Properties

Label 105.3.v.a.88.1
Level 105
Weight 3
Character 105.88
Analytic conductor 2.861
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 88.1
Character \(\chi\) \(=\) 105.88
Dual form 105.3.v.a.37.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-3.56483 - 0.955194i) q^{2} +(-1.67303 + 0.448288i) q^{3} +(8.33154 + 4.81021i) q^{4} +(-1.05941 - 4.88648i) q^{5} +6.39228 q^{6} +(-6.28878 - 3.07429i) q^{7} +(-14.6673 - 14.6673i) q^{8} +(2.59808 - 1.50000i) q^{9} +O(q^{10})\) \(q+(-3.56483 - 0.955194i) q^{2} +(-1.67303 + 0.448288i) q^{3} +(8.33154 + 4.81021i) q^{4} +(-1.05941 - 4.88648i) q^{5} +6.39228 q^{6} +(-6.28878 - 3.07429i) q^{7} +(-14.6673 - 14.6673i) q^{8} +(2.59808 - 1.50000i) q^{9} +(-0.890898 + 18.4314i) q^{10} +(-4.09367 + 7.09045i) q^{11} +(-16.0953 - 4.31272i) q^{12} +(14.0569 + 14.0569i) q^{13} +(19.4819 + 16.9663i) q^{14} +(3.96298 + 7.70031i) q^{15} +(19.0355 + 32.9704i) q^{16} +(1.81174 + 6.76150i) q^{17} +(-10.6945 + 2.86558i) q^{18} +(-18.2350 + 10.5280i) q^{19} +(14.6784 - 45.8079i) q^{20} +(11.8995 + 2.32421i) q^{21} +(21.3660 - 21.3660i) q^{22} +(-8.43024 + 31.4621i) q^{23} +(31.1140 + 17.9637i) q^{24} +(-22.7553 + 10.3536i) q^{25} +(-36.6833 - 63.5374i) q^{26} +(-3.67423 + 3.67423i) q^{27} +(-37.6072 - 55.8639i) q^{28} +22.1129i q^{29} +(-6.77207 - 31.2357i) q^{30} +(13.7286 - 23.7786i) q^{31} +(-14.8907 - 55.5730i) q^{32} +(3.67029 - 13.6977i) q^{33} -25.8342i q^{34} +(-8.36003 + 33.9869i) q^{35} +28.8613 q^{36} +(14.9872 + 4.01580i) q^{37} +(75.0611 - 20.1126i) q^{38} +(-29.8191 - 17.2161i) q^{39} +(-56.1326 + 87.2101i) q^{40} +0.496183 q^{41} +(-40.1997 - 19.6517i) q^{42} +(-33.4554 - 33.4554i) q^{43} +(-68.2132 + 39.3829i) q^{44} +(-10.0822 - 11.1063i) q^{45} +(60.1048 - 104.105i) q^{46} +(24.1272 + 6.46488i) q^{47} +(-46.6272 - 46.6272i) q^{48} +(30.0975 + 38.6671i) q^{49} +(91.0085 - 15.1731i) q^{50} +(-6.06219 - 10.5000i) q^{51} +(49.4987 + 184.732i) q^{52} +(-34.3598 + 9.20667i) q^{53} +(16.6076 - 9.58843i) q^{54} +(38.9842 + 12.4919i) q^{55} +(47.1478 + 137.331i) q^{56} +(25.7882 - 25.7882i) q^{57} +(21.1222 - 78.8289i) q^{58} +(-15.5949 - 9.00371i) q^{59} +(-4.02242 + 83.2182i) q^{60} +(13.4849 + 23.3565i) q^{61} +(-71.6533 + 71.6533i) q^{62} +(-20.9502 + 1.44592i) q^{63} +60.0481i q^{64} +(53.7965 - 83.5806i) q^{65} +(-26.1679 + 45.3242i) q^{66} +(-1.44046 - 5.37586i) q^{67} +(-17.4297 + 65.0485i) q^{68} -56.4163i q^{69} +(62.2662 - 113.172i) q^{70} -105.010 q^{71} +(-60.1077 - 16.1058i) q^{72} +(-81.6625 + 21.8814i) q^{73} +(-49.5909 - 28.6313i) q^{74} +(33.4289 - 27.5228i) q^{75} -202.568 q^{76} +(47.5423 - 32.0051i) q^{77} +(89.8555 + 89.8555i) q^{78} +(-86.5708 + 49.9817i) q^{79} +(140.943 - 127.946i) q^{80} +(4.50000 - 7.79423i) q^{81} +(-1.76881 - 0.473951i) q^{82} +(95.6303 + 95.6303i) q^{83} +(87.9612 + 76.6034i) q^{84} +(31.1205 - 16.0162i) q^{85} +(87.3064 + 151.219i) q^{86} +(-9.91296 - 36.9957i) q^{87} +(164.041 - 43.9546i) q^{88} +(54.3480 - 31.3778i) q^{89} +(25.3325 + 49.2226i) q^{90} +(-45.1856 - 131.615i) q^{91} +(-221.576 + 221.576i) q^{92} +(-12.3087 + 45.9367i) q^{93} +(-79.8344 - 46.0924i) q^{94} +(70.7633 + 77.9515i) q^{95} +(49.8254 + 86.3000i) q^{96} +(59.0158 - 59.0158i) q^{97} +(-70.3578 - 166.591i) q^{98} +24.5620i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} + O(q^{10}) \) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} - 16q^{10} + 16q^{11} - 48q^{15} + 80q^{16} + 56q^{17} + 24q^{21} - 96q^{22} + 72q^{23} - 4q^{25} - 288q^{26} - 380q^{28} - 48q^{30} - 136q^{31} - 48q^{32} - 72q^{33} + 76q^{35} + 384q^{36} - 28q^{37} - 68q^{38} + 164q^{40} + 128q^{41} - 12q^{42} + 344q^{43} + 240q^{46} + 412q^{47} - 288q^{48} - 72q^{50} - 24q^{51} + 388q^{52} - 40q^{53} - 8q^{55} - 864q^{56} - 192q^{57} + 56q^{58} - 180q^{60} - 216q^{61} - 912q^{62} - 84q^{63} + 20q^{65} - 72q^{66} - 368q^{67} - 492q^{68} + 416q^{70} + 784q^{71} + 36q^{72} - 316q^{73} + 96q^{75} - 32q^{76} + 844q^{77} + 624q^{78} + 908q^{80} + 288q^{81} + 556q^{82} + 1408q^{83} - 536q^{85} + 1024q^{86} + 108q^{87} + 372q^{88} + 216q^{90} - 1064q^{91} - 1704q^{92} + 144q^{93} + 260q^{95} + 352q^{97} + 272q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.56483 0.955194i −1.78242 0.477597i −0.791396 0.611304i \(-0.790645\pi\)
−0.991021 + 0.133707i \(0.957312\pi\)
\(3\) −1.67303 + 0.448288i −0.557678 + 0.149429i
\(4\) 8.33154 + 4.81021i 2.08288 + 1.20255i
\(5\) −1.05941 4.88648i −0.211883 0.977295i
\(6\) 6.39228 1.06538
\(7\) −6.28878 3.07429i −0.898397 0.439185i
\(8\) −14.6673 14.6673i −1.83341 1.83341i
\(9\) 2.59808 1.50000i 0.288675 0.166667i
\(10\) −0.890898 + 18.4314i −0.0890898 + 1.84314i
\(11\) −4.09367 + 7.09045i −0.372152 + 0.644586i −0.989896 0.141793i \(-0.954713\pi\)
0.617744 + 0.786379i \(0.288047\pi\)
\(12\) −16.0953 4.31272i −1.34127 0.359393i
\(13\) 14.0569 + 14.0569i 1.08130 + 1.08130i 0.996389 + 0.0849086i \(0.0270598\pi\)
0.0849086 + 0.996389i \(0.472940\pi\)
\(14\) 19.4819 + 16.9663i 1.39156 + 1.21188i
\(15\) 3.96298 + 7.70031i 0.264199 + 0.513354i
\(16\) 19.0355 + 32.9704i 1.18972 + 2.06065i
\(17\) 1.81174 + 6.76150i 0.106573 + 0.397735i 0.998519 0.0544067i \(-0.0173267\pi\)
−0.891946 + 0.452142i \(0.850660\pi\)
\(18\) −10.6945 + 2.86558i −0.594139 + 0.159199i
\(19\) −18.2350 + 10.5280i −0.959739 + 0.554105i −0.896093 0.443867i \(-0.853606\pi\)
−0.0636460 + 0.997973i \(0.520273\pi\)
\(20\) 14.6784 45.8079i 0.733922 2.29039i
\(21\) 11.8995 + 2.32421i 0.566643 + 0.110677i
\(22\) 21.3660 21.3660i 0.971183 0.971183i
\(23\) −8.43024 + 31.4621i −0.366532 + 1.36792i 0.498800 + 0.866717i \(0.333774\pi\)
−0.865332 + 0.501199i \(0.832892\pi\)
\(24\) 31.1140 + 17.9637i 1.29642 + 0.748487i
\(25\) −22.7553 + 10.3536i −0.910211 + 0.414144i
\(26\) −36.6833 63.5374i −1.41090 2.44375i
\(27\) −3.67423 + 3.67423i −0.136083 + 0.136083i
\(28\) −37.6072 55.8639i −1.34311 1.99514i
\(29\) 22.1129i 0.762515i 0.924469 + 0.381258i \(0.124509\pi\)
−0.924469 + 0.381258i \(0.875491\pi\)
\(30\) −6.77207 31.2357i −0.225736 1.04119i
\(31\) 13.7286 23.7786i 0.442857 0.767052i −0.555043 0.831822i \(-0.687298\pi\)
0.997900 + 0.0647702i \(0.0206314\pi\)
\(32\) −14.8907 55.5730i −0.465335 1.73666i
\(33\) 3.67029 13.6977i 0.111221 0.415082i
\(34\) 25.8342i 0.759829i
\(35\) −8.36003 + 33.9869i −0.238858 + 0.971054i
\(36\) 28.8613 0.801702
\(37\) 14.9872 + 4.01580i 0.405058 + 0.108535i 0.455595 0.890187i \(-0.349427\pi\)
−0.0505367 + 0.998722i \(0.516093\pi\)
\(38\) 75.0611 20.1126i 1.97529 0.529278i
\(39\) −29.8191 17.2161i −0.764593 0.441438i
\(40\) −56.1326 + 87.2101i −1.40332 + 2.18025i
\(41\) 0.496183 0.0121020 0.00605101 0.999982i \(-0.498074\pi\)
0.00605101 + 0.999982i \(0.498074\pi\)
\(42\) −40.1997 19.6517i −0.957135 0.467899i
\(43\) −33.4554 33.4554i −0.778032 0.778032i 0.201464 0.979496i \(-0.435430\pi\)
−0.979496 + 0.201464i \(0.935430\pi\)
\(44\) −68.2132 + 39.3829i −1.55030 + 0.895066i
\(45\) −10.0822 11.1063i −0.224048 0.246807i
\(46\) 60.1048 104.105i 1.30663 2.26314i
\(47\) 24.1272 + 6.46488i 0.513346 + 0.137551i 0.506187 0.862424i \(-0.331055\pi\)
0.00715874 + 0.999974i \(0.497721\pi\)
\(48\) −46.6272 46.6272i −0.971400 0.971400i
\(49\) 30.0975 + 38.6671i 0.614234 + 0.789124i
\(50\) 91.0085 15.1731i 1.82017 0.303463i
\(51\) −6.06219 10.5000i −0.118867 0.205883i
\(52\) 49.4987 + 184.732i 0.951899 + 3.55253i
\(53\) −34.3598 + 9.20667i −0.648297 + 0.173711i −0.567959 0.823057i \(-0.692267\pi\)
−0.0803384 + 0.996768i \(0.525600\pi\)
\(54\) 16.6076 9.58843i 0.307549 0.177563i
\(55\) 38.9842 + 12.4919i 0.708804 + 0.227126i
\(56\) 47.1478 + 137.331i 0.841925 + 2.45234i
\(57\) 25.7882 25.7882i 0.452425 0.452425i
\(58\) 21.1222 78.8289i 0.364175 1.35912i
\(59\) −15.5949 9.00371i −0.264320 0.152605i 0.361984 0.932184i \(-0.382100\pi\)
−0.626304 + 0.779579i \(0.715433\pi\)
\(60\) −4.02242 + 83.2182i −0.0670404 + 1.38697i
\(61\) 13.4849 + 23.3565i 0.221064 + 0.382894i 0.955131 0.296183i \(-0.0957137\pi\)
−0.734067 + 0.679077i \(0.762380\pi\)
\(62\) −71.6533 + 71.6533i −1.15570 + 1.15570i
\(63\) −20.9502 + 1.44592i −0.332542 + 0.0229511i
\(64\) 60.0481i 0.938252i
\(65\) 53.7965 83.5806i 0.827638 1.28585i
\(66\) −26.1679 + 45.3242i −0.396484 + 0.686730i
\(67\) −1.44046 5.37586i −0.0214993 0.0802367i 0.954343 0.298714i \(-0.0965577\pi\)
−0.975842 + 0.218477i \(0.929891\pi\)
\(68\) −17.4297 + 65.0485i −0.256319 + 0.956596i
\(69\) 56.4163i 0.817627i
\(70\) 62.2662 113.172i 0.889517 1.61675i
\(71\) −105.010 −1.47902 −0.739509 0.673146i \(-0.764942\pi\)
−0.739509 + 0.673146i \(0.764942\pi\)
\(72\) −60.1077 16.1058i −0.834829 0.223692i
\(73\) −81.6625 + 21.8814i −1.11866 + 0.299745i −0.770343 0.637630i \(-0.779915\pi\)
−0.348321 + 0.937375i \(0.613248\pi\)
\(74\) −49.5909 28.6313i −0.670147 0.386909i
\(75\) 33.4289 27.5228i 0.445719 0.366971i
\(76\) −202.568 −2.66537
\(77\) 47.5423 32.0051i 0.617433 0.415651i
\(78\) 89.8555 + 89.8555i 1.15199 + 1.15199i
\(79\) −86.5708 + 49.9817i −1.09583 + 0.632679i −0.935123 0.354322i \(-0.884712\pi\)
−0.160710 + 0.987002i \(0.551378\pi\)
\(80\) 140.943 127.946i 1.76178 1.59932i
\(81\) 4.50000 7.79423i 0.0555556 0.0962250i
\(82\) −1.76881 0.473951i −0.0215708 0.00577989i
\(83\) 95.6303 + 95.6303i 1.15217 + 1.15217i 0.986116 + 0.166057i \(0.0531035\pi\)
0.166057 + 0.986116i \(0.446897\pi\)
\(84\) 87.9612 + 76.6034i 1.04716 + 0.911945i
\(85\) 31.1205 16.0162i 0.366124 0.188426i
\(86\) 87.3064 + 151.219i 1.01519 + 1.75836i
\(87\) −9.91296 36.9957i −0.113942 0.425238i
\(88\) 164.041 43.9546i 1.86410 0.499484i
\(89\) 54.3480 31.3778i 0.610651 0.352560i −0.162569 0.986697i \(-0.551978\pi\)
0.773220 + 0.634137i \(0.218645\pi\)
\(90\) 25.3325 + 49.2226i 0.281472 + 0.546917i
\(91\) −45.1856 131.615i −0.496545 1.44632i
\(92\) −221.576 + 221.576i −2.40844 + 2.40844i
\(93\) −12.3087 + 45.9367i −0.132352 + 0.493943i
\(94\) −79.8344 46.0924i −0.849302 0.490345i
\(95\) 70.7633 + 77.9515i 0.744877 + 0.820542i
\(96\) 49.8254 + 86.3000i 0.519014 + 0.898959i
\(97\) 59.0158 59.0158i 0.608410 0.608410i −0.334120 0.942530i \(-0.608439\pi\)
0.942530 + 0.334120i \(0.108439\pi\)
\(98\) −70.3578 166.591i −0.717937 1.69990i
\(99\) 24.5620i 0.248101i
\(100\) −239.390 23.1964i −2.39390 0.231964i
\(101\) 19.3636 33.5388i 0.191719 0.332067i −0.754101 0.656758i \(-0.771927\pi\)
0.945820 + 0.324691i \(0.105260\pi\)
\(102\) 11.5811 + 43.2214i 0.113541 + 0.423739i
\(103\) −8.01775 + 29.9227i −0.0778422 + 0.290511i −0.993863 0.110620i \(-0.964716\pi\)
0.916021 + 0.401131i \(0.131383\pi\)
\(104\) 412.352i 3.96493i
\(105\) −1.24931 60.6089i −0.0118982 0.577228i
\(106\) 131.281 1.23850
\(107\) 18.7482 + 5.02357i 0.175217 + 0.0469492i 0.345361 0.938470i \(-0.387757\pi\)
−0.170144 + 0.985419i \(0.554423\pi\)
\(108\) −48.2859 + 12.9382i −0.447091 + 0.119798i
\(109\) −73.5876 42.4858i −0.675116 0.389778i 0.122896 0.992419i \(-0.460782\pi\)
−0.798012 + 0.602641i \(0.794115\pi\)
\(110\) −127.040 81.7691i −1.15491 0.743355i
\(111\) −26.8742 −0.242110
\(112\) −18.3492 265.864i −0.163832 2.37379i
\(113\) −94.3686 94.3686i −0.835120 0.835120i 0.153092 0.988212i \(-0.451077\pi\)
−0.988212 + 0.153092i \(0.951077\pi\)
\(114\) −116.564 + 67.2980i −1.02249 + 0.590333i
\(115\) 162.670 + 7.86279i 1.41452 + 0.0683720i
\(116\) −106.368 + 184.235i −0.916966 + 1.58823i
\(117\) 57.6061 + 15.4355i 0.492360 + 0.131927i
\(118\) 46.9929 + 46.9929i 0.398245 + 0.398245i
\(119\) 9.39320 48.0914i 0.0789345 0.404129i
\(120\) 54.8165 171.069i 0.456804 1.42557i
\(121\) 26.9837 + 46.7371i 0.223006 + 0.386257i
\(122\) −25.7614 96.1428i −0.211159 0.788056i
\(123\) −0.830130 + 0.222433i −0.00674902 + 0.00180839i
\(124\) 228.760 132.075i 1.84484 1.06512i
\(125\) 74.6999 + 100.224i 0.597599 + 0.801795i
\(126\) 76.0650 + 14.8570i 0.603690 + 0.117913i
\(127\) −146.532 + 146.532i −1.15380 + 1.15380i −0.168010 + 0.985785i \(0.553734\pi\)
−0.985785 + 0.168010i \(0.946266\pi\)
\(128\) −2.20532 + 8.23036i −0.0172290 + 0.0642997i
\(129\) 70.9695 + 40.9743i 0.550151 + 0.317630i
\(130\) −271.611 + 246.565i −2.08932 + 1.89665i
\(131\) −57.4723 99.5449i −0.438720 0.759885i 0.558871 0.829254i \(-0.311235\pi\)
−0.997591 + 0.0693695i \(0.977901\pi\)
\(132\) 96.4680 96.4680i 0.730818 0.730818i
\(133\) 147.042 10.1484i 1.10558 0.0763041i
\(134\) 20.5399i 0.153283i
\(135\) 21.8466 + 14.0615i 0.161827 + 0.104159i
\(136\) 72.5996 125.746i 0.533820 0.924604i
\(137\) −28.1594 105.092i −0.205543 0.767096i −0.989283 0.146008i \(-0.953357\pi\)
0.783741 0.621088i \(-0.213309\pi\)
\(138\) −53.8885 + 201.115i −0.390496 + 1.45735i
\(139\) 188.782i 1.35814i 0.734071 + 0.679072i \(0.237618\pi\)
−0.734071 + 0.679072i \(0.762382\pi\)
\(140\) −233.136 + 242.950i −1.66526 + 1.73535i
\(141\) −43.2638 −0.306835
\(142\) 374.344 + 100.305i 2.63623 + 0.706375i
\(143\) −157.214 + 42.1253i −1.09940 + 0.294582i
\(144\) 98.9112 + 57.1064i 0.686883 + 0.396572i
\(145\) 108.054 23.4268i 0.745202 0.161564i
\(146\) 312.014 2.13708
\(147\) −67.6880 51.1990i −0.460463 0.348292i
\(148\) 105.549 + 105.549i 0.713170 + 0.713170i
\(149\) −102.211 + 59.0115i −0.685979 + 0.396050i −0.802104 0.597184i \(-0.796286\pi\)
0.116125 + 0.993235i \(0.462953\pi\)
\(150\) −145.458 + 66.1832i −0.969721 + 0.441221i
\(151\) −89.3003 + 154.673i −0.591393 + 1.02432i 0.402653 + 0.915353i \(0.368088\pi\)
−0.994045 + 0.108969i \(0.965245\pi\)
\(152\) 421.876 + 113.041i 2.77550 + 0.743693i
\(153\) 14.8493 + 14.8493i 0.0970541 + 0.0970541i
\(154\) −200.052 + 68.6808i −1.29904 + 0.445979i
\(155\) −130.738 41.8930i −0.843470 0.270277i
\(156\) −165.626 286.873i −1.06171 1.83893i
\(157\) −15.3559 57.3089i −0.0978081 0.365025i 0.899622 0.436669i \(-0.143842\pi\)
−0.997430 + 0.0716444i \(0.977175\pi\)
\(158\) 356.353 95.4844i 2.25540 0.604332i
\(159\) 53.3578 30.8061i 0.335583 0.193749i
\(160\) −255.780 + 131.638i −1.59863 + 0.822737i
\(161\) 149.740 171.941i 0.930059 1.06796i
\(162\) −23.4867 + 23.4867i −0.144980 + 0.144980i
\(163\) 32.5532 121.490i 0.199713 0.745338i −0.791284 0.611449i \(-0.790587\pi\)
0.990996 0.133889i \(-0.0427466\pi\)
\(164\) 4.13396 + 2.38674i 0.0252071 + 0.0145533i
\(165\) −70.8218 3.42323i −0.429223 0.0207469i
\(166\) −249.561 432.252i −1.50338 2.60393i
\(167\) −30.2982 + 30.2982i −0.181427 + 0.181427i −0.791977 0.610551i \(-0.790948\pi\)
0.610551 + 0.791977i \(0.290948\pi\)
\(168\) −140.444 208.623i −0.835973 1.24180i
\(169\) 226.191i 1.33841i
\(170\) −126.238 + 27.3691i −0.742577 + 0.160995i
\(171\) −31.5840 + 54.7051i −0.184702 + 0.319913i
\(172\) −117.807 439.662i −0.684925 2.55617i
\(173\) −9.32360 + 34.7961i −0.0538936 + 0.201134i −0.987623 0.156846i \(-0.949868\pi\)
0.933730 + 0.357979i \(0.116534\pi\)
\(174\) 141.352i 0.812369i
\(175\) 174.933 + 4.84489i 0.999617 + 0.0276851i
\(176\) −311.700 −1.77102
\(177\) 30.1270 + 8.07250i 0.170209 + 0.0456074i
\(178\) −223.713 + 59.9438i −1.25682 + 0.336763i
\(179\) 65.4777 + 37.8036i 0.365797 + 0.211193i 0.671621 0.740895i \(-0.265598\pi\)
−0.305823 + 0.952088i \(0.598932\pi\)
\(180\) −30.5761 141.030i −0.169867 0.783500i
\(181\) −182.419 −1.00784 −0.503919 0.863751i \(-0.668109\pi\)
−0.503919 + 0.863751i \(0.668109\pi\)
\(182\) 35.3608 + 512.348i 0.194290 + 2.81510i
\(183\) −33.0311 33.0311i −0.180498 0.180498i
\(184\) 585.112 337.815i 3.17996 1.83595i
\(185\) 3.74549 77.4888i 0.0202459 0.418858i
\(186\) 87.7570 152.000i 0.471812 0.817202i
\(187\) −55.3587 14.8333i −0.296036 0.0793226i
\(188\) 169.920 + 169.920i 0.903827 + 0.903827i
\(189\) 34.4021 11.8108i 0.182022 0.0624909i
\(190\) −177.800 345.477i −0.935792 1.81830i
\(191\) −7.66297 13.2727i −0.0401203 0.0694904i 0.845268 0.534343i \(-0.179441\pi\)
−0.885388 + 0.464852i \(0.846107\pi\)
\(192\) −26.9188 100.462i −0.140202 0.523242i
\(193\) −217.420 + 58.2576i −1.12653 + 0.301853i −0.773523 0.633768i \(-0.781507\pi\)
−0.353007 + 0.935621i \(0.614841\pi\)
\(194\) −266.753 + 154.010i −1.37502 + 0.793865i
\(195\) −52.5351 + 163.949i −0.269411 + 0.840766i
\(196\) 64.7611 + 466.931i 0.330414 + 2.38230i
\(197\) 261.191 261.191i 1.32584 1.32584i 0.416883 0.908960i \(-0.363122\pi\)
0.908960 0.416883i \(-0.136878\pi\)
\(198\) 23.4615 87.5596i 0.118493 0.442220i
\(199\) 57.1020 + 32.9678i 0.286945 + 0.165668i 0.636563 0.771225i \(-0.280355\pi\)
−0.349619 + 0.936892i \(0.613689\pi\)
\(200\) 485.618 + 181.899i 2.42809 + 0.909495i
\(201\) 4.81986 + 8.34824i 0.0239794 + 0.0415336i
\(202\) −101.064 + 101.064i −0.500317 + 0.500317i
\(203\) 67.9816 139.063i 0.334885 0.685041i
\(204\) 116.642i 0.571774i
\(205\) −0.525663 2.42458i −0.00256421 0.0118272i
\(206\) 57.1639 99.0107i 0.277495 0.480635i
\(207\) 25.2907 + 94.3862i 0.122177 + 0.455972i
\(208\) −195.881 + 731.039i −0.941738 + 3.51461i
\(209\) 172.393i 0.824846i
\(210\) −53.4397 + 217.254i −0.254475 + 1.03454i
\(211\) 408.766 1.93728 0.968639 0.248472i \(-0.0799283\pi\)
0.968639 + 0.248472i \(0.0799283\pi\)
\(212\) −330.556 88.5721i −1.55922 0.417793i
\(213\) 175.686 47.0748i 0.824815 0.221009i
\(214\) −62.0357 35.8164i −0.289887 0.167366i
\(215\) −128.036 + 198.922i −0.595515 + 0.925218i
\(216\) 107.782 0.498991
\(217\) −159.438 + 107.333i −0.734739 + 0.494621i
\(218\) 221.745 + 221.745i 1.01718 + 1.01718i
\(219\) 126.815 73.2166i 0.579063 0.334322i
\(220\) 264.710 + 291.599i 1.20323 + 1.32545i
\(221\) −69.5781 + 120.513i −0.314833 + 0.545307i
\(222\) 95.8022 + 25.6701i 0.431541 + 0.115631i
\(223\) −180.123 180.123i −0.807725 0.807725i 0.176564 0.984289i \(-0.443502\pi\)
−0.984289 + 0.176564i \(0.943502\pi\)
\(224\) −77.2030 + 395.264i −0.344656 + 1.76457i
\(225\) −43.5896 + 61.0324i −0.193731 + 0.271255i
\(226\) 246.268 + 426.548i 1.08968 + 1.88738i
\(227\) −56.8024 211.989i −0.250231 0.933874i −0.970682 0.240368i \(-0.922732\pi\)
0.720451 0.693506i \(-0.243935\pi\)
\(228\) 338.903 90.8087i 1.48641 0.398284i
\(229\) 292.008 168.591i 1.27515 0.736206i 0.299194 0.954192i \(-0.403282\pi\)
0.975952 + 0.217986i \(0.0699489\pi\)
\(230\) −572.380 183.411i −2.48861 0.797438i
\(231\) −65.1923 + 74.8583i −0.282218 + 0.324062i
\(232\) 324.337 324.337i 1.39800 1.39800i
\(233\) −76.1326 + 284.131i −0.326749 + 1.21945i 0.585792 + 0.810461i \(0.300783\pi\)
−0.912542 + 0.408984i \(0.865883\pi\)
\(234\) −190.612 110.050i −0.814582 0.470299i
\(235\) 6.02971 124.746i 0.0256584 0.530835i
\(236\) −86.6195 150.029i −0.367032 0.635718i
\(237\) 122.430 122.430i 0.516581 0.516581i
\(238\) −79.4218 + 162.465i −0.333705 + 0.682628i
\(239\) 191.663i 0.801937i −0.916092 0.400968i \(-0.868674\pi\)
0.916092 0.400968i \(-0.131326\pi\)
\(240\) −178.445 + 277.240i −0.743521 + 1.15517i
\(241\) −61.5720 + 106.646i −0.255486 + 0.442514i −0.965027 0.262149i \(-0.915569\pi\)
0.709542 + 0.704663i \(0.248902\pi\)
\(242\) −51.5493 192.385i −0.213014 0.794978i
\(243\) −4.03459 + 15.0573i −0.0166032 + 0.0619642i
\(244\) 259.461i 1.06337i
\(245\) 157.060 188.035i 0.641062 0.767490i
\(246\) 3.17174 0.0128932
\(247\) −404.318 108.337i −1.63692 0.438610i
\(248\) −550.129 + 147.407i −2.21826 + 0.594381i
\(249\) −202.863 117.123i −0.814709 0.470373i
\(250\) −170.559 428.636i −0.682235 1.71454i
\(251\) −21.1349 −0.0842027 −0.0421014 0.999113i \(-0.513405\pi\)
−0.0421014 + 0.999113i \(0.513405\pi\)
\(252\) −181.502 88.7280i −0.720247 0.352095i
\(253\) −188.570 188.570i −0.745335 0.745335i
\(254\) 662.329 382.396i 2.60759 1.50549i
\(255\) −44.8858 + 40.7466i −0.176023 + 0.159791i
\(256\) 135.819 235.246i 0.530545 0.918930i
\(257\) 182.539 + 48.9113i 0.710270 + 0.190316i 0.595826 0.803114i \(-0.296825\pi\)
0.114444 + 0.993430i \(0.463491\pi\)
\(258\) −213.856 213.856i −0.828900 0.828900i
\(259\) −81.9052 71.3294i −0.316236 0.275403i
\(260\) 850.248 437.582i 3.27018 1.68301i
\(261\) 33.1694 + 57.4511i 0.127086 + 0.220119i
\(262\) 109.794 + 409.758i 0.419063 + 1.56396i
\(263\) 134.776 36.1131i 0.512457 0.137312i 0.00668144 0.999978i \(-0.497873\pi\)
0.505775 + 0.862665i \(0.331207\pi\)
\(264\) −254.741 + 147.075i −0.964929 + 0.557102i
\(265\) 81.3894 + 158.144i 0.307130 + 0.596771i
\(266\) −533.875 104.276i −2.00705 0.392016i
\(267\) −76.8596 + 76.8596i −0.287864 + 0.287864i
\(268\) 13.8578 51.7180i 0.0517082 0.192978i
\(269\) 169.522 + 97.8736i 0.630194 + 0.363842i 0.780827 0.624747i \(-0.214798\pi\)
−0.150634 + 0.988590i \(0.548131\pi\)
\(270\) −64.4480 70.9947i −0.238696 0.262943i
\(271\) 123.964 + 214.711i 0.457430 + 0.792292i 0.998824 0.0484766i \(-0.0154366\pi\)
−0.541394 + 0.840769i \(0.682103\pi\)
\(272\) −188.442 + 188.442i −0.692802 + 0.692802i
\(273\) 134.599 + 199.941i 0.493035 + 0.732384i
\(274\) 401.534i 1.46545i
\(275\) 19.7410 203.729i 0.0717855 0.740834i
\(276\) 271.374 470.034i 0.983240 1.70302i
\(277\) 70.6321 + 263.603i 0.254989 + 0.951634i 0.968096 + 0.250578i \(0.0806208\pi\)
−0.713107 + 0.701055i \(0.752713\pi\)
\(278\) 180.324 672.977i 0.648646 2.42078i
\(279\) 82.3715i 0.295238i
\(280\) 621.115 375.877i 2.21827 1.34242i
\(281\) −426.012 −1.51606 −0.758028 0.652222i \(-0.773837\pi\)
−0.758028 + 0.652222i \(0.773837\pi\)
\(282\) 154.228 + 41.3253i 0.546908 + 0.146544i
\(283\) 106.533 28.5453i 0.376440 0.100867i −0.0656376 0.997844i \(-0.520908\pi\)
0.442078 + 0.896977i \(0.354241\pi\)
\(284\) −874.897 505.122i −3.08062 1.77860i
\(285\) −153.334 98.6931i −0.538014 0.346292i
\(286\) 600.679 2.10027
\(287\) −3.12038 1.52541i −0.0108724 0.00531502i
\(288\) −122.047 122.047i −0.423773 0.423773i
\(289\) 207.846 120.000i 0.719190 0.415224i
\(290\) −407.573 19.7004i −1.40542 0.0679324i
\(291\) −72.2793 + 125.191i −0.248382 + 0.430211i
\(292\) −785.628 210.508i −2.69051 0.720919i
\(293\) 224.196 + 224.196i 0.765175 + 0.765175i 0.977253 0.212078i \(-0.0680231\pi\)
−0.212078 + 0.977253i \(0.568023\pi\)
\(294\) 192.391 + 247.171i 0.654393 + 0.840717i
\(295\) −27.4750 + 85.7427i −0.0931355 + 0.290653i
\(296\) −160.920 278.722i −0.543649 0.941628i
\(297\) −11.0109 41.0931i −0.0370736 0.138361i
\(298\) 420.732 112.735i 1.41185 0.378305i
\(299\) −560.761 + 323.755i −1.87545 + 1.08279i
\(300\) 410.905 68.5071i 1.36968 0.228357i
\(301\) 107.542 + 313.245i 0.357282 + 1.04068i
\(302\) 466.083 466.083i 1.54332 1.54332i
\(303\) −17.3609 + 64.7919i −0.0572969 + 0.213835i
\(304\) −694.225 400.811i −2.28363 1.31846i
\(305\) 99.8450 90.6379i 0.327361 0.297173i
\(306\) −38.7513 67.1192i −0.126638 0.219344i
\(307\) 348.544 348.544i 1.13532 1.13532i 0.146043 0.989278i \(-0.453346\pi\)
0.989278 0.146043i \(-0.0466539\pi\)
\(308\) 550.052 37.9631i 1.78588 0.123257i
\(309\) 53.6558i 0.173643i
\(310\) 426.042 + 274.221i 1.37433 + 0.884585i
\(311\) −7.38338 + 12.7884i −0.0237408 + 0.0411202i −0.877652 0.479299i \(-0.840891\pi\)
0.853911 + 0.520419i \(0.174224\pi\)
\(312\) 184.852 + 689.879i 0.592476 + 2.21115i
\(313\) 31.2853 116.758i 0.0999530 0.373030i −0.897771 0.440463i \(-0.854814\pi\)
0.997724 + 0.0674334i \(0.0214810\pi\)
\(314\) 218.964i 0.697339i
\(315\) 29.2604 + 100.841i 0.0928900 + 0.320129i
\(316\) −961.690 −3.04332
\(317\) −300.282 80.4604i −0.947262 0.253818i −0.248062 0.968744i \(-0.579794\pi\)
−0.699200 + 0.714926i \(0.746460\pi\)
\(318\) −219.637 + 58.8516i −0.690683 + 0.185068i
\(319\) −156.791 90.5232i −0.491507 0.283772i
\(320\) 293.424 63.6158i 0.916949 0.198799i
\(321\) −33.6184 −0.104730
\(322\) −698.033 + 469.911i −2.16781 + 1.45935i
\(323\) −104.222 104.222i −0.322669 0.322669i
\(324\) 74.9838 43.2919i 0.231432 0.133617i
\(325\) −465.407 174.329i −1.43202 0.536396i
\(326\) −232.093 + 401.998i −0.711943 + 1.23312i
\(327\) 142.160 + 38.0918i 0.434741 + 0.116489i
\(328\) −7.27765 7.27765i −0.0221880 0.0221880i
\(329\) −131.856 114.830i −0.400778 0.349028i
\(330\) 249.198 + 79.8518i 0.755146 + 0.241975i
\(331\) 64.5929 + 111.878i 0.195145 + 0.338001i 0.946948 0.321387i \(-0.104149\pi\)
−0.751803 + 0.659388i \(0.770816\pi\)
\(332\) 336.745 + 1256.75i 1.01429 + 3.78539i
\(333\) 44.9615 12.0474i 0.135019 0.0361784i
\(334\) 136.949 79.0675i 0.410027 0.236729i
\(335\) −24.7429 + 12.7340i −0.0738595 + 0.0380120i
\(336\) 149.882 + 436.574i 0.446079 + 1.29933i
\(337\) −51.0347 + 51.0347i −0.151438 + 0.151438i −0.778760 0.627322i \(-0.784151\pi\)
0.627322 + 0.778760i \(0.284151\pi\)
\(338\) 216.056 806.333i 0.639220 2.38560i
\(339\) 200.186 + 115.577i 0.590519 + 0.340936i
\(340\) 336.323 + 16.2565i 0.989186 + 0.0478132i
\(341\) 112.401 + 194.684i 0.329621 + 0.570920i
\(342\) 164.846 164.846i 0.482005 0.482005i
\(343\) −70.4023 335.697i −0.205255 0.978709i
\(344\) 981.399i 2.85290i
\(345\) −275.677 + 59.7682i −0.799063 + 0.173241i
\(346\) 66.4741 115.137i 0.192122 0.332765i
\(347\) 157.007 + 585.959i 0.452470 + 1.68864i 0.695420 + 0.718603i \(0.255218\pi\)
−0.242950 + 0.970039i \(0.578115\pi\)
\(348\) 95.3669 355.914i 0.274043 1.02274i
\(349\) 82.1983i 0.235525i 0.993042 + 0.117763i \(0.0375722\pi\)
−0.993042 + 0.117763i \(0.962428\pi\)
\(350\) −618.979 184.366i −1.76851 0.526760i
\(351\) −103.296 −0.294292
\(352\) 454.995 + 121.916i 1.29260 + 0.346351i
\(353\) −141.830 + 38.0031i −0.401783 + 0.107658i −0.454051 0.890976i \(-0.650022\pi\)
0.0522678 + 0.998633i \(0.483355\pi\)
\(354\) −99.6869 57.5543i −0.281601 0.162583i
\(355\) 111.249 + 513.130i 0.313379 + 1.44544i
\(356\) 603.736 1.69589
\(357\) 5.84364 + 84.6693i 0.0163687 + 0.237169i
\(358\) −197.307 197.307i −0.551138 0.551138i
\(359\) 175.063 101.073i 0.487641 0.281539i −0.235955 0.971764i \(-0.575822\pi\)
0.723595 + 0.690225i \(0.242488\pi\)
\(360\) −15.0217 + 310.777i −0.0417269 + 0.863270i
\(361\) 41.1776 71.3218i 0.114065 0.197567i
\(362\) 650.292 + 174.245i 1.79639 + 0.481340i
\(363\) −66.0962 66.0962i −0.182083 0.182083i
\(364\) 256.633 1313.91i 0.705036 3.60965i
\(365\) 193.437 + 375.860i 0.529965 + 1.02975i
\(366\) 86.1993 + 149.302i 0.235517 + 0.407928i
\(367\) −130.259 486.132i −0.354928 1.32461i −0.880575 0.473907i \(-0.842843\pi\)
0.525647 0.850703i \(-0.323823\pi\)
\(368\) −1197.79 + 320.947i −3.25487 + 0.872139i
\(369\) 1.28912 0.744274i 0.00349355 0.00201700i
\(370\) −87.3689 + 272.657i −0.236132 + 0.736911i
\(371\) 244.385 + 47.7332i 0.658719 + 0.128661i
\(372\) −323.516 + 323.516i −0.869667 + 0.869667i
\(373\) −47.8471 + 178.568i −0.128277 + 0.478735i −0.999935 0.0113788i \(-0.996378\pi\)
0.871659 + 0.490113i \(0.163045\pi\)
\(374\) 183.176 + 105.757i 0.489775 + 0.282772i
\(375\) −169.905 134.192i −0.453079 0.357844i
\(376\) −259.059 448.703i −0.688987 1.19336i
\(377\) −310.839 + 310.839i −0.824506 + 0.824506i
\(378\) −133.919 + 9.24274i −0.354284 + 0.0244517i
\(379\) 348.414i 0.919299i 0.888100 + 0.459649i \(0.152025\pi\)
−0.888100 + 0.459649i \(0.847975\pi\)
\(380\) 214.603 + 989.842i 0.564745 + 2.60485i
\(381\) 179.464 310.841i 0.471035 0.815857i
\(382\) 14.6393 + 54.6344i 0.0383226 + 0.143022i
\(383\) −117.020 + 436.725i −0.305536 + 1.14028i 0.626947 + 0.779062i \(0.284304\pi\)
−0.932483 + 0.361214i \(0.882362\pi\)
\(384\) 14.7583i 0.0384330i
\(385\) −206.759 198.408i −0.537037 0.515345i
\(386\) 830.714 2.15211
\(387\) −137.103 36.7365i −0.354270 0.0949265i
\(388\) 775.571 207.814i 1.99889 0.535602i
\(389\) 565.646 + 326.576i 1.45410 + 0.839527i 0.998711 0.0507630i \(-0.0161653\pi\)
0.455393 + 0.890290i \(0.349499\pi\)
\(390\) 343.882 534.271i 0.881750 1.36992i
\(391\) −228.004 −0.583131
\(392\) 125.693 1008.59i 0.320646 2.57293i
\(393\) 140.778 + 140.778i 0.358213 + 0.358213i
\(394\) −1180.59 + 681.614i −2.99642 + 1.72999i
\(395\) 335.949 + 370.075i 0.850503 + 0.936898i
\(396\) −118.149 + 204.640i −0.298355 + 0.516766i
\(397\) −63.7193 17.0735i −0.160502 0.0430064i 0.177673 0.984090i \(-0.443143\pi\)
−0.338175 + 0.941083i \(0.609810\pi\)
\(398\) −172.068 172.068i −0.432333 0.432333i
\(399\) −241.457 + 82.8959i −0.605155 + 0.207759i
\(400\) −774.520 553.165i −1.93630 1.38291i
\(401\) 54.6685 + 94.6886i 0.136330 + 0.236131i 0.926105 0.377266i \(-0.123136\pi\)
−0.789775 + 0.613397i \(0.789802\pi\)
\(402\) −9.20780 34.3640i −0.0229050 0.0854826i
\(403\) 527.233 141.272i 1.30827 0.350550i
\(404\) 322.657 186.286i 0.798657 0.461105i
\(405\) −42.8537 13.7318i −0.105812 0.0339057i
\(406\) −375.176 + 430.802i −0.924078 + 1.06109i
\(407\) −89.8264 + 89.8264i −0.220704 + 0.220704i
\(408\) −65.0910 + 242.923i −0.159537 + 0.595399i
\(409\) 254.528 + 146.952i 0.622318 + 0.359295i 0.777771 0.628548i \(-0.216350\pi\)
−0.155453 + 0.987843i \(0.549684\pi\)
\(410\) −0.442048 + 9.14535i −0.00107817 + 0.0223057i
\(411\) 94.2231 + 163.199i 0.229253 + 0.397078i
\(412\) −210.735 + 210.735i −0.511492 + 0.511492i
\(413\) 70.3927 + 104.566i 0.170442 + 0.253185i
\(414\) 360.629i 0.871084i
\(415\) 365.983 568.607i 0.881887 1.37014i
\(416\) 571.865 990.499i 1.37467 2.38101i
\(417\) −84.6287 315.839i −0.202947 0.757407i
\(418\) −164.669 + 614.552i −0.393944 + 1.47022i
\(419\) 234.794i 0.560368i 0.959946 + 0.280184i \(0.0903955\pi\)
−0.959946 + 0.280184i \(0.909605\pi\)
\(420\) 281.133 510.975i 0.669365 1.21661i
\(421\) −124.297 −0.295242 −0.147621 0.989044i \(-0.547162\pi\)
−0.147621 + 0.989044i \(0.547162\pi\)
\(422\) −1457.18 390.451i −3.45304 0.925238i
\(423\) 72.3817 19.3946i 0.171115 0.0458502i
\(424\) 639.001 + 368.928i 1.50708 + 0.870112i
\(425\) −111.232 135.102i −0.261723 0.317887i
\(426\) −671.256 −1.57572
\(427\) −12.9987 188.341i −0.0304420 0.441079i
\(428\) 132.037 + 132.037i 0.308498 + 0.308498i
\(429\) 244.139 140.954i 0.569090 0.328564i
\(430\) 646.435 586.824i 1.50334 1.36471i
\(431\) 105.297 182.380i 0.244309 0.423155i −0.717628 0.696426i \(-0.754772\pi\)
0.961937 + 0.273271i \(0.0881056\pi\)
\(432\) −191.082 51.2002i −0.442319 0.118519i
\(433\) −549.109 549.109i −1.26815 1.26815i −0.947042 0.321109i \(-0.895944\pi\)
−0.321109 0.947042i \(-0.604056\pi\)
\(434\) 670.895 230.328i 1.54584 0.530711i
\(435\) −170.277 + 87.6332i −0.391440 + 0.201456i
\(436\) −408.732 707.944i −0.937459 1.62373i
\(437\) −177.507 662.466i −0.406195 1.51594i
\(438\) −522.010 + 139.872i −1.19180 + 0.319343i
\(439\) −83.0573 + 47.9532i −0.189197 + 0.109233i −0.591606 0.806227i \(-0.701506\pi\)
0.402410 + 0.915460i \(0.368173\pi\)
\(440\) −388.570 755.015i −0.883114 1.71594i
\(441\) 136.196 + 55.3138i 0.308835 + 0.125428i
\(442\) 363.148 363.148i 0.821601 0.821601i
\(443\) 25.9009 96.6633i 0.0584670 0.218202i −0.930511 0.366264i \(-0.880637\pi\)
0.988978 + 0.148062i \(0.0473035\pi\)
\(444\) −223.904 129.271i −0.504288 0.291151i
\(445\) −210.904 232.328i −0.473941 0.522085i
\(446\) 470.055 + 814.159i 1.05394 + 1.82547i
\(447\) 144.548 144.548i 0.323374 0.323374i
\(448\) 184.605 377.629i 0.412066 0.842922i
\(449\) 344.308i 0.766832i −0.923576 0.383416i \(-0.874748\pi\)
0.923576 0.383416i \(-0.125252\pi\)
\(450\) 213.687 175.934i 0.474861 0.390964i
\(451\) −2.03121 + 3.51816i −0.00450379 + 0.00780079i
\(452\) −332.302 1240.17i −0.735181 2.74373i
\(453\) 80.0644 298.805i 0.176743 0.659613i
\(454\) 809.964i 1.78406i
\(455\) −595.265 + 360.234i −1.30828 + 0.791722i
\(456\) −756.487 −1.65896
\(457\) 83.2667 + 22.3113i 0.182203 + 0.0488211i 0.348767 0.937210i \(-0.386601\pi\)
−0.166564 + 0.986031i \(0.553267\pi\)
\(458\) −1202.00 + 322.074i −2.62445 + 0.703219i
\(459\) −31.5001 18.1866i −0.0686276 0.0396222i
\(460\) 1317.47 + 847.986i 2.86406 + 1.84345i
\(461\) −618.594 −1.34185 −0.670926 0.741524i \(-0.734103\pi\)
−0.670926 + 0.741524i \(0.734103\pi\)
\(462\) 303.904 204.586i 0.657801 0.442826i
\(463\) 113.717 + 113.717i 0.245610 + 0.245610i 0.819166 0.573556i \(-0.194437\pi\)
−0.573556 + 0.819166i \(0.694437\pi\)
\(464\) −729.073 + 420.930i −1.57128 + 0.907177i
\(465\) 237.509 + 11.4802i 0.510771 + 0.0246886i
\(466\) 542.800 940.157i 1.16481 2.01750i
\(467\) −48.7023 13.0497i −0.104288 0.0279438i 0.206298 0.978489i \(-0.433858\pi\)
−0.310585 + 0.950545i \(0.600525\pi\)
\(468\) 405.699 + 405.699i 0.866879 + 0.866879i
\(469\) −7.46824 + 38.2359i −0.0159238 + 0.0815265i
\(470\) −140.652 + 438.940i −0.299259 + 0.933914i
\(471\) 51.3817 + 88.9958i 0.109091 + 0.188951i
\(472\) 96.6746 + 360.795i 0.204819 + 0.764395i
\(473\) 374.169 100.258i 0.791055 0.211963i
\(474\) −553.385 + 319.497i −1.16748 + 0.674044i
\(475\) 305.941 428.366i 0.644086 0.901823i
\(476\) 309.590 355.492i 0.650398 0.746831i
\(477\) −75.4593 + 75.4593i −0.158196 + 0.158196i
\(478\) −183.075 + 683.246i −0.383003 + 1.42938i
\(479\) −152.207 87.8766i −0.317760 0.183459i 0.332634 0.943056i \(-0.392063\pi\)
−0.650393 + 0.759597i \(0.725396\pi\)
\(480\) 368.917 334.898i 0.768578 0.697704i
\(481\) 154.223 + 267.122i 0.320630 + 0.555347i
\(482\) 321.361 321.361i 0.666725 0.666725i
\(483\) −173.440 + 354.789i −0.359089 + 0.734553i
\(484\) 519.189i 1.07270i
\(485\) −350.901 225.857i −0.723508 0.465685i
\(486\) 28.7653 49.8229i 0.0591878 0.102516i
\(487\) 65.7419 + 245.352i 0.134994 + 0.503803i 0.999998 + 0.00203876i \(0.000648959\pi\)
−0.865004 + 0.501765i \(0.832684\pi\)
\(488\) 144.790 540.364i 0.296701 1.10730i
\(489\) 217.850i 0.445501i
\(490\) −739.503 + 520.290i −1.50919 + 1.06182i
\(491\) 275.796 0.561704 0.280852 0.959751i \(-0.409383\pi\)
0.280852 + 0.959751i \(0.409383\pi\)
\(492\) −7.98620 2.13990i −0.0162321 0.00434938i
\(493\) −149.517 + 40.0629i −0.303279 + 0.0812634i
\(494\) 1337.84 + 772.405i 2.70819 + 1.56357i
\(495\) 120.022 26.0214i 0.242468 0.0525684i
\(496\) 1045.32 2.10750
\(497\) 660.386 + 322.832i 1.32875 + 0.649562i
\(498\) 611.296 + 611.296i 1.22750 + 1.22750i
\(499\) 520.379 300.441i 1.04284 0.602086i 0.122206 0.992505i \(-0.461003\pi\)
0.920637 + 0.390419i \(0.127670\pi\)
\(500\) 140.264 + 1194.35i 0.280528 + 2.38869i
\(501\) 37.1076 64.2723i 0.0740671 0.128288i
\(502\) 75.3423 + 20.1879i 0.150084 + 0.0402150i
\(503\) −513.924 513.924i −1.02172 1.02172i −0.999759 0.0219593i \(-0.993010\pi\)
−0.0219593 0.999759i \(-0.506990\pi\)
\(504\) 328.490 + 286.074i 0.651766 + 0.567608i
\(505\) −184.401 59.0884i −0.365150 0.117007i
\(506\) 492.099 + 852.340i 0.972527 + 1.68447i
\(507\) −101.399 378.425i −0.199997 0.746400i
\(508\) −1925.69 + 515.986i −3.79072 + 1.01572i
\(509\) 406.687 234.801i 0.798993 0.461299i −0.0441259 0.999026i \(-0.514050\pi\)
0.843119 + 0.537727i \(0.180717\pi\)
\(510\) 198.931 102.380i 0.390061 0.200746i
\(511\) 580.827 + 113.447i 1.13665 + 0.222010i
\(512\) −684.779 + 684.779i −1.33746 + 1.33746i
\(513\) 28.3174 105.682i 0.0551997 0.206008i
\(514\) −604.002 348.721i −1.17510 0.678446i
\(515\) 154.710 + 7.47806i 0.300409 + 0.0145205i
\(516\) 394.190 + 682.757i 0.763934 + 1.32317i
\(517\) −144.608 + 144.608i −0.279706 + 0.279706i
\(518\) 223.845 + 332.513i 0.432133 + 0.641916i
\(519\) 62.3947i 0.120221i
\(520\) −2014.95 + 436.852i −3.87490 + 0.840099i
\(521\) 72.5876 125.725i 0.139324 0.241316i −0.787917 0.615781i \(-0.788840\pi\)
0.927241 + 0.374466i \(0.122174\pi\)
\(522\) −63.3665 236.487i −0.121392 0.453040i
\(523\) 217.012 809.900i 0.414937 1.54857i −0.370026 0.929022i \(-0.620651\pi\)
0.784962 0.619543i \(-0.212682\pi\)
\(524\) 1105.82i 2.11034i
\(525\) −294.840 + 70.3146i −0.561601 + 0.133933i
\(526\) −514.949 −0.978991
\(527\) 185.652 + 49.7452i 0.352280 + 0.0943932i
\(528\) 521.484 139.731i 0.987659 0.264643i
\(529\) −460.666 265.966i −0.870824 0.502770i
\(530\) −139.081 641.501i −0.262417 1.21038i
\(531\) −54.0223 −0.101737
\(532\) 1273.90 + 622.753i 2.39456 + 1.17059i
\(533\) 6.97477 + 6.97477i 0.0130859 + 0.0130859i
\(534\) 347.408 200.576i 0.650576 0.375610i
\(535\) 4.68542 96.9347i 0.00875780 0.181186i
\(536\) −57.7216 + 99.9768i −0.107690 + 0.186524i
\(537\) −126.493 33.8938i −0.235555 0.0631169i
\(538\) −510.829 510.829i −0.949497 0.949497i
\(539\) −397.376 + 55.1141i −0.737247 + 0.102253i
\(540\) 114.377 + 222.241i 0.211809 + 0.411557i
\(541\) −225.980 391.408i −0.417708 0.723491i 0.578001 0.816036i \(-0.303833\pi\)
−0.995708 + 0.0925455i \(0.970500\pi\)
\(542\) −236.819 883.819i −0.436935 1.63066i
\(543\) 305.192 81.7760i 0.562048 0.150600i
\(544\) 348.778 201.367i 0.641137 0.370160i
\(545\) −129.646 + 404.594i −0.237883 + 0.742375i
\(546\) −288.839 841.323i −0.529009 1.54088i
\(547\) 389.492 389.492i 0.712051 0.712051i −0.254913 0.966964i \(-0.582047\pi\)
0.966964 + 0.254913i \(0.0820469\pi\)
\(548\) 270.905 1011.03i 0.494353 1.84495i
\(549\) 70.0696 + 40.4547i 0.127631 + 0.0736880i
\(550\) −264.975 + 707.405i −0.481772 + 1.28619i
\(551\) −232.805 403.230i −0.422514 0.731815i
\(552\) −827.473 + 827.473i −1.49905 + 1.49905i
\(553\) 698.083 48.1797i 1.26236 0.0871243i
\(554\) 1007.17i 1.81799i
\(555\) 28.4709 + 131.320i 0.0512990 + 0.236613i
\(556\) −908.083 + 1572.85i −1.63324 + 2.82886i
\(557\) 254.761 + 950.780i 0.457380 + 1.70697i 0.680995 + 0.732288i \(0.261547\pi\)
−0.223615 + 0.974678i \(0.571786\pi\)
\(558\) −78.6808 + 293.641i −0.141005 + 0.526238i
\(559\) 940.555i 1.68257i
\(560\) −1279.70 + 371.323i −2.28518 + 0.663077i
\(561\) 99.2666 0.176946
\(562\) 1518.66 + 406.924i 2.70224 + 0.724064i
\(563\) 831.358 222.762i 1.47666 0.395669i 0.571450 0.820637i \(-0.306381\pi\)
0.905208 + 0.424968i \(0.139715\pi\)
\(564\) −360.454 208.108i −0.639102 0.368986i
\(565\) −361.154 + 561.105i −0.639211 + 0.993106i
\(566\) −407.037 −0.719147
\(567\) −52.2612 + 35.1819i −0.0921715 + 0.0620491i
\(568\) 1540.22 + 1540.22i 2.71165 + 2.71165i
\(569\) −343.723 + 198.449i −0.604083 + 0.348768i −0.770646 0.637263i \(-0.780066\pi\)
0.166563 + 0.986031i \(0.446733\pi\)
\(570\) 452.339 + 498.288i 0.793577 + 0.874190i
\(571\) 402.947 697.924i 0.705686 1.22228i −0.260757 0.965404i \(-0.583972\pi\)
0.966443 0.256880i \(-0.0826944\pi\)
\(572\) −1512.46 405.263i −2.64417 0.708502i
\(573\) 18.7704 + 18.7704i 0.0327581 + 0.0327581i
\(574\) 9.66658 + 8.41840i 0.0168407 + 0.0146662i
\(575\) −133.913 803.212i −0.232893 1.39689i
\(576\) 90.0722 + 156.010i 0.156375 + 0.270850i
\(577\) 268.157 + 1000.77i 0.464743 + 1.73445i 0.657739 + 0.753246i \(0.271513\pi\)
−0.192996 + 0.981200i \(0.561820\pi\)
\(578\) −855.559 + 229.246i −1.48021 + 0.396620i
\(579\) 337.635 194.934i 0.583135 0.336673i
\(580\) 1012.95 + 324.584i 1.74646 + 0.559627i
\(581\) −307.402 895.394i −0.529092 1.54113i
\(582\) 377.246 377.246i 0.648188 0.648188i
\(583\) 75.3782 281.315i 0.129294 0.482530i
\(584\) 1518.71 + 876.826i 2.60053 + 1.50141i
\(585\) 14.3965 297.843i 0.0246094 0.509134i
\(586\) −585.071 1013.37i −0.998415 1.72930i
\(587\) 541.901 541.901i 0.923170 0.923170i −0.0740817 0.997252i \(-0.523603\pi\)
0.997252 + 0.0740817i \(0.0236026\pi\)
\(588\) −317.667 752.160i −0.540250 1.27918i
\(589\) 578.138i 0.981559i
\(590\) 179.845 279.414i 0.304821 0.473584i
\(591\) −319.892 + 554.070i −0.541273 + 0.937513i
\(592\) 152.885 + 570.575i 0.258252 + 0.963810i
\(593\) −205.761 + 767.912i −0.346984 + 1.29496i 0.543293 + 0.839543i \(0.317177\pi\)
−0.890277 + 0.455419i \(0.849490\pi\)
\(594\) 157.008i 0.264322i
\(595\) −244.949 + 5.04902i −0.411678 + 0.00848576i
\(596\) −1135.43 −1.90509
\(597\) −110.313 29.5582i −0.184778 0.0495112i
\(598\) 2308.27 618.499i 3.85998 1.03428i
\(599\) −357.782 206.565i −0.597299 0.344850i 0.170680 0.985327i \(-0.445404\pi\)
−0.767978 + 0.640476i \(0.778737\pi\)
\(600\) −893.997 86.6267i −1.49000 0.144378i
\(601\) −439.370 −0.731066 −0.365533 0.930798i \(-0.619113\pi\)
−0.365533 + 0.930798i \(0.619113\pi\)
\(602\) −84.1588 1219.39i −0.139799 2.02556i
\(603\) −11.8062 11.8062i −0.0195791 0.0195791i
\(604\) −1488.02 + 859.107i −2.46360 + 1.42236i
\(605\) 199.793 181.369i 0.330236 0.299783i
\(606\) 123.778 214.389i 0.204254 0.353778i
\(607\) −212.262 56.8754i −0.349690 0.0936991i 0.0796986 0.996819i \(-0.474604\pi\)
−0.429388 + 0.903120i \(0.641271\pi\)
\(608\) 856.605 + 856.605i 1.40889 + 1.40889i
\(609\) −51.3951 + 263.133i −0.0843926 + 0.432074i
\(610\) −442.508 + 227.738i −0.725422 + 0.373340i
\(611\) 248.278 + 430.029i 0.406346 + 0.703812i
\(612\) 52.2891 + 195.146i 0.0854397 + 0.318865i
\(613\) −945.946 + 253.466i −1.54314 + 0.413484i −0.927280 0.374370i \(-0.877859\pi\)
−0.615863 + 0.787853i \(0.711192\pi\)
\(614\) −1575.43 + 909.573i −2.56584 + 1.48139i
\(615\) 1.96636 + 3.82076i 0.00319734 + 0.00621262i
\(616\) −1166.75 227.889i −1.89407 0.369949i
\(617\) −56.3252 + 56.3252i −0.0912887 + 0.0912887i −0.751276 0.659988i \(-0.770561\pi\)
0.659988 + 0.751276i \(0.270561\pi\)
\(618\) −51.2517 + 191.274i −0.0829316 + 0.309505i
\(619\) −451.442 260.640i −0.729309 0.421067i 0.0888604 0.996044i \(-0.471677\pi\)
−0.818169 + 0.574977i \(0.805011\pi\)
\(620\) −887.732 977.910i −1.43183 1.57727i
\(621\) −84.6244 146.574i −0.136271 0.236029i
\(622\) 38.5359 38.5359i 0.0619548 0.0619548i
\(623\) −438.247 + 30.2466i −0.703446 + 0.0485499i
\(624\) 1310.86i 2.10074i
\(625\) 410.606 471.198i 0.656969 0.753917i
\(626\) −223.054 + 386.340i −0.356316 + 0.617157i
\(627\) 77.2816 + 288.419i 0.123256 + 0.459998i
\(628\) 147.730 551.336i 0.235239 0.877924i
\(629\) 108.611i 0.172673i
\(630\) −7.98592 387.429i −0.0126761 0.614967i
\(631\) 606.021 0.960413 0.480207 0.877155i \(-0.340562\pi\)
0.480207 + 0.877155i \(0.340562\pi\)
\(632\) 2002.85 + 536.663i 3.16907 + 0.849151i
\(633\) −683.878 + 183.245i −1.08038 + 0.289486i
\(634\) 993.601 + 573.656i 1.56719 + 0.904819i
\(635\) 871.263 + 560.787i 1.37207 + 0.883129i
\(636\) 592.736 0.931975
\(637\) −120.462 + 966.614i −0.189108 + 1.51745i
\(638\) 472.466 + 472.466i 0.740542 + 0.740542i
\(639\) −272.825 + 157.515i −0.426956 + 0.246503i
\(640\) 42.5538 + 2.05687i 0.0664903 + 0.00321387i
\(641\) 552.914 957.675i 0.862580 1.49403i −0.00685032 0.999977i \(-0.502181\pi\)
0.869430 0.494056i \(-0.164486\pi\)
\(642\) 119.844 + 32.1121i 0.186673 + 0.0500188i
\(643\) 495.423 + 495.423i 0.770487 + 0.770487i 0.978192 0.207704i \(-0.0665992\pi\)
−0.207704 + 0.978192i \(0.566599\pi\)
\(644\) 2074.63 712.253i 3.22148 1.10598i
\(645\) 125.034 390.200i 0.193851 0.604961i
\(646\) 271.982 + 471.087i 0.421025 + 0.729237i
\(647\) 200.190 + 747.117i 0.309412 + 1.15474i 0.929081 + 0.369877i \(0.120600\pi\)
−0.619669 + 0.784864i \(0.712733\pi\)
\(648\) −180.323 + 48.3174i −0.278276 + 0.0745639i
\(649\) 127.681 73.7165i 0.196735 0.113585i
\(650\) 1492.58 + 1066.01i 2.29628 + 1.64001i
\(651\) 218.630 251.045i 0.335837 0.385630i
\(652\) 855.612 855.612i 1.31229 1.31229i
\(653\) −280.108 + 1045.38i −0.428956 + 1.60089i 0.326172 + 0.945310i \(0.394241\pi\)
−0.755129 + 0.655576i \(0.772426\pi\)
\(654\) −470.393 271.581i −0.719255 0.415262i
\(655\) −425.537 + 386.296i −0.649675 + 0.589765i
\(656\) 9.44507 + 16.3593i 0.0143980 + 0.0249380i
\(657\) −179.343 + 179.343i −0.272973 + 0.272973i
\(658\) 360.359 + 535.299i 0.547658 + 0.813524i
\(659\) 388.022i 0.588805i 0.955682 + 0.294402i \(0.0951206\pi\)
−0.955682 + 0.294402i \(0.904879\pi\)
\(660\) −573.588 369.189i −0.869073 0.559377i
\(661\) −309.552 + 536.160i −0.468308 + 0.811134i −0.999344 0.0362155i \(-0.988470\pi\)
0.531036 + 0.847350i \(0.321803\pi\)
\(662\) −123.398 460.526i −0.186401 0.695658i
\(663\) 62.3820 232.813i 0.0940906 0.351151i
\(664\) 2805.28i 4.22481i
\(665\) −205.369 707.767i −0.308825 1.06431i
\(666\) −171.788 −0.257940
\(667\) −695.719 186.417i −1.04306 0.279486i
\(668\) −398.172 + 106.690i −0.596066 + 0.159715i
\(669\) 382.098 + 220.604i 0.571148 + 0.329752i
\(670\) 100.368 21.7603i 0.149803 0.0324781i
\(671\) −220.811 −0.329078
\(672\) −48.0290 695.899i −0.0714718 1.03556i
\(673\) 185.772 + 185.772i 0.276036 + 0.276036i 0.831524 0.555488i \(-0.187469\pi\)
−0.555488 + 0.831524i \(0.687469\pi\)
\(674\) 230.678 133.182i 0.342253 0.197600i
\(675\) 45.5667 121.650i 0.0675062 0.180222i
\(676\) −1088.03 + 1884.52i −1.60951 + 2.78775i
\(677\) −713.136 191.084i −1.05338 0.282252i −0.309731 0.950824i \(-0.600239\pi\)
−0.743647 + 0.668573i \(0.766906\pi\)
\(678\) −603.231 603.231i −0.889721 0.889721i
\(679\) −552.569 + 189.705i −0.813798 + 0.279389i
\(680\) −691.368 221.539i −1.01672 0.325792i
\(681\) 190.064 + 329.201i 0.279096 + 0.483409i
\(682\) −214.729 801.379i −0.314852 1.17504i
\(683\) 504.707 135.236i 0.738957 0.198003i 0.130342 0.991469i \(-0.458392\pi\)
0.608614 + 0.793466i \(0.291726\pi\)
\(684\) −526.287 + 303.852i −0.769425 + 0.444228i
\(685\) −483.698 + 248.936i −0.706129 + 0.363411i
\(686\) −69.6833 + 1263.95i −0.101579 + 1.84250i
\(687\) −412.962 + 412.962i −0.601110 + 0.601110i
\(688\) 466.198 1739.88i 0.677614 2.52889i
\(689\) −612.407 353.574i −0.888835 0.513169i
\(690\) 1039.83 + 50.2612i 1.50700 + 0.0728423i
\(691\) −301.546 522.293i −0.436391 0.755851i 0.561017 0.827804i \(-0.310410\pi\)
−0.997408 + 0.0719534i \(0.977077\pi\)
\(692\) −245.057 + 245.057i −0.354128 + 0.354128i
\(693\) 75.5109 154.465i 0.108962 0.222894i
\(694\) 2238.82i 3.22596i
\(695\) 922.479 199.998i 1.32731 0.287768i
\(696\) −397.230 + 688.023i −0.570733 + 0.988538i
\(697\) 0.898953 + 3.35494i 0.00128975 + 0.00481340i
\(698\) 78.5153 293.023i 0.112486 0.419804i
\(699\) 509.489i 0.728883i
\(700\) 1434.15 + 881.830i 2.04879 + 1.25976i
\(701\) 100.279 0.143052 0.0715259 0.997439i \(-0.477213\pi\)
0.0715259 + 0.997439i \(0.477213\pi\)
\(702\) 368.235 + 98.6682i 0.524551 + 0.140553i
\(703\) −315.570 + 84.5567i −0.448890 + 0.120280i
\(704\) −425.768 245.817i −0.604784 0.349172i
\(705\) 45.8343 + 211.407i 0.0650131 + 0.299869i
\(706\) 541.899 0.767562
\(707\) −224.882 + 151.389i −0.318079 + 0.214128i
\(708\) 212.174 + 212.174i 0.299680 + 0.299680i
\(709\) −339.531 + 196.029i −0.478888 + 0.276486i −0.719953 0.694023i \(-0.755837\pi\)
0.241065 + 0.970509i \(0.422503\pi\)
\(710\) 93.5535 1935.49i 0.131766 2.72604i
\(711\) −149.945 + 259.712i −0.210893 + 0.365278i
\(712\) −1257.36 336.910i −1.76596 0.473188i
\(713\) 632.389 + 632.389i 0.886941 + 0.886941i
\(714\) 60.0440 307.414i 0.0840953 0.430551i
\(715\) 372.399 + 723.593i 0.520837 + 1.01202i
\(716\) 363.687 + 629.924i 0.507942 + 0.879782i
\(717\) 85.9201 + 320.658i 0.119833 + 0.447222i
\(718\) −720.614 + 193.088i −1.00364 + 0.268925i
\(719\) −1001.31 + 578.104i −1.39264 + 0.804039i −0.993607 0.112898i \(-0.963987\pi\)
−0.399031 + 0.916938i \(0.630653\pi\)
\(720\) 174.261 543.826i 0.242029 0.755314i
\(721\) 142.413 163.528i 0.197521 0.226807i
\(722\) −214.918 + 214.918i −0.297670 + 0.297670i
\(723\) 55.2040 206.024i 0.0763540 0.284957i
\(724\) −1519.83 877.472i −2.09921 1.21198i
\(725\) −228.949 503.186i −0.315791 0.694050i
\(726\) 172.487 + 298.757i 0.237586 + 0.411511i
\(727\) −27.8958 + 27.8958i −0.0383712 + 0.0383712i −0.726032 0.687661i \(-0.758638\pi\)
0.687661 + 0.726032i \(0.258638\pi\)
\(728\) −1267.69 + 2593.19i −1.74133 + 3.56208i
\(729\) 27.0000i 0.0370370i
\(730\) −330.552 1524.65i −0.452811 2.08856i
\(731\) 165.596 286.821i 0.226534 0.392368i
\(732\) −116.313 434.087i −0.158898 0.593015i
\(733\) −209.185 + 780.690i −0.285382 + 1.06506i 0.663177 + 0.748463i \(0.269208\pi\)
−0.948559 + 0.316599i \(0.897459\pi\)
\(734\) 1857.40i 2.53052i
\(735\) −178.473 + 384.997i −0.242820 + 0.523805i
\(736\) 1873.97 2.54616
\(737\) 44.0140 + 11.7935i 0.0597205 + 0.0160021i
\(738\) −5.30642 + 1.42185i −0.00719028 + 0.00192663i
\(739\) 452.698 + 261.365i 0.612582 + 0.353674i 0.773975 0.633216i \(-0.218265\pi\)
−0.161393 + 0.986890i \(0.551599\pi\)
\(740\) 403.943 627.584i 0.545869 0.848086i
\(741\) 725.003 0.978412
\(742\) −825.597 403.596i −1.11266 0.543930i
\(743\) −34.1788 34.1788i −0.0460011 0.0460011i 0.683732 0.729733i \(-0.260356\pi\)
−0.729733 + 0.683732i \(0.760356\pi\)
\(744\) 854.303 493.232i 1.14826 0.662946i
\(745\) 396.642 + 436.934i 0.532405 + 0.586488i
\(746\) 341.134 590.862i 0.457284 0.792040i
\(747\) 391.900 + 105.009i 0.524632 + 0.140575i
\(748\) −389.872 389.872i −0.521219 0.521219i
\(749\) −102.459 89.2296i −0.136795 0.119132i
\(750\) 477.503 + 640.663i 0.636670 + 0.854217i
\(751\) 352.812 + 611.088i 0.469790 + 0.813700i 0.999403 0.0345394i \(-0.0109964\pi\)
−0.529614 + 0.848239i \(0.677663\pi\)
\(752\) 246.124 + 918.547i 0.327292 + 1.22147i
\(753\) 35.3594 9.47451i 0.0469580 0.0125823i
\(754\) 1405.00 811.177i 1.86339 1.07583i
\(755\) 850.410 + 272.501i 1.12637 + 0.360929i
\(756\) 343.435 + 67.0797i 0.454279 + 0.0887297i
\(757\) 395.694 395.694i 0.522713 0.522713i −0.395677 0.918390i \(-0.629490\pi\)
0.918390 + 0.395677i \(0.129490\pi\)
\(758\) 332.803 1242.04i 0.439054 1.63857i
\(759\) 400.017 + 230.950i 0.527031 + 0.304282i
\(760\) 105.432 2181.24i 0.138727 2.87006i
\(761\) −692.529 1199.50i −0.910025 1.57621i −0.814026