(-0.681112 - 0.681112i) q^{78} +(2.87256 - 1.65847i) q^{79} +(66.4814 - 67.4732i) q^{80} +(4.50000 - 7.79423i) q^{81} +(5.81096 + 1.55704i) q^{82} +(4.48322 + 4.48322i) q^{83} +(10.3023 - 35.2291i) q^{84} +(86.6696 - 50.8980i) q^{85} +(65.8230 + 114.009i) q^{86} +(9.75426 + 36.4034i) q^{87} +(40.1329 - 10.7536i) q^{88} +(-123.113 + 71.0793i) q^{89} +(20.1363 + 34.2882i) q^{90} +(-1.06170 + 1.01455i) q^{91} +(-34.6320 + 34.6320i) q^{92} +(6.43029 - 23.9982i) q^{93} +(132.720 + 76.6262i) q^{94} +(45.2319 + 44.5670i) q^{95} +(-34.5602 - 59.8600i) q^{96} +(113.195 - 113.195i) q^{97} +(-123.813 - 39.2799i) q^{98} +48.3417i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} + O(q^{10}) \) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} - 16q^{10} + 16q^{11} - 48q^{15} + 80q^{16} + 56q^{17} + 24q^{21} - 96q^{22} + 72q^{23} - 4q^{25} - 288q^{26} - 380q^{28} - 48q^{30} - 136q^{31} - 48q^{32} - 72q^{33} + 76q^{35} + 384q^{36} - 28q^{37} - 68q^{38} + 164q^{40} + 128q^{41} - 12q^{42} + 344q^{43} + 240q^{46} + 412q^{47} - 288q^{48} - 72q^{50} - 24q^{51} + 388q^{52} - 40q^{53} - 8q^{55} - 864q^{56} - 192q^{57} + 56q^{58} - 180q^{60} - 216q^{61} - 912q^{62} - 84q^{63} + 20q^{65} - 72q^{66} - 368q^{67} - 492q^{68} + 416q^{70} + 784q^{71} + 36q^{72} - 316q^{73} + 96q^{75} - 32q^{76} + 844q^{77} + 624q^{78} + 908q^{80} + 288q^{81} + 556q^{82} + 1408q^{83} - 536q^{85} + 1024q^{86} + 108q^{87} + 372q^{88} + 216q^{90} - 1064q^{91} - 1704q^{92} + 144q^{93} + 260q^{95} + 352q^{97} + 272q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.56059 + 0.686107i 1.28029 + 0.343053i 0.833966 0.551816i \(-0.186065\pi\)
0.446327 + 0.894870i \(0.352732\pi\)
\(3\) 1.67303 0.448288i 0.557678 0.149429i
\(4\) 2.62176 + 1.51367i 0.655439 + 0.378418i
\(5\) 1.32982 + 4.81992i 0.265964 + 0.963983i
\(6\) 4.59152 0.765253
\(7\) 0.158915 6.99820i 0.0227021 0.999742i
\(8\) −1.82323 1.82323i −0.227903 0.227903i
\(9\) 2.59808 1.50000i 0.288675 0.166667i
\(10\) 0.0981374 + 13.2542i 0.00981374 + 1.32542i
\(11\) −8.05696 + 13.9551i −0.732451 + 1.26864i 0.223382 + 0.974731i \(0.428290\pi\)
−0.955833 + 0.293911i \(0.905043\pi\)
\(12\) 5.06484 + 1.35712i 0.422070 + 0.113093i
\(13\) −0.148341 0.148341i −0.0114109 0.0114109i 0.701378 0.712789i \(-0.252568\pi\)
−0.712789 + 0.701378i \(0.752568\pi\)
\(14\) 5.20843 17.8104i 0.372030 1.27217i
\(15\) 4.38554 + 7.46773i 0.292369 + 0.497849i
\(16\) −9.47228 16.4065i −0.592018 1.02540i
\(17\) −5.20277 19.4170i −0.306045 1.14218i −0.932042 0.362351i \(-0.881974\pi\)
0.625996 0.779826i \(-0.284692\pi\)
\(18\) 7.68176 2.05832i 0.426764 0.114351i
\(19\) 10.9984 6.34991i 0.578861 0.334206i −0.181819 0.983332i \(-0.558199\pi\)
0.760681 + 0.649126i \(0.224865\pi\)
\(20\) −3.80931 + 14.6495i −0.190465 + 0.732477i
\(21\) −2.87134 11.7794i −0.136730 0.560926i
\(22\) −30.2052 + 30.2052i −1.37296 + 1.37296i
\(23\) −4.18723 + 15.6270i −0.182054 + 0.679433i 0.813189 + 0.582000i \(0.197730\pi\)
−0.995242 + 0.0974328i \(0.968937\pi\)
\(24\) −3.86765 2.23299i −0.161152 0.0930411i
\(25\) −21.4632 + 12.8192i −0.858527 + 0.512769i
\(26\) −0.278063 0.481619i −0.0106947 0.0185238i
\(27\) 3.67423 3.67423i 0.136083 0.136083i
\(28\) 11.0096 18.1070i 0.393200 0.646679i
\(29\) 21.7589i 0.750308i 0.926962 + 0.375154i \(0.122410\pi\)
−0.926962 + 0.375154i \(0.877590\pi\)
\(30\) 6.10588 + 22.1307i 0.203529 + 0.737691i
\(31\) 7.17206 12.4224i 0.231357 0.400721i −0.726851 0.686795i \(-0.759017\pi\)
0.958208 + 0.286074i \(0.0923503\pi\)
\(32\) −10.3286 38.5469i −0.322769 1.20459i
\(33\) −7.22367 + 26.9591i −0.218899 + 0.816943i
\(34\) 53.2886i 1.56731i
\(35\) 33.9420 8.54037i 0.969773 0.244011i
\(36\) 9.08203 0.252279
\(37\) −62.8854 16.8501i −1.69960 0.455408i −0.726765 0.686886i \(-0.758977\pi\)
−0.972840 + 0.231479i \(0.925644\pi\)
\(38\) 32.5190 8.71343i 0.855763 0.229301i
\(39\) −0.314680 0.181680i −0.00806871 0.00465847i
\(40\) 6.36323 11.2124i 0.159081 0.280309i
\(41\) 2.26939 0.0553509 0.0276754 0.999617i \(-0.491190\pi\)
0.0276754 + 0.999617i \(0.491190\pi\)
\(42\) 0.729660 32.1323i 0.0173729 0.765056i
\(43\) 35.1154 + 35.1154i 0.816636 + 0.816636i 0.985619 0.168983i \(-0.0540482\pi\)
−0.168983 + 0.985619i \(0.554048\pi\)
\(44\) −42.2467 + 24.3912i −0.960153 + 0.554345i
\(45\) 10.6848 + 10.5278i 0.237441 + 0.233951i
\(46\) −21.4435 + 37.1413i −0.466164 + 0.807419i
\(47\) 55.8413 + 14.9626i 1.18811 + 0.318354i 0.798140 0.602472i \(-0.205818\pi\)
0.389973 + 0.920826i \(0.372484\pi\)
\(48\) −23.2023 23.2023i −0.483380 0.483380i
\(49\) −48.9495 2.22423i −0.998969 0.0453925i
\(50\) −63.7536 + 18.0987i −1.27507 + 0.361974i
\(51\) −17.4088 30.1529i −0.341349 0.591234i
\(52\) −0.164375 0.613455i −0.00316105 0.0117972i
\(53\) 101.322 27.1491i 1.91173 0.512248i 0.918613 0.395157i \(-0.129310\pi\)
0.993121 0.117090i \(-0.0373568\pi\)
\(54\) 11.9291 6.88728i 0.220909 0.127542i
\(55\) −77.9765 20.2762i −1.41775 0.368657i
\(56\) −13.0490 + 12.4696i −0.233018 + 0.222671i
\(57\) 15.5540 15.5540i 0.272878 0.272878i
\(58\) −14.9290 + 55.7156i −0.257396 + 0.960614i
\(59\) 59.5129 + 34.3598i 1.00869 + 0.582370i 0.910809 0.412828i \(-0.135459\pi\)
0.0978847 + 0.995198i \(0.468792\pi\)
\(60\) 0.194116 + 26.2168i 0.00323526 + 0.436947i
\(61\) 17.3661 + 30.0790i 0.284691 + 0.493099i 0.972534 0.232760i \(-0.0747758\pi\)
−0.687843 + 0.725859i \(0.741442\pi\)
\(62\) 26.8877 26.8877i 0.433673 0.433673i
\(63\) −10.0844 18.4202i −0.160070 0.292384i
\(64\) 30.0109i 0.468920i
\(65\) 0.517726 0.912260i 0.00796501 0.0140348i
\(66\) −36.9937 + 64.0749i −0.560510 + 0.970832i
\(67\) 8.56515 + 31.9656i 0.127838 + 0.477098i 0.999925 0.0122529i \(-0.00390030\pi\)
−0.872087 + 0.489351i \(0.837234\pi\)
\(68\) 15.7506 58.7819i 0.231626 0.864440i
\(69\) 28.0215i 0.406109i
\(70\) 92.7711 + 1.41951i 1.32530 + 0.0202786i
\(71\) −59.5469 −0.838689 −0.419345 0.907827i \(-0.637740\pi\)
−0.419345 + 0.907827i \(0.637740\pi\)
\(72\) −7.47172 2.00204i −0.103774 0.0278061i
\(73\) 33.4534 8.96382i 0.458266 0.122792i −0.0222985 0.999751i \(-0.507098\pi\)
0.480565 + 0.876959i \(0.340432\pi\)
\(74\) −149.462 86.2922i −2.01976 1.16611i
\(75\) −30.1619 + 31.0687i −0.402158 + 0.414249i
\(76\) 38.4467 0.505878
\(77\) 96.3799 + 58.6018i 1.25169 + 0.761063i
\(78\) −0.681112 0.681112i −0.00873221 0.00873221i
\(79\) 2.87256 1.65847i 0.0363615 0.0209933i −0.481709 0.876331i \(-0.659984\pi\)
0.518071 + 0.855338i \(0.326650\pi\)
\(80\) 66.4814 67.4732i 0.831018 0.843416i
\(81\) 4.50000 7.79423i 0.0555556 0.0962250i
\(82\) 5.81096 + 1.55704i 0.0708653 + 0.0189883i
\(83\) 4.48322 + 4.48322i 0.0540147 + 0.0540147i 0.733598 0.679583i \(-0.237839\pi\)
−0.679583 + 0.733598i \(0.737839\pi\)
\(84\) 10.3023 35.2291i 0.122646 0.419394i
\(85\) 86.6696 50.8980i 1.01964 0.598800i
\(86\) 65.8230 + 114.009i 0.765384 + 1.32568i
\(87\) 9.75426 + 36.4034i 0.112118 + 0.418430i
\(88\) 40.1329 10.7536i 0.456056 0.122200i
\(89\) −123.113 + 71.0793i −1.38329 + 0.798644i −0.992548 0.121856i \(-0.961115\pi\)
−0.390744 + 0.920500i \(0.627782\pi\)
\(90\) 20.1363 + 34.2882i 0.223736 + 0.380980i
\(91\) −1.06170 + 1.01455i −0.0116670 + 0.0111489i
\(92\) −34.6320 + 34.6320i −0.376435 + 0.376435i
\(93\) 6.43029 23.9982i 0.0691429 0.258045i
\(94\) 132.720 + 76.6262i 1.41192 + 0.815172i
\(95\) 45.2319 + 44.5670i 0.476125 + 0.469126i
\(96\) −34.5602 59.8600i −0.360002 0.623542i
\(97\) 113.195 113.195i 1.16696 1.16696i 0.184038 0.982919i \(-0.441083\pi\)
0.982919 0.184038i \(-0.0589168\pi\)
\(98\) −123.813 39.2799i −1.26340 0.400816i
\(99\) 48.3417i 0.488300i
\(100\) −75.6753 + 1.12070i −0.756753 + 0.0112070i
\(101\) −9.53745 + 16.5193i −0.0944302 + 0.163558i −0.909371 0.415987i \(-0.863436\pi\)
0.814940 + 0.579545i \(0.196770\pi\)
\(102\) −23.8886 89.1535i −0.234202 0.874054i
\(103\) −15.4322 + 57.5936i −0.149827 + 0.559162i 0.849666 + 0.527321i \(0.176804\pi\)
−0.999493 + 0.0318405i \(0.989863\pi\)
\(104\) 0.540920i 0.00520115i
\(105\) 52.9576 29.5041i 0.504358 0.280992i
\(106\) 278.071 2.62331
\(107\) 86.6807 + 23.2260i 0.810100 + 0.217066i 0.640014 0.768363i \(-0.278929\pi\)
0.170086 + 0.985429i \(0.445595\pi\)
\(108\) 15.1945 4.07136i 0.140690 0.0376978i
\(109\) −68.1153 39.3264i −0.624911 0.360792i 0.153868 0.988091i \(-0.450827\pi\)
−0.778778 + 0.627299i \(0.784160\pi\)
\(110\) −185.754 105.419i −1.68867 0.958355i
\(111\) −112.763 −1.01588
\(112\) −116.321 + 63.6817i −1.03858 + 0.568586i
\(113\) −158.518 158.518i −1.40281 1.40281i −0.791012 0.611801i \(-0.790445\pi\)
−0.611801 0.791012i \(-0.709555\pi\)
\(114\) 50.4992 29.1557i 0.442975 0.255752i
\(115\) −80.8889 + 0.598921i −0.703382 + 0.00520801i
\(116\) −32.9359 + 57.0466i −0.283930 + 0.491781i
\(117\) −0.607914 0.162890i −0.00519585 0.00139222i
\(118\) 128.813 + 128.813i 1.09164 + 1.09164i
\(119\) −136.711 + 33.3244i −1.14883 + 0.280037i
\(120\) 5.61954 21.6112i 0.0468295 0.180093i
\(121\) −69.3291 120.082i −0.572968 0.992410i
\(122\) 23.8301 + 88.9350i 0.195328 + 0.728975i
\(123\) 3.79676 1.01734i 0.0308679 0.00827104i
\(124\) 37.6068 21.7123i 0.303280 0.175099i
\(125\) −90.3297 86.4034i −0.722638 0.691227i
\(126\) −13.1838 54.0855i −0.104633 0.429250i
\(127\) −84.0175 + 84.0175i −0.661555 + 0.661555i −0.955747 0.294191i \(-0.904950\pi\)
0.294191 + 0.955747i \(0.404950\pi\)
\(128\) −20.7238 + 77.3421i −0.161904 + 0.604235i
\(129\) 74.4909 + 43.0074i 0.577449 + 0.333390i
\(130\) 1.95159 1.98071i 0.0150122 0.0152362i
\(131\) −93.7670 162.409i −0.715779 1.23976i −0.962658 0.270719i \(-0.912739\pi\)
0.246880 0.969046i \(-0.420595\pi\)
\(132\) −59.7459 + 59.7459i −0.452621 + 0.452621i
\(133\) −42.6901 77.9778i −0.320978 0.586299i
\(134\) 87.7272i 0.654681i
\(135\) 22.5956 + 12.8234i 0.167375 + 0.0949884i
\(136\) −25.9158 + 44.8874i −0.190557 + 0.330054i
\(137\) −16.7385 62.4691i −0.122179 0.455979i 0.877544 0.479495i \(-0.159180\pi\)
−0.999723 + 0.0235169i \(0.992514\pi\)
\(138\) −19.2257 + 71.7515i −0.139317 + 0.519938i
\(139\) 93.0694i 0.669564i −0.942296 0.334782i \(-0.891337\pi\)
0.942296 0.334782i \(-0.108663\pi\)
\(140\) 101.915 + 28.9863i 0.727965 + 0.207045i
\(141\) 100.132 0.710155
\(142\) −152.475 40.8556i −1.07377 0.287715i
\(143\) 3.26529 0.874933i 0.0228342 0.00611841i
\(144\) −49.2194 28.4169i −0.341802 0.197339i
\(145\) −104.876 + 28.9354i −0.723284 + 0.199555i
\(146\) 91.8105 0.628839
\(147\) −82.8912 + 18.2222i −0.563886 + 0.123961i
\(148\) −139.365 139.365i −0.941653 0.941653i
\(149\) 60.2245 34.7706i 0.404191 0.233360i −0.284099 0.958795i \(-0.591695\pi\)
0.688291 + 0.725435i \(0.258361\pi\)
\(150\) −98.5485 + 58.8597i −0.656990 + 0.392398i
\(151\) 7.35747 12.7435i 0.0487250 0.0843941i −0.840634 0.541603i \(-0.817818\pi\)
0.889359 + 0.457209i \(0.151151\pi\)
\(152\) −31.6298 8.47519i −0.208091 0.0557578i
\(153\) −42.6427 42.6427i −0.278710 0.278710i
\(154\) 206.582 + 216.182i 1.34144 + 1.40378i
\(155\) 69.4123 + 18.0492i 0.447821 + 0.116447i
\(156\) −0.550009 0.952643i −0.00352570 0.00610669i
\(157\) −29.8891 111.548i −0.190376 0.710494i −0.993415 0.114568i \(-0.963452\pi\)
0.803039 0.595926i \(-0.203215\pi\)
\(158\) 8.49333 2.27578i 0.0537553 0.0144037i
\(159\) 157.344 90.8428i 0.989587 0.571338i
\(160\) 172.058 101.043i 1.07536 0.631521i
\(161\) 108.695 + 31.7864i 0.675125 + 0.197431i
\(162\) 16.8703 16.8703i 0.104138 0.104138i
\(163\) −27.3737 + 102.160i −0.167937 + 0.626750i 0.829710 + 0.558194i \(0.188506\pi\)
−0.997647 + 0.0685554i \(0.978161\pi\)
\(164\) 5.94978 + 3.43510i 0.0362791 + 0.0209458i
\(165\) −139.547 + 1.03324i −0.845738 + 0.00626205i
\(166\) 8.40370 + 14.5556i 0.0506247 + 0.0876846i
\(167\) −15.1287 + 15.1287i −0.0905911 + 0.0905911i −0.750950 0.660359i \(-0.770404\pi\)
0.660359 + 0.750950i \(0.270404\pi\)
\(168\) −16.2415 + 26.7117i −0.0966756 + 0.158998i
\(169\) 168.956i 0.999740i
\(170\) 256.846 70.8641i 1.51086 0.416848i
\(171\) 19.0497 32.9951i 0.111402 0.192954i
\(172\) 38.9108 + 145.217i 0.226225 + 0.844285i
\(173\) −42.1625 + 157.352i −0.243714 + 0.909552i 0.730312 + 0.683114i \(0.239375\pi\)
−0.974026 + 0.226438i \(0.927292\pi\)
\(174\) 99.9065i 0.574175i
\(175\) 86.3006 + 152.241i 0.493146 + 0.869946i
\(176\) 305.271 1.73450
\(177\) 114.970 + 30.8062i 0.649549 + 0.174046i
\(178\) −364.009 + 97.5360i −2.04500 + 0.547955i
\(179\) 117.423 + 67.7943i 0.655996 + 0.378739i 0.790750 0.612140i \(-0.209691\pi\)
−0.134754 + 0.990879i \(0.543024\pi\)
\(180\) 12.0774 + 43.7746i 0.0670969 + 0.243192i
\(181\) −232.181 −1.28277 −0.641383 0.767221i \(-0.721639\pi\)
−0.641383 + 0.767221i \(0.721639\pi\)
\(182\) −3.41465 + 1.86940i −0.0187618 + 0.0102714i
\(183\) 42.5382 + 42.5382i 0.232449 + 0.232449i
\(184\) 36.1258 20.8572i 0.196336 0.113354i
\(185\) −2.41015 325.510i −0.0130279 1.75951i
\(186\) 32.9306 57.0375i 0.177046 0.306653i
\(187\) 312.884 + 83.8370i 1.67318 + 0.448326i
\(188\) 123.754 + 123.754i 0.658265 + 0.658265i
\(189\) −25.1291 26.2969i −0.132958 0.139137i
\(190\) 85.2424 + 145.151i 0.448644 + 0.763955i
\(191\) −50.1041 86.7828i −0.262325 0.454360i 0.704534 0.709670i \(-0.251156\pi\)
−0.966859 + 0.255310i \(0.917823\pi\)
\(192\) −13.4535 50.2092i −0.0700704 0.261506i
\(193\) 209.884 56.2382i 1.08748 0.291390i 0.329824 0.944042i \(-0.393011\pi\)
0.757657 + 0.652653i \(0.226344\pi\)
\(194\) 367.509 212.181i 1.89438 1.09372i
\(195\) 0.457217 1.75833i 0.00234470 0.00901708i
\(196\) −124.967 79.9248i −0.637586 0.407780i
\(197\) −173.120 + 173.120i −0.878782 + 0.878782i −0.993409 0.114626i \(-0.963433\pi\)
0.114626 + 0.993409i \(0.463433\pi\)
\(198\) −33.1676 + 123.783i −0.167513 + 0.625168i
\(199\) −9.01589 5.20533i −0.0453060 0.0261574i 0.477176 0.878808i \(-0.341660\pi\)
−0.522482 + 0.852650i \(0.674994\pi\)
\(200\) 62.5045 + 15.7599i 0.312523 + 0.0787993i
\(201\) 28.6596 + 49.6398i 0.142585 + 0.246964i
\(202\) −35.7555 + 35.7555i −0.177007 + 0.177007i
\(203\) 152.273 + 3.45782i 0.750115 + 0.0170336i
\(204\) 105.405i 0.516690i
\(205\) 3.01787 + 10.9382i 0.0147213 + 0.0533573i
\(206\) −79.0308 + 136.885i −0.383645 + 0.664492i
\(207\) 12.5617 + 46.8809i 0.0606845 + 0.226478i
\(208\) −1.02863 + 3.83889i −0.00494533 + 0.0184562i
\(209\) 204.644i 0.979157i
\(210\) 155.845 39.2133i 0.742121 0.186730i
\(211\) −215.645 −1.02202 −0.511008 0.859576i \(-0.670728\pi\)
−0.511008 + 0.859576i \(0.670728\pi\)
\(212\) 306.736 + 82.1897i 1.44687 + 0.387687i
\(213\) −99.6240 + 26.6942i −0.467718 + 0.125325i
\(214\) 206.018 + 118.944i 0.962700 + 0.555815i
\(215\) −122.556 + 215.950i −0.570028 + 1.00442i
\(216\) −13.3979 −0.0620274
\(217\) −85.7944 52.1655i −0.395366 0.240394i
\(218\) −147.433 147.433i −0.676298 0.676298i
\(219\) 51.9503 29.9935i 0.237216 0.136957i
\(220\) −173.744 171.190i −0.789745 0.778136i
\(221\) −2.10856 + 3.65213i −0.00954099 + 0.0165255i
\(222\) −288.739 77.3675i −1.30063 0.348502i
\(223\) −134.520 134.520i −0.603230 0.603230i 0.337938 0.941168i \(-0.390270\pi\)
−0.941168 + 0.337938i \(0.890270\pi\)
\(224\) −271.400 + 66.1560i −1.21161 + 0.295339i
\(225\) −36.5341 + 65.5001i −0.162374 + 0.291111i
\(226\) −297.138 514.659i −1.31477 2.27725i
\(227\) 12.6829 + 47.3332i 0.0558718 + 0.208516i 0.988219 0.153049i \(-0.0489092\pi\)
−0.932347 + 0.361565i \(0.882242\pi\)
\(228\) 64.3226 17.2352i 0.282117 0.0755929i
\(229\) 23.3799 13.4984i 0.102095 0.0589448i −0.448083 0.893992i \(-0.647893\pi\)
0.550178 + 0.835047i \(0.314560\pi\)
\(230\) −207.534 53.9648i −0.902321 0.234630i
\(231\) 187.517 + 54.8369i 0.811763 + 0.237389i
\(232\) 39.6715 39.6715i 0.170998 0.170998i
\(233\) 21.5483 80.4192i 0.0924818 0.345147i −0.904144 0.427228i \(-0.859490\pi\)
0.996626 + 0.0820815i \(0.0261568\pi\)
\(234\) −1.44486 0.834188i −0.00617460 0.00356491i
\(235\) 2.14018 + 289.048i 0.00910715 + 1.22999i
\(236\) 104.019 + 180.166i 0.440758 + 0.763415i
\(237\) 4.06242 4.06242i 0.0171410 0.0171410i
\(238\) −372.924 8.46834i −1.56691 0.0355813i
\(239\) 47.8746i 0.200312i 0.994972 + 0.100156i \(0.0319342\pi\)
−0.994972 + 0.100156i \(0.968066\pi\)
\(240\) 80.9781 142.688i 0.337409 0.594532i
\(241\) 119.934 207.732i 0.497652 0.861958i −0.502345 0.864667i \(-0.667529\pi\)
0.999996 + 0.00270956i \(0.000862479\pi\)
\(242\) −95.1344 355.046i −0.393117 1.46713i
\(243\) 4.03459 15.0573i 0.0166032 0.0619642i
\(244\) 105.146i 0.430928i
\(245\) −54.3733 238.890i −0.221932 0.975062i
\(246\) 10.4199 0.0423574
\(247\) −2.57347 0.689559i −0.0104189 0.00279174i
\(248\) −35.7251 + 9.57250i −0.144053 + 0.0385988i
\(249\) 9.51035 + 5.49080i 0.0381942 + 0.0220514i
\(250\) −172.015 283.219i −0.688060 1.13288i
\(251\) −173.528 −0.691346 −0.345673 0.938355i \(-0.612349\pi\)
−0.345673 + 0.938355i \(0.612349\pi\)
\(252\) 1.44327 63.5578i 0.00572726 0.252214i
\(253\) −184.339 184.339i −0.728612 0.728612i
\(254\) −272.779 + 157.489i −1.07393 + 0.620036i
\(255\) 122.184 124.007i 0.479153 0.486302i
\(256\) −166.152 + 287.783i −0.649030 + 1.12415i
\(257\) 308.618 + 82.6939i 1.20085 + 0.321766i 0.803165 0.595757i \(-0.203148\pi\)
0.397683 + 0.917523i \(0.369814\pi\)
\(258\) 161.233 + 161.233i 0.624933 + 0.624933i
\(259\) −127.914 + 437.406i −0.493875 + 1.68883i
\(260\) 2.73821 1.60806i 0.0105316 0.00618483i
\(261\) 32.6384 + 56.5314i 0.125051 + 0.216595i
\(262\) −128.668 480.197i −0.491101 1.83281i
\(263\) 1.46726 0.393152i 0.00557894 0.00149487i −0.256028 0.966669i \(-0.582414\pi\)
0.261607 + 0.965174i \(0.415747\pi\)
\(264\) 62.3229 35.9822i 0.236072 0.136296i
\(265\) 265.596 + 452.260i 1.00225 + 1.70664i
\(266\) −55.8106 228.959i −0.209814 0.860748i
\(267\) −174.108 + 174.108i −0.652090 + 0.652090i
\(268\) −25.9297 + 96.7708i −0.0967524 + 0.361085i
\(269\) −244.004 140.876i −0.907077 0.523701i −0.0275875 0.999619i \(-0.508782\pi\)
−0.879490 + 0.475918i \(0.842116\pi\)
\(270\) 49.0596 + 48.3385i 0.181702 + 0.179031i
\(271\) 246.806 + 427.480i 0.910723 + 1.57742i 0.813046 + 0.582200i \(0.197808\pi\)
0.0976771 + 0.995218i \(0.468859\pi\)
\(272\) −269.282 + 269.282i −0.990009 + 0.990009i
\(273\) −1.32144 + 2.17332i −0.00484045 + 0.00796087i
\(274\) 171.442i 0.625700i
\(275\) −5.96524 402.804i −0.0216918 1.46474i
\(276\) −42.4153 + 73.4655i −0.153679 + 0.266179i
\(277\) 7.85929 + 29.3313i 0.0283729 + 0.105889i 0.978660 0.205485i \(-0.0658773\pi\)
−0.950287 + 0.311375i \(0.899211\pi\)
\(278\) 63.8556 238.312i 0.229696 0.857238i
\(279\) 43.0323i 0.154238i
\(280\) −77.4550 46.3130i −0.276625 0.165403i
\(281\) 292.290 1.04018 0.520089 0.854112i \(-0.325899\pi\)
0.520089 + 0.854112i \(0.325899\pi\)
\(282\) 256.396 + 68.7012i 0.909207 + 0.243621i
\(283\) 495.563 132.786i 1.75111 0.469207i 0.766244 0.642550i \(-0.222124\pi\)
0.984862 + 0.173343i \(0.0554569\pi\)
\(284\) −156.118 90.1345i −0.549710 0.317375i
\(285\) 95.6532 + 54.2851i 0.335625 + 0.190474i
\(286\) 8.96136 0.0313334
\(287\) 0.360639 15.8816i 0.00125658 0.0553366i
\(288\) −84.6549 84.6549i −0.293941 0.293941i
\(289\) −99.6699 + 57.5444i −0.344878 + 0.199116i
\(290\) −288.397 + 2.13536i −0.994474 + 0.00736333i
\(291\) 138.635 240.122i 0.476408 0.825163i
\(292\) 101.275 + 27.1365i 0.346832 + 0.0929334i
\(293\) 395.050 + 395.050i 1.34829 + 1.34829i 0.887515 + 0.460780i \(0.152430\pi\)
0.460780 + 0.887515i \(0.347570\pi\)
\(294\) −224.752 10.2126i −0.764464 0.0347368i
\(295\) −86.4699 + 332.540i −0.293118 + 1.12725i
\(296\) 83.9327 + 145.376i 0.283557 + 0.491134i
\(297\) 21.6710 + 80.8773i 0.0729664 + 0.272314i
\(298\) 178.066 47.7128i 0.597538 0.160110i
\(299\) 2.93927 1.69699i 0.00983032 0.00567554i
\(300\) −126.105 + 35.7993i −0.420349 + 0.119331i
\(301\) 251.324 240.164i 0.834965 0.797886i
\(302\) 27.5828 27.5828i 0.0913339 0.0913339i
\(303\) −8.55104 + 31.9129i −0.0282213 + 0.105323i
\(304\) −208.359 120.296i −0.685392 0.395711i
\(305\) −121.885 + 123.703i −0.399622 + 0.405583i
\(306\) −79.9328 138.448i −0.261218 0.452444i
\(307\) 359.887 359.887i 1.17227 1.17227i 0.190605 0.981667i \(-0.438955\pi\)
0.981667 0.190605i \(-0.0610448\pi\)
\(308\) 163.981 + 299.527i 0.532404 + 0.972491i
\(309\) 103.274i 0.334220i
\(310\) 165.352 + 93.8408i 0.533395 + 0.302712i
\(311\) −201.048 + 348.225i −0.646457 + 1.11970i 0.337507 + 0.941323i \(0.390417\pi\)
−0.983963 + 0.178372i \(0.942917\pi\)
\(312\) 0.242488 + 0.904976i 0.000777204 + 0.00290057i
\(313\) 115.468 430.931i 0.368906 1.37678i −0.493142 0.869949i \(-0.664152\pi\)
0.862048 0.506827i \(-0.169182\pi\)
\(314\) 306.134i 0.974950i
\(315\) 75.3734 73.1016i 0.239281 0.232069i
\(316\) 10.0415 0.0317770
\(317\) −202.268 54.1975i −0.638069 0.170970i −0.0747404 0.997203i \(-0.523813\pi\)
−0.563329 + 0.826233i \(0.690479\pi\)
\(318\) 465.221 124.656i 1.46296 0.391999i
\(319\) −303.647 175.311i −0.951872 0.549564i
\(320\) 144.650 39.9091i 0.452031 0.124716i
\(321\) 155.432 0.484211
\(322\) 256.514 + 155.968i 0.796628 + 0.484374i
\(323\) −180.518 180.518i −0.558880 0.558880i
\(324\) 23.5958 13.6230i 0.0728265 0.0420464i
\(325\) 5.08550 + 1.28225i 0.0156477 + 0.00394540i
\(326\) −140.186 + 242.809i −0.430017 + 0.744812i
\(327\) −131.589 35.2591i −0.402412 0.107826i
\(328\) −4.13760 4.13760i −0.0126146 0.0126146i
\(329\) 113.585 388.411i 0.345244 1.18058i
\(330\) −358.030 93.0983i −1.08494 0.282116i
\(331\) 150.975 + 261.497i 0.456119 + 0.790020i 0.998752 0.0499493i \(-0.0159060\pi\)
−0.542633 + 0.839970i \(0.682573\pi\)
\(332\) 4.96779 + 18.5400i 0.0149632 + 0.0558435i
\(333\) −188.656 + 50.5503i −0.566535 + 0.151803i
\(334\) −49.1183 + 28.3584i −0.147061 + 0.0849055i
\(335\) −142.681 + 83.7917i −0.425914 + 0.250125i
\(336\) −166.061 + 158.687i −0.494230 + 0.472282i
\(337\) −232.153 + 232.153i −0.688883 + 0.688883i −0.961985 0.273102i \(-0.911950\pi\)
0.273102 + 0.961985i \(0.411950\pi\)
\(338\) 115.922 432.626i 0.342964 1.27996i
\(339\) −336.267 194.144i −0.991938 0.572696i
\(340\) 304.269 2.25288i 0.894910 0.00662613i
\(341\) 115.570 + 200.173i 0.338915 + 0.587017i
\(342\) 71.4166 71.4166i 0.208821 0.208821i
\(343\) −23.3444 + 342.205i −0.0680596 + 0.997681i
\(344\) 128.046i 0.372228i
\(345\) −135.061 + 37.2635i −0.391482 + 0.108010i
\(346\) −215.921 + 373.986i −0.624050 + 1.08089i
\(347\) 49.3981 + 184.356i 0.142358 + 0.531286i 0.999859 + 0.0168038i \(0.00534907\pi\)
−0.857501 + 0.514482i \(0.827984\pi\)
\(348\) −29.5295 + 110.206i −0.0848549 + 0.316683i
\(349\) 10.4041i 0.0298112i 0.999889 + 0.0149056i \(0.00474477\pi\)
−0.999889 + 0.0149056i \(0.995255\pi\)
\(350\) 116.527 + 449.037i 0.332934 + 1.28296i
\(351\) −1.09008 −0.00310565
\(352\) 621.141 + 166.434i 1.76461 + 0.472825i
\(353\) −314.544 + 84.2818i −0.891059 + 0.238759i −0.675172 0.737660i \(-0.735931\pi\)
−0.215886 + 0.976418i \(0.569264\pi\)
\(354\) 273.255 + 157.764i 0.771906 + 0.445660i
\(355\) −79.1866 287.011i −0.223061 0.808482i
\(356\) −430.363 −1.20888
\(357\) −213.783 + 117.039i −0.598831 + 0.327839i
\(358\) 254.158 + 254.158i 0.709939 + 0.709939i
\(359\) −196.189 + 113.270i −0.546487 + 0.315514i −0.747704 0.664032i \(-0.768844\pi\)
0.201217 + 0.979547i \(0.435510\pi\)
\(360\) −0.286362 38.6754i −0.000795450 0.107432i
\(361\) −99.8573 + 172.958i −0.276613 + 0.479108i
\(362\) −594.518 159.301i −1.64232 0.440057i
\(363\) −169.821 169.821i −0.467827 0.467827i
\(364\) −4.31920 + 1.05284i −0.0118659 + 0.00289242i
\(365\) 87.6918 + 149.322i 0.240252 + 0.409103i
\(366\) 79.7369 + 138.108i 0.217860 + 0.377345i
\(367\) −8.15380 30.4304i −0.0222174 0.0829166i 0.953927 0.300039i \(-0.0969996\pi\)
−0.976144 + 0.217122i \(0.930333\pi\)
\(368\) 296.046 79.3253i 0.804473 0.215558i
\(369\) 5.89604 3.40408i 0.0159784 0.00922515i
\(370\) 217.163 835.149i 0.586927 2.25716i
\(371\) −173.893 713.385i −0.468715 1.92287i
\(372\) 53.1840 53.1840i 0.142968 0.142968i
\(373\) 36.9449 137.880i 0.0990479 0.369652i −0.898554 0.438863i \(-0.855381\pi\)
0.997602 + 0.0692108i \(0.0220481\pi\)
\(374\) 743.645 + 429.344i 1.98836 + 1.14798i
\(375\) −189.858 104.062i −0.506288 0.277499i
\(376\) −74.5310 129.092i −0.198221 0.343329i
\(377\) 3.22775 3.22775i 0.00856167 0.00856167i
\(378\) −46.3028 84.5767i −0.122494 0.223748i
\(379\) 678.102i 1.78919i −0.446882 0.894593i \(-0.647466\pi\)
0.446882 0.894593i \(-0.352534\pi\)
\(380\) 51.1271 + 185.310i 0.134545 + 0.487658i
\(381\) −102.900 + 178.228i −0.270079 + 0.467790i
\(382\) −68.7535 256.592i −0.179983 0.671706i
\(383\) −84.0064 + 313.516i −0.219338 + 0.818580i 0.765257 + 0.643725i \(0.222612\pi\)
−0.984594 + 0.174854i \(0.944055\pi\)
\(384\) 138.686i 0.361162i
\(385\) −154.288 + 542.473i −0.400748 + 1.40902i
\(386\) 576.011 1.49226
\(387\) 143.905 + 38.5593i 0.371849 + 0.0996365i
\(388\) 468.109 125.429i 1.20647 0.323272i
\(389\) 442.039 + 255.211i 1.13635 + 0.656070i 0.945523 0.325555i \(-0.105551\pi\)
0.190823 + 0.981624i \(0.438884\pi\)
\(390\) 2.37715 4.18866i 0.00609525 0.0107401i
\(391\) 325.214 0.831749
\(392\) 85.1907 + 93.3013i 0.217323 + 0.238013i
\(393\) −229.681 229.681i −0.584431 0.584431i
\(394\) −562.068 + 324.510i −1.42657 + 0.823629i
\(395\) 11.8137 + 11.6400i 0.0299081 + 0.0294684i
\(396\) −73.1735 + 126.740i −0.184782 + 0.320051i
\(397\) −17.2618 4.62529i −0.0434806 0.0116506i 0.237013 0.971506i \(-0.423832\pi\)
−0.280494 + 0.959856i \(0.590498\pi\)
\(398\) −19.5146 19.5146i −0.0490315 0.0490315i
\(399\) −106.378 111.322i −0.266613 0.279002i
\(400\) 413.624 + 230.708i 1.03406 + 0.576769i
\(401\) −66.9804 116.014i −0.167034 0.289311i 0.770342 0.637631i \(-0.220085\pi\)
−0.937376 + 0.348320i \(0.886752\pi\)
\(402\) 39.3270 + 146.771i 0.0978285 + 0.365101i
\(403\) −2.90666 + 0.778838i −0.00721256 + 0.00193260i
\(404\) −50.0097 + 28.8731i −0.123786 + 0.0714681i
\(405\) 43.5517 + 11.3247i 0.107535 + 0.0279622i
\(406\) 387.536 + 113.330i 0.954523 + 0.279137i
\(407\) 741.809 741.809i 1.82263 1.82263i
\(408\) −23.2354 + 86.7158i −0.0569496 + 0.212539i
\(409\) 426.695 + 246.353i 1.04326 + 0.602329i 0.920756 0.390138i \(-0.127573\pi\)
0.122509 + 0.992467i \(0.460906\pi\)
\(410\) 0.222712 + 30.0789i 0.000543199 + 0.0733632i
\(411\) −56.0082 97.0091i −0.136273 0.236032i
\(412\) −127.637 + 127.637i −0.309799 + 0.309799i
\(413\) 249.914 411.023i 0.605119 0.995213i
\(414\) 128.661i 0.310776i
\(415\) −15.6469 + 27.5706i −0.0377033 + 0.0664352i
\(416\) −4.18594 + 7.25026i −0.0100624 + 0.0174285i
\(417\) −41.7219 155.708i −0.100052 0.373401i
\(418\) −140.408 + 524.008i −0.335903 + 1.25361i
\(419\) 274.467i 0.655053i −0.944842 0.327526i \(-0.893785\pi\)
0.944842 0.327526i \(-0.106215\pi\)
\(420\) 183.501 + 2.80778i 0.436908 + 0.00668520i
\(421\) −175.509 −0.416887 −0.208444 0.978034i \(-0.566840\pi\)
−0.208444 + 0.978034i \(0.566840\pi\)
\(422\) −552.179 147.956i −1.30848 0.350606i
\(423\) 167.524 44.8879i 0.396038 0.106118i
\(424\) −234.232 135.234i −0.552433 0.318948i
\(425\) 360.579 + 350.055i 0.848421 + 0.823659i
\(426\) −273.411 −0.641809
\(427\) 213.259 116.752i 0.499435 0.273423i
\(428\) 192.099 + 192.099i 0.448830 + 0.448830i
\(429\) 5.07072 2.92758i 0.0118199 0.00682420i
\(430\) −461.980 + 468.872i −1.07437 + 1.09040i
\(431\) 183.897 318.520i 0.426676 0.739025i −0.569899 0.821715i \(-0.693018\pi\)
0.996575 + 0.0826899i \(0.0263511\pi\)
\(432\) −95.0846 25.4779i −0.220103 0.0589765i
\(433\) −22.6024 22.6024i −0.0521995 0.0521995i 0.680525 0.732725i \(-0.261752\pi\)
−0.732725 + 0.680525i \(0.761752\pi\)
\(434\) −183.893 192.438i −0.423716 0.443407i
\(435\) −162.490 + 95.4246i −0.373540 + 0.219367i
\(436\) −119.054 206.208i −0.273061 0.472955i
\(437\) 53.1771 + 198.460i 0.121687 + 0.454141i
\(438\) 153.602 41.1575i 0.350689 0.0939670i
\(439\) −348.602 + 201.265i −0.794082 + 0.458464i −0.841398 0.540416i \(-0.818267\pi\)
0.0473155 + 0.998880i \(0.484933\pi\)
\(440\) 105.201 + 179.137i 0.239093 + 0.407129i
\(441\) −130.511 + 67.6455i −0.295943 + 0.153391i
\(442\) −7.90490 + 7.90490i −0.0178844 + 0.0178844i
\(443\) −89.7786 + 335.058i −0.202661 + 0.756340i 0.787489 + 0.616328i \(0.211381\pi\)
−0.990150 + 0.140011i \(0.955286\pi\)
\(444\) −295.637 170.686i −0.665849 0.384428i
\(445\) −506.314 498.871i −1.13778 1.12106i
\(446\) −252.155 436.746i −0.565371 0.979251i
\(447\) 85.1704 85.1704i 0.190538 0.190538i
\(448\) −210.022 4.76918i −0.468800 0.0106455i
\(449\) 144.105i 0.320946i 0.987040 + 0.160473i \(0.0513020\pi\)
−0.987040 + 0.160473i \(0.948698\pi\)
\(450\) −138.489 + 142.652i −0.307753 + 0.317005i
\(451\) −18.2843 + 31.6694i −0.0405418 + 0.0702204i
\(452\) −175.651 655.539i −0.388609 1.45031i
\(453\) 6.59653 24.6186i 0.0145619 0.0543456i
\(454\) 129.903i 0.286129i
\(455\) −6.30190 3.76812i −0.0138503 0.00828158i
\(456\) −56.7171 −0.124380
\(457\) −730.982 195.866i −1.59952 0.428591i −0.654624 0.755955i \(-0.727173\pi\)
−0.944898 + 0.327364i \(0.893840\pi\)
\(458\) 69.1275 18.5226i 0.150933 0.0404425i
\(459\) −90.4588 52.2264i −0.197078 0.113783i
\(460\) −212.977 120.869i −0.462995 0.262759i
\(461\) −371.997 −0.806935 −0.403468 0.914994i \(-0.632195\pi\)
−0.403468 + 0.914994i \(0.632195\pi\)
\(462\) 442.530 + 269.071i 0.957857 + 0.582405i
\(463\) 316.624 + 316.624i 0.683853 + 0.683853i 0.960866 0.277013i \(-0.0893446\pi\)
−0.277013 + 0.960866i \(0.589345\pi\)
\(464\) 356.987 206.107i 0.769370 0.444196i
\(465\) 124.220 0.919757i 0.267140 0.00197797i
\(466\) 110.352 191.136i 0.236808 0.410163i
\(467\) −811.979 217.569i −1.73871 0.465887i −0.756552 0.653933i \(-0.773118\pi\)
−0.982160 + 0.188046i \(0.939784\pi\)
\(468\) −1.34724 1.34724i −0.00287872 0.00287872i
\(469\) 225.063 54.8608i 0.479878 0.116974i
\(470\) −192.838 + 741.600i −0.410293 + 1.57787i
\(471\) −100.011 173.224i −0.212337 0.367779i
\(472\) −45.8598 171.151i −0.0971606 0.362608i
\(473\) −772.960 + 207.114i −1.63416 + 0.437873i
\(474\) 13.1894 7.61491i 0.0278258 0.0160652i
\(475\) −154.659 + 277.280i −0.325598 + 0.583747i
\(476\) −408.864 119.567i −0.858959 0.251191i
\(477\) 222.518 222.518i 0.466496 0.466496i
\(478\) −32.8471 + 122.587i −0.0687177 + 0.256458i
\(479\) 206.858 + 119.430i 0.431854 + 0.249331i 0.700136 0.714009i \(-0.253123\pi\)
−0.268282 + 0.963340i \(0.586456\pi\)
\(480\) 242.561 246.180i 0.505336 0.512875i
\(481\) 6.82894 + 11.8281i 0.0141974 + 0.0245906i
\(482\) 449.628 449.628i 0.932837 0.932837i
\(483\) 196.100 + 4.45303i 0.406004 + 0.00921953i
\(484\) 419.766i 0.867285i
\(485\) 696.118 + 395.061i 1.43529 + 0.814558i
\(486\) 20.6618 35.7873i 0.0425140 0.0736365i
\(487\) 58.9679 + 220.071i 0.121084 + 0.451891i 0.999670 0.0256929i \(-0.00817921\pi\)
−0.878586 + 0.477584i \(0.841513\pi\)
\(488\) 23.1785 86.5033i 0.0474969 0.177261i
\(489\) 183.189i 0.374619i
\(490\) 24.6767 649.005i 0.0503606 1.32450i
\(491\) −162.810 −0.331589 −0.165795 0.986160i \(-0.553019\pi\)
−0.165795 + 0.986160i \(0.553019\pi\)
\(492\) 11.4941 + 3.07983i 0.0233620 + 0.00625982i
\(493\) 422.493 113.207i 0.856984 0.229628i
\(494\) −6.11647 3.53135i −0.0123815 0.00714848i
\(495\) −233.003 + 64.2858i −0.470713 + 0.129870i
\(496\) −271.743 −0.547869
\(497\) −9.46289 + 416.721i −0.0190400 + 0.838473i
\(498\) 20.5848 + 20.5848i 0.0413349 + 0.0413349i
\(499\) 828.405 478.280i 1.66013 0.958477i 0.687481 0.726202i \(-0.258716\pi\)
0.972650 0.232275i \(-0.0746169\pi\)
\(500\) −106.036 363.258i −0.212072 0.726516i
\(501\) −18.5288 + 32.0928i −0.0369836 + 0.0640576i
\(502\) −444.333 119.059i −0.885126 0.237169i
\(503\) −210.562 210.562i −0.418612 0.418612i 0.466113 0.884725i \(-0.345654\pi\)
−0.884725 + 0.466113i \(0.845654\pi\)
\(504\) −15.1980 + 51.9704i −0.0301548 + 0.103116i
\(505\) −92.3049 24.0020i −0.182782 0.0475286i
\(506\) −345.539 598.492i −0.682884 1.18279i
\(507\) −75.7409 282.669i −0.149390 0.557532i
\(508\) −347.448 + 93.0985i −0.683953 + 0.183265i
\(509\) −27.4957 + 15.8746i −0.0540190 + 0.0311879i −0.526766 0.850010i \(-0.676596\pi\)
0.472747 + 0.881198i \(0.343262\pi\)
\(510\) 397.945 233.699i 0.780284 0.458233i
\(511\) −57.4143 235.538i −0.112357 0.460936i
\(512\) −396.422 + 396.422i −0.774262 + 0.774262i
\(513\) 17.0795 63.7416i 0.0332934 0.124253i
\(514\) 733.506 + 423.490i 1.42705 + 0.823910i
\(515\) −298.118 + 2.20734i −0.578871 + 0.00428610i
\(516\) 130.198 + 225.510i 0.252322 + 0.437034i
\(517\) −658.715 + 658.715i −1.27411 + 1.27411i
\(518\) −627.641 + 1032.25i −1.21166 + 1.99277i
\(519\) 282.157i 0.543654i
\(520\) −2.60719 + 0.719325i −0.00501382 + 0.00138332i
\(521\) −150.818 + 261.225i −0.289478 + 0.501391i −0.973685 0.227897i \(-0.926815\pi\)
0.684207 + 0.729288i \(0.260148\pi\)
\(522\) 44.7869 + 167.147i 0.0857986 + 0.320205i
\(523\) 243.569 909.011i 0.465715 1.73807i −0.188794 0.982017i \(-0.560458\pi\)
0.654509 0.756055i \(-0.272876\pi\)
\(524\) 567.730i 1.08345i
\(525\) 212.631 + 216.016i 0.405012 + 0.411459i
\(526\) 4.02679 0.00765550
\(527\) −278.520 74.6291i −0.528500 0.141611i
\(528\) 510.729 136.849i 0.967289 0.259184i
\(529\) 231.458 + 133.633i 0.437539 + 0.252614i
\(530\) 369.784 + 1340.28i 0.697705 + 2.52883i
\(531\) 206.159 0.388246
\(532\) 6.10975 269.058i 0.0114845 0.505747i
\(533\) −0.336644 0.336644i −0.000631602 0.000631602i
\(534\) −565.275 + 326.362i −1.05857 + 0.611164i
\(535\) 3.32214 + 448.680i 0.00620960 + 0.838654i
\(536\) 42.6643 73.8967i 0.0795975 0.137867i
\(537\) 226.844 + 60.7827i 0.422429 + 0.113189i
\(538\) −528.137 528.137i −0.981667 0.981667i
\(539\) 425.423 665.173i 0.789283 1.23409i
\(540\) 39.8296 + 67.8222i 0.0737585 + 0.125597i
\(541\) 224.676 + 389.150i 0.415297 + 0.719316i 0.995460 0.0951848i \(-0.0303442\pi\)
−0.580162 + 0.814501i \(0.697011\pi\)
\(542\) 338.670 + 1263.94i 0.624853 + 2.33198i
\(543\) −388.446 + 104.084i −0.715369 + 0.191683i
\(544\) −694.728 + 401.101i −1.27707 + 0.737319i
\(545\) 98.9688 380.607i 0.181594 0.698361i
\(546\) −4.87479 + 4.65832i −0.00892819 + 0.00853172i
\(547\) −510.619 + 510.619i −0.933489 + 0.933489i −0.997922 0.0644326i \(-0.979476\pi\)
0.0644326 + 0.997922i \(0.479476\pi\)
\(548\) 50.6733 189.115i 0.0924695 0.345101i
\(549\) 90.2371 + 52.0984i 0.164366 + 0.0948969i
\(550\) 261.092 1035.51i 0.474713 1.88274i
\(551\) 138.167 + 239.313i 0.250757 + 0.434324i
\(552\) 51.0895 51.0895i 0.0925535 0.0925535i
\(553\) −11.1498 20.3663i −0.0201625 0.0368288i
\(554\) 80.4976i 0.145303i
\(555\) −149.954 543.508i −0.270188 0.979294i
\(556\) 140.877 244.005i 0.253375 0.438858i
\(557\) 66.1299 + 246.800i 0.118725 + 0.443088i 0.999539 0.0303753i \(-0.00967025\pi\)
−0.880813 + 0.473463i \(0.843004\pi\)
\(558\) 29.5248 110.188i 0.0529118 0.197469i
\(559\) 10.4181i 0.0186371i
\(560\) −461.626 475.972i −0.824332 0.849951i
\(561\) 561.048 1.00009
\(562\) 748.434 + 200.542i 1.33173 + 0.356837i
\(563\) −51.6736 + 13.8459i −0.0917827 + 0.0245931i −0.304418 0.952539i \(-0.598462\pi\)
0.212635 + 0.977132i \(0.431795\pi\)
\(564\) 262.521 + 151.567i 0.465463 + 0.268735i
\(565\) 553.243 974.842i 0.979190 1.72538i
\(566\) 1360.04 2.40289
\(567\) −53.8304 32.7305i −0.0949390 0.0577257i
\(568\) 108.568 + 108.568i 0.191140 + 0.191140i
\(569\) −444.007 + 256.348i −0.780329 + 0.450523i −0.836547 0.547895i \(-0.815429\pi\)
0.0562176 + 0.998419i \(0.482096\pi\)
\(570\) 207.683 + 204.630i 0.364356 + 0.359000i
\(571\) 50.9402 88.2310i 0.0892122 0.154520i −0.817966 0.575266i \(-0.804898\pi\)
0.907178 + 0.420746i \(0.138232\pi\)
\(572\) 9.88516 + 2.64872i 0.0172818 + 0.00463063i
\(573\) −122.729 122.729i −0.214188 0.214188i
\(574\) 11.8199 40.4188i 0.0205922 0.0704160i
\(575\) −110.454 389.081i −0.192094 0.676663i
\(576\) −45.0164 77.9706i −0.0781534 0.135366i
\(577\) −79.8311 297.934i −0.138355 0.516350i −0.999962 0.00877199i \(-0.997208\pi\)
0.861606 0.507578i \(-0.169459\pi\)
\(578\) −294.695 + 78.9633i −0.509853 + 0.136615i
\(579\) 325.932 188.177i 0.562922 0.325003i
\(580\) −318.759 82.8865i −0.549584 0.142908i
\(581\) 32.0869 30.6620i 0.0552270 0.0527745i
\(582\) 519.736 519.736i 0.893017 0.893017i
\(583\) −437.479 + 1632.69i −0.750393 + 2.80050i
\(584\) −77.3362 44.6501i −0.132425 0.0764556i
\(585\) −0.0232990 3.14671i −3.98274e−5 0.00537899i
\(586\) 740.513 + 1282.61i 1.26367 + 2.18875i
\(587\) 686.341 686.341i 1.16923 1.16923i 0.186845 0.982389i \(-0.440174\pi\)
0.982389 0.186845i \(-0.0598263\pi\)
\(588\) −244.903 77.6958i −0.416502 0.132136i
\(589\) 182.168i 0.309283i
\(590\) −449.571 + 792.168i −0.761985 + 1.34266i
\(591\) −212.028 + 367.243i −0.358761 + 0.621393i
\(592\) 319.218 + 1191.34i 0.539219 + 2.01239i
\(593\) 232.862 869.051i 0.392684 1.46552i −0.433005 0.901391i \(-0.642547\pi\)
0.825689 0.564125i \(-0.190787\pi\)
\(594\) 221.962i 0.373673i
\(595\) −342.421 614.619i −0.575498 1.03297i
\(596\) 210.525 0.353230
\(597\) −17.4174 4.66697i −0.0291748 0.00781737i
\(598\) 8.69056 2.32863i 0.0145327 0.00389403i
\(599\) 598.597 + 345.600i 0.999328 + 0.576962i 0.908049 0.418863i \(-0.137571\pi\)
0.0912783 + 0.995825i \(0.470905\pi\)
\(600\) 111.637 1.65327i 0.186062 0.00275545i
\(601\) 498.794 0.829940 0.414970 0.909835i \(-0.363792\pi\)
0.414970 + 0.909835i \(0.363792\pi\)
\(602\) 808.316 442.525i 1.34272 0.735091i
\(603\) 70.2013 + 70.2013i 0.116420 + 0.116420i
\(604\) 38.5790 22.2736i 0.0638725 0.0368768i
\(605\) 486.588 493.847i 0.804278 0.816277i
\(606\) −43.7914 + 75.8489i −0.0722630 + 0.125163i
\(607\) 547.550 + 146.716i 0.902060 + 0.241706i 0.679901 0.733304i \(-0.262023\pi\)
0.222159 + 0.975010i \(0.428690\pi\)
\(608\) −358.367 358.367i −0.589420 0.589420i
\(609\) 256.308 62.4772i 0.420867 0.102590i
\(610\) −396.969 + 233.126i −0.650769 + 0.382174i
\(611\) −6.06400 10.5032i −0.00992471 0.0171901i
\(612\) −47.2517 176.346i −0.0772087 0.288147i
\(613\) −630.791 + 169.020i −1.02902 + 0.275726i −0.733558 0.679627i \(-0.762142\pi\)
−0.295466 + 0.955353i \(0.595475\pi\)
\(614\) 1168.44 674.601i 1.90300 1.09870i
\(615\) 9.95248 + 16.9472i 0.0161829 + 0.0275564i
\(616\) −68.8779 282.567i −0.111815 0.458712i
\(617\) −171.584 + 171.584i −0.278095 + 0.278095i −0.832348 0.554253i \(-0.813004\pi\)
0.554253 + 0.832348i \(0.313004\pi\)
\(618\) −70.8571 + 264.442i −0.114655 + 0.427900i
\(619\) −51.9976 30.0209i −0.0840027 0.0484990i 0.457410 0.889256i \(-0.348777\pi\)
−0.541413 + 0.840757i \(0.682110\pi\)
\(620\) 154.661 + 152.388i 0.249454 + 0.245787i
\(621\) 42.0323 + 72.8020i 0.0676848 + 0.117234i
\(622\) −753.720 + 753.720i −1.21177 + 1.21177i
\(623\) 477.862 + 872.864i 0.767034 + 1.40107i
\(624\) 6.88371i 0.0110316i
\(625\) 296.335 550.282i 0.474136 0.880452i
\(626\) 591.329 1024.21i 0.944615 1.63612i
\(627\) 91.7393 + 342.376i 0.146315 + 0.546054i
\(628\) 90.4845 337.693i 0.144084 0.537727i
\(629\) 1308.71i 2.08062i
\(630\) 243.156 135.469i 0.385961 0.215030i
\(631\) −472.374 −0.748612 −0.374306 0.927305i \(-0.622119\pi\)
−0.374306 + 0.927305i \(0.622119\pi\)
\(632\) −8.26110 2.21356i −0.0130714 0.00350246i
\(633\) −360.782 + 96.6712i −0.569956 + 0.152719i
\(634\) −480.739 277.555i −0.758263 0.437784i
\(635\) −516.685 293.229i −0.813678 0.461778i
\(636\) 550.024 0.864818
\(637\) 6.93129 + 7.59118i 0.0108811 + 0.0119171i
\(638\) −657.233 657.233i −1.03015 1.03015i
\(639\) −154.708 + 89.3204i −0.242109 + 0.139782i
\(640\) −400.341 + 2.96422i −0.625533 + 0.00463160i
\(641\) −251.987 + 436.454i −0.393115 + 0.680895i −0.992859 0.119297i \(-0.961936\pi\)
0.599743 + 0.800192i \(0.295269\pi\)
\(642\) 397.996 + 106.643i 0.619931 + 0.166110i
\(643\) 269.091 + 269.091i 0.418493 + 0.418493i 0.884684 0.466191i \(-0.154374\pi\)
−0.466191 + 0.884684i \(0.654374\pi\)
\(644\) 236.858 + 247.865i 0.367792 + 0.384883i
\(645\) −108.232 + 416.232i −0.167802 + 0.645321i
\(646\) −338.378 586.087i −0.523804 0.907256i
\(647\) −277.041 1033.93i −0.428193 1.59804i −0.756851 0.653588i \(-0.773263\pi\)
0.328658 0.944449i \(-0.393404\pi\)
\(648\) −22.4152 + 6.00612i −0.0345913 + 0.00926871i
\(649\) −958.986 + 553.671i −1.47764 + 0.853114i
\(650\) 12.1421 + 6.77252i 0.0186801 + 0.0104193i
\(651\) −166.922 48.8141i −0.256409 0.0749832i
\(652\) −226.404 + 226.404i −0.347246 + 0.347246i
\(653\) −122.241 + 456.208i −0.187198 + 0.698634i 0.806951 + 0.590619i \(0.201116\pi\)
−0.994149 + 0.108015i \(0.965550\pi\)
\(654\) −312.752 180.568i −0.478215 0.276097i
\(655\) 658.105 667.924i 1.00474 1.01973i
\(656\) −21.4963 37.2326i −0.0327687 0.0567571i
\(657\) 73.4688 73.4688i 0.111825 0.111825i
\(658\) 557.336 916.627i 0.847016 1.39305i
\(659\) 299.482i 0.454449i 0.973842 + 0.227225i \(0.0729652\pi\)
−0.973842 + 0.227225i \(0.927035\pi\)
\(660\) −367.422 208.519i −0.556699 0.315938i
\(661\) −94.8665 + 164.314i −0.143520 + 0.248583i −0.928820 0.370532i \(-0.879175\pi\)
0.785300 + 0.619115i \(0.212509\pi\)
\(662\) 207.170 + 773.170i 0.312946 + 1.16793i
\(663\) −1.89048 + 7.05538i −0.00285141 + 0.0106416i
\(664\) 16.3478i 0.0246203i
\(665\) 319.076 309.459i 0.479814 0.465352i
\(666\) −517.753 −0.777407
\(667\) −340.026 91.1097i −0.509784 0.136596i
\(668\) −62.5637 + 16.7639i −0.0936582 + 0.0250956i
\(669\) −285.361 164.753i −0.426548 0.246268i
\(670\) −422.838 + 116.661i −0.631101 + 0.174121i
\(671\) −559.673 −0.834088
\(672\) −424.404 + 232.346i −0.631554 + 0.345754i
\(673\) −501.108 501.108i −0.744589 0.744589i 0.228868 0.973457i \(-0.426497\pi\)
−0.973457 + 0.228868i \(0.926497\pi\)
\(674\) −753.731 + 435.167i −1.11830 + 0.645648i
\(675\) −31.7599 + 125.962i −0.0470517 + 0.186610i
\(676\) 255.744 442.961i 0.378319 0.655268i
\(677\) −218.875 58.6475i −0.323302 0.0866285i 0.0935180 0.995618i \(-0.470189\pi\)
−0.416820 + 0.908989i \(0.636855\pi\)
\(678\) −727.837 727.837i −1.07351 1.07351i
\(679\) −774.171 810.148i −1.14016 1.19315i
\(680\) −250.817 65.2196i −0.368848 0.0959112i
\(681\) 42.4378 + 73.5044i 0.0623169 + 0.107936i
\(682\) 158.587 + 591.853i 0.232532 + 0.867820i
\(683\) 753.610 201.929i 1.10338 0.295650i 0.339241 0.940699i \(-0.389830\pi\)
0.764141 + 0.645049i \(0.223163\pi\)
\(684\) 99.8875 57.6701i 0.146034 0.0843129i
\(685\) 278.836 163.751i 0.407060 0.239052i
\(686\) −294.564 + 860.228i −0.429394 + 1.25398i
\(687\) 33.0641 33.0641i 0.0481283 0.0481283i
\(688\) 243.497 908.742i 0.353920 1.32085i
\(689\) −19.0576 11.0029i −0.0276598 0.0159694i
\(690\) −371.403 + 2.74996i −0.538265 + 0.00398544i
\(691\) 147.342 + 255.204i 0.213230 + 0.369325i 0.952724 0.303839i \(-0.0982684\pi\)
−0.739494 + 0.673163i \(0.764935\pi\)
\(692\) −348.720 + 348.720i −0.503930 + 0.503930i
\(693\) 338.305 + 7.68222i 0.488175 + 0.0110855i
\(694\) 505.952i 0.729038i
\(695\) 448.587 123.765i 0.645449 0.178080i
\(696\) 48.5874 84.1559i 0.0698095 0.120914i
\(697\) −11.8071 44.0647i −0.0169399 0.0632205i
\(698\) −7.13832 + 26.6406i −0.0102268 + 0.0381670i
\(699\) 144.204i 0.206300i
\(700\) −4.18306 + 529.768i −0.00597580 + 0.756812i
\(701\) −1042.91 −1.48775 −0.743874 0.668320i \(-0.767014\pi\)
−0.743874 + 0.668320i \(0.767014\pi\)
\(702\) −2.79125 0.747913i −0.00397614 0.00106540i
\(703\) −798.633 + 213.993i −1.13604 + 0.304400i
\(704\) 418.804 + 241.797i 0.594892 + 0.343461i
\(705\) 133.157 + 482.627i 0.188875 + 0.684578i
\(706\) −863.243 −1.22272
\(707\) 114.090 + 69.3701i 0.161372 + 0.0981190i
\(708\) 254.793 + 254.793i 0.359877 + 0.359877i
\(709\) −56.4816 + 32.6096i −0.0796637 + 0.0459938i −0.539303 0.842112i \(-0.681312\pi\)
0.459639 + 0.888106i \(0.347979\pi\)
\(710\) −5.84378 789.247i −0.00823068 1.11162i
\(711\) 4.97542 8.61769i 0.00699778 0.0121205i
\(712\) 354.056 + 94.8691i 0.497270 + 0.133243i
\(713\) 164.093 + 164.093i 0.230144 + 0.230144i
\(714\) −627.710 + 153.009i −0.879146 + 0.214299i
\(715\) 8.55935 + 14.5749i 0.0119711 + 0.0203845i
\(716\) 205.237 + 355.480i 0.286643 + 0.496481i
\(717\) 21.4616 + 80.0957i 0.0299325 + 0.111710i
\(718\) −580.073 + 155.430i −0.807901 + 0.216477i
\(719\) −647.135 + 373.624i −0.900049 + 0.519643i −0.877216 0.480096i \(-0.840602\pi\)
−0.0228327 + 0.999739i \(0.507268\pi\)
\(720\) 71.5139 275.023i 0.0993249 0.381976i
\(721\) 400.599 + 117.150i 0.555616 + 0.162482i
\(722\) −374.361 + 374.361i −0.518505 + 0.518505i
\(723\) 107.530 401.307i 0.148727 0.555058i
\(724\) −608.721 351.445i −0.840774 0.485421i
\(725\) −278.933 467.016i −0.384735 0.644159i
\(726\) −318.326 551.357i −0.438466 0.759445i
\(727\) 532.464 532.464i 0.732412 0.732412i −0.238685 0.971097i \(-0.576716\pi\)
0.971097 + 0.238685i \(0.0767163\pi\)
\(728\) 3.78546 + 0.0859602i 0.00519981 + 0.000118077i
\(729\) 27.0000i 0.0370370i
\(730\) 122.091 + 442.519i 0.167248 + 0.606190i
\(731\) 499.138 864.532i 0.682815 1.18267i
\(732\) 47.1359 + 175.913i 0.0643933 + 0.240319i
\(733\) 25.1875 94.0010i 0.0343622 0.128241i −0.946614 0.322369i \(-0.895521\pi\)
0.980976 + 0.194127i \(0.0621875\pi\)
\(734\) 83.5140i 0.113779i
\(735\) −198.060 375.296i −0.269469 0.510607i
\(736\) 645.619 0.877200
\(737\) −515.091 138.018i −0.698902 0.187270i
\(738\) 17.4329 4.67112i 0.0236218 0.00632944i
\(739\) 913.914 + 527.648i 1.23669 + 0.714003i 0.968416 0.249340i \(-0.0802136\pi\)
0.268273 + 0.963343i \(0.413547\pi\)
\(740\) 486.396 857.055i 0.657292 1.15818i
\(741\) −4.61462 −0.00622755
\(742\) 44.1896 1945.99i 0.0595547 2.62263i
\(743\) 750.889 + 750.889i 1.01062 + 1.01062i 0.999943 + 0.0106743i \(0.00339779\pi\)
0.0106743 + 0.999943i \(0.496602\pi\)
\(744\) −55.4779 + 32.0302i −0.0745671 + 0.0430514i
\(745\) 247.679 + 244.038i 0.332455 + 0.327568i
\(746\) 189.201 327.706i 0.253621 0.439284i
\(747\) 18.3726 + 4.92292i 0.0245952 + 0.00659025i
\(748\) 693.404 + 693.404i 0.927010 + 0.927010i
\(749\) 176.315 602.918i 0.235401 0.804964i
\(750\) −414.750 396.723i −0.553000 0.528964i
\(751\) 286.483 + 496.203i 0.381469 + 0.660723i 0.991272 0.131829i \(-0.0420851\pi\)
−0.609804 + 0.792552i \(0.708752\pi\)
\(752\) −283.461 1057.89i −0.376942 1.40677i
\(753\) −290.318 + 77.7904i −0.385548 + 0.103307i
\(754\) 10.4795 6.05035i 0.0138986 0.00802434i
\(755\) 71.2068 + 18.5158i 0.0943136 + 0.0245243i
\(756\) −26.0775 106.981i −0.0344941 0.141510i
\(757\) 498.849 498.849i 0.658982 0.658982i −0.296157 0.955139i \(-0.595705\pi\)
0.955139 + 0.296157i \(0.0957053\pi\)
\(758\) 465.250 1736.34i 0.613786 2.29068i
\(759\) −391.042 225.768i −0.515207 0.297455i
\(760\) −1.21225 163.724i −0.00159506 0.215426i
\(761\) −67.0095 116.064i −0.0880545 0.152515i 0.818634 0.574315i \(-0.194732\pi\)
−0.906689 + 0.421800i \(0.861398\pi\)