Properties

Label 105.3.v.a.67.4
Level 105
Weight 3
Character 105.67
Analytic conductor 2.861
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 67.4
Character \(\chi\) \(=\) 105.67
Dual form 105.3.v.a.58.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.686107 + 2.56059i) q^{2} +(-0.448288 - 1.67303i) q^{3} +(-2.62176 - 1.51367i) q^{4} +(3.50926 + 3.56161i) q^{5} +4.59152 q^{6} +(6.99820 + 0.158915i) q^{7} +(-1.82323 + 1.82323i) q^{8} +(-2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(-0.686107 + 2.56059i) q^{2} +(-0.448288 - 1.67303i) q^{3} +(-2.62176 - 1.51367i) q^{4} +(3.50926 + 3.56161i) q^{5} +4.59152 q^{6} +(6.99820 + 0.158915i) q^{7} +(-1.82323 + 1.82323i) q^{8} +(-2.59808 + 1.50000i) q^{9} +(-11.5275 + 6.54211i) q^{10} +(-8.05696 + 13.9551i) q^{11} +(-1.35712 + 5.06484i) q^{12} +(-0.148341 + 0.148341i) q^{13} +(-5.20843 + 17.8104i) q^{14} +(4.38554 - 7.46773i) q^{15} +(-9.47228 - 16.4065i) q^{16} +(19.4170 - 5.20277i) q^{17} +(-2.05832 - 7.68176i) q^{18} +(-10.9984 + 6.34991i) q^{19} +(-3.80931 - 14.6495i) q^{20} +(-2.87134 - 11.7794i) q^{21} +(-30.2052 - 30.2052i) q^{22} +(15.6270 + 4.18723i) q^{23} +(3.86765 + 2.23299i) q^{24} +(-0.370192 + 24.9973i) q^{25} +(-0.278063 - 0.481619i) q^{26} +(3.67423 + 3.67423i) q^{27} +(-18.1070 - 11.0096i) q^{28} -21.7589i q^{29} +(16.1128 + 16.3532i) q^{30} +(7.17206 - 12.4224i) q^{31} +(38.5469 - 10.3286i) q^{32} +(26.9591 + 7.22367i) q^{33} +53.2886i q^{34} +(23.9925 + 25.4825i) q^{35} +9.08203 q^{36} +(16.8501 - 62.8854i) q^{37} +(-8.71343 - 32.5190i) q^{38} +(0.314680 + 0.181680i) q^{39} +(-12.8918 - 0.0954540i) q^{40} +2.26939 q^{41} +(32.1323 + 0.729660i) q^{42} +(35.1154 - 35.1154i) q^{43} +(42.2467 - 24.3912i) q^{44} +(-14.4597 - 3.98946i) q^{45} +(-21.4435 + 37.1413i) q^{46} +(-14.9626 + 55.8413i) q^{47} +(-23.2023 + 23.2023i) q^{48} +(48.9495 + 2.22423i) q^{49} +(-63.7536 - 18.0987i) q^{50} +(-17.4088 - 30.1529i) q^{51} +(0.613455 - 0.164375i) q^{52} +(-27.1491 - 101.322i) q^{53} +(-11.9291 + 6.88728i) q^{54} +(-77.9765 + 20.2762i) q^{55} +(-13.0490 + 12.4696i) q^{56} +(15.5540 + 15.5540i) q^{57} +(55.7156 + 14.9290i) q^{58} +(-59.5129 - 34.3598i) q^{59} +(-22.8015 + 12.9403i) q^{60} +(17.3661 + 30.0790i) q^{61} +(26.8877 + 26.8877i) q^{62} +(-18.4202 + 10.0844i) q^{63} +30.0109i q^{64} +(-1.04890 - 0.00776634i) q^{65} +(-36.9937 + 64.0749i) q^{66} +(-31.9656 + 8.56515i) q^{67} +(-58.7819 - 15.7506i) q^{68} -28.0215i q^{69} +(-81.7117 + 43.9511i) q^{70} -59.5469 q^{71} +(2.00204 - 7.47172i) q^{72} +(-8.96382 - 33.4534i) q^{73} +(149.462 + 86.2922i) q^{74} +(41.9872 - 10.5866i) q^{75} +38.4467 q^{76} +(-58.6018 + 96.3799i) q^{77} +(-0.681112 + 0.681112i) q^{78} +(-2.87256 + 1.65847i) q^{79} +(25.1928 - 91.3112i) q^{80} +(4.50000 - 7.79423i) q^{81} +(-1.55704 + 5.81096i) q^{82} +(4.48322 - 4.48322i) q^{83} +(-10.3023 + 35.2291i) q^{84} +(86.6696 + 50.8980i) q^{85} +(65.8230 + 114.009i) q^{86} +(-36.4034 + 9.75426i) q^{87} +(-10.7536 - 40.1329i) q^{88} +(123.113 - 71.0793i) q^{89} +(20.1363 - 34.2882i) q^{90} +(-1.06170 + 1.01455i) q^{91} +(-34.6320 - 34.6320i) q^{92} +(-23.9982 - 6.43029i) q^{93} +(-132.720 - 76.6262i) q^{94} +(-61.2121 - 16.8885i) q^{95} +(-34.5602 - 59.8600i) q^{96} +(113.195 + 113.195i) q^{97} +(-39.2799 + 123.813i) q^{98} -48.3417i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} + O(q^{10}) \) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} - 16q^{10} + 16q^{11} - 48q^{15} + 80q^{16} + 56q^{17} + 24q^{21} - 96q^{22} + 72q^{23} - 4q^{25} - 288q^{26} - 380q^{28} - 48q^{30} - 136q^{31} - 48q^{32} - 72q^{33} + 76q^{35} + 384q^{36} - 28q^{37} - 68q^{38} + 164q^{40} + 128q^{41} - 12q^{42} + 344q^{43} + 240q^{46} + 412q^{47} - 288q^{48} - 72q^{50} - 24q^{51} + 388q^{52} - 40q^{53} - 8q^{55} - 864q^{56} - 192q^{57} + 56q^{58} - 180q^{60} - 216q^{61} - 912q^{62} - 84q^{63} + 20q^{65} - 72q^{66} - 368q^{67} - 492q^{68} + 416q^{70} + 784q^{71} + 36q^{72} - 316q^{73} + 96q^{75} - 32q^{76} + 844q^{77} + 624q^{78} + 908q^{80} + 288q^{81} + 556q^{82} + 1408q^{83} - 536q^{85} + 1024q^{86} + 108q^{87} + 372q^{88} + 216q^{90} - 1064q^{91} - 1704q^{92} + 144q^{93} + 260q^{95} + 352q^{97} + 272q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.686107 + 2.56059i −0.343053 + 1.28029i 0.551816 + 0.833966i \(0.313935\pi\)
−0.894870 + 0.446327i \(0.852732\pi\)
\(3\) −0.448288 1.67303i −0.149429 0.557678i
\(4\) −2.62176 1.51367i −0.655439 0.378418i
\(5\) 3.50926 + 3.56161i 0.701852 + 0.712323i
\(6\) 4.59152 0.765253
\(7\) 6.99820 + 0.158915i 0.999742 + 0.0227021i
\(8\) −1.82323 + 1.82323i −0.227903 + 0.227903i
\(9\) −2.59808 + 1.50000i −0.288675 + 0.166667i
\(10\) −11.5275 + 6.54211i −1.15275 + 0.654211i
\(11\) −8.05696 + 13.9551i −0.732451 + 1.26864i 0.223382 + 0.974731i \(0.428290\pi\)
−0.955833 + 0.293911i \(0.905043\pi\)
\(12\) −1.35712 + 5.06484i −0.113093 + 0.422070i
\(13\) −0.148341 + 0.148341i −0.0114109 + 0.0114109i −0.712789 0.701378i \(-0.752568\pi\)
0.701378 + 0.712789i \(0.252568\pi\)
\(14\) −5.20843 + 17.8104i −0.372030 + 1.27217i
\(15\) 4.38554 7.46773i 0.292369 0.497849i
\(16\) −9.47228 16.4065i −0.592018 1.02540i
\(17\) 19.4170 5.20277i 1.14218 0.306045i 0.362351 0.932042i \(-0.381974\pi\)
0.779826 + 0.625996i \(0.215308\pi\)
\(18\) −2.05832 7.68176i −0.114351 0.426764i
\(19\) −10.9984 + 6.34991i −0.578861 + 0.334206i −0.760681 0.649126i \(-0.775135\pi\)
0.181819 + 0.983332i \(0.441801\pi\)
\(20\) −3.80931 14.6495i −0.190465 0.732477i
\(21\) −2.87134 11.7794i −0.136730 0.560926i
\(22\) −30.2052 30.2052i −1.37296 1.37296i
\(23\) 15.6270 + 4.18723i 0.679433 + 0.182054i 0.582000 0.813189i \(-0.302270\pi\)
0.0974328 + 0.995242i \(0.468937\pi\)
\(24\) 3.86765 + 2.23299i 0.161152 + 0.0930411i
\(25\) −0.370192 + 24.9973i −0.0148077 + 0.999890i
\(26\) −0.278063 0.481619i −0.0106947 0.0185238i
\(27\) 3.67423 + 3.67423i 0.136083 + 0.136083i
\(28\) −18.1070 11.0096i −0.646679 0.393200i
\(29\) 21.7589i 0.750308i −0.926962 0.375154i \(-0.877590\pi\)
0.926962 0.375154i \(-0.122410\pi\)
\(30\) 16.1128 + 16.3532i 0.537094 + 0.545107i
\(31\) 7.17206 12.4224i 0.231357 0.400721i −0.726851 0.686795i \(-0.759017\pi\)
0.958208 + 0.286074i \(0.0923503\pi\)
\(32\) 38.5469 10.3286i 1.20459 0.322769i
\(33\) 26.9591 + 7.22367i 0.816943 + 0.218899i
\(34\) 53.2886i 1.56731i
\(35\) 23.9925 + 25.4825i 0.685500 + 0.728073i
\(36\) 9.08203 0.252279
\(37\) 16.8501 62.8854i 0.455408 1.69960i −0.231479 0.972840i \(-0.574356\pi\)
0.686886 0.726765i \(-0.258977\pi\)
\(38\) −8.71343 32.5190i −0.229301 0.855763i
\(39\) 0.314680 + 0.181680i 0.00806871 + 0.00465847i
\(40\) −12.8918 0.0954540i −0.322295 0.00238635i
\(41\) 2.26939 0.0553509 0.0276754 0.999617i \(-0.491190\pi\)
0.0276754 + 0.999617i \(0.491190\pi\)
\(42\) 32.1323 + 0.729660i 0.765056 + 0.0173729i
\(43\) 35.1154 35.1154i 0.816636 0.816636i −0.168983 0.985619i \(-0.554048\pi\)
0.985619 + 0.168983i \(0.0540482\pi\)
\(44\) 42.2467 24.3912i 0.960153 0.554345i
\(45\) −14.4597 3.98946i −0.321328 0.0886546i
\(46\) −21.4435 + 37.1413i −0.466164 + 0.807419i
\(47\) −14.9626 + 55.8413i −0.318354 + 1.18811i 0.602472 + 0.798140i \(0.294182\pi\)
−0.920826 + 0.389973i \(0.872484\pi\)
\(48\) −23.2023 + 23.2023i −0.483380 + 0.483380i
\(49\) 48.9495 + 2.22423i 0.998969 + 0.0453925i
\(50\) −63.7536 18.0987i −1.27507 0.361974i
\(51\) −17.4088 30.1529i −0.341349 0.591234i
\(52\) 0.613455 0.164375i 0.0117972 0.00316105i
\(53\) −27.1491 101.322i −0.512248 1.91173i −0.395157 0.918613i \(-0.629310\pi\)
−0.117090 0.993121i \(-0.537357\pi\)
\(54\) −11.9291 + 6.88728i −0.220909 + 0.127542i
\(55\) −77.9765 + 20.2762i −1.41775 + 0.368657i
\(56\) −13.0490 + 12.4696i −0.233018 + 0.222671i
\(57\) 15.5540 + 15.5540i 0.272878 + 0.272878i
\(58\) 55.7156 + 14.9290i 0.960614 + 0.257396i
\(59\) −59.5129 34.3598i −1.00869 0.582370i −0.0978847 0.995198i \(-0.531208\pi\)
−0.910809 + 0.412828i \(0.864541\pi\)
\(60\) −22.8015 + 12.9403i −0.380025 + 0.215672i
\(61\) 17.3661 + 30.0790i 0.284691 + 0.493099i 0.972534 0.232760i \(-0.0747758\pi\)
−0.687843 + 0.725859i \(0.741442\pi\)
\(62\) 26.8877 + 26.8877i 0.433673 + 0.433673i
\(63\) −18.4202 + 10.0844i −0.292384 + 0.160070i
\(64\) 30.0109i 0.468920i
\(65\) −1.04890 0.00776634i −0.0161370 0.000119482i
\(66\) −36.9937 + 64.0749i −0.560510 + 0.970832i
\(67\) −31.9656 + 8.56515i −0.477098 + 0.127838i −0.489351 0.872087i \(-0.662766\pi\)
0.0122529 + 0.999925i \(0.496100\pi\)
\(68\) −58.7819 15.7506i −0.864440 0.231626i
\(69\) 28.0215i 0.406109i
\(70\) −81.7117 + 43.9511i −1.16731 + 0.627873i
\(71\) −59.5469 −0.838689 −0.419345 0.907827i \(-0.637740\pi\)
−0.419345 + 0.907827i \(0.637740\pi\)
\(72\) 2.00204 7.47172i 0.0278061 0.103774i
\(73\) −8.96382 33.4534i −0.122792 0.458266i 0.876959 0.480565i \(-0.159568\pi\)
−0.999751 + 0.0222985i \(0.992902\pi\)
\(74\) 149.462 + 86.2922i 2.01976 + 1.16611i
\(75\) 41.9872 10.5866i 0.559829 0.141155i
\(76\) 38.4467 0.505878
\(77\) −58.6018 + 96.3799i −0.761063 + 1.25169i
\(78\) −0.681112 + 0.681112i −0.00873221 + 0.00873221i
\(79\) −2.87256 + 1.65847i −0.0363615 + 0.0209933i −0.518071 0.855338i \(-0.673350\pi\)
0.481709 + 0.876331i \(0.340016\pi\)
\(80\) 25.1928 91.3112i 0.314910 1.14139i
\(81\) 4.50000 7.79423i 0.0555556 0.0962250i
\(82\) −1.55704 + 5.81096i −0.0189883 + 0.0708653i
\(83\) 4.48322 4.48322i 0.0540147 0.0540147i −0.679583 0.733598i \(-0.737839\pi\)
0.733598 + 0.679583i \(0.237839\pi\)
\(84\) −10.3023 + 35.2291i −0.122646 + 0.419394i
\(85\) 86.6696 + 50.8980i 1.01964 + 0.598800i
\(86\) 65.8230 + 114.009i 0.765384 + 1.32568i
\(87\) −36.4034 + 9.75426i −0.418430 + 0.112118i
\(88\) −10.7536 40.1329i −0.122200 0.456056i
\(89\) 123.113 71.0793i 1.38329 0.798644i 0.390744 0.920500i \(-0.372218\pi\)
0.992548 + 0.121856i \(0.0388846\pi\)
\(90\) 20.1363 34.2882i 0.223736 0.380980i
\(91\) −1.06170 + 1.01455i −0.0116670 + 0.0111489i
\(92\) −34.6320 34.6320i −0.376435 0.376435i
\(93\) −23.9982 6.43029i −0.258045 0.0691429i
\(94\) −132.720 76.6262i −1.41192 0.815172i
\(95\) −61.2121 16.8885i −0.644337 0.177773i
\(96\) −34.5602 59.8600i −0.360002 0.623542i
\(97\) 113.195 + 113.195i 1.16696 + 1.16696i 0.982919 + 0.184038i \(0.0589168\pi\)
0.184038 + 0.982919i \(0.441083\pi\)
\(98\) −39.2799 + 123.813i −0.400816 + 1.26340i
\(99\) 48.3417i 0.488300i
\(100\) 38.8082 64.9764i 0.388082 0.649764i
\(101\) −9.53745 + 16.5193i −0.0944302 + 0.163558i −0.909371 0.415987i \(-0.863436\pi\)
0.814940 + 0.579545i \(0.196770\pi\)
\(102\) 89.1535 23.8886i 0.874054 0.234202i
\(103\) 57.5936 + 15.4322i 0.559162 + 0.149827i 0.527321 0.849666i \(-0.323196\pi\)
0.0318405 + 0.999493i \(0.489863\pi\)
\(104\) 0.540920i 0.00520115i
\(105\) 31.8776 51.5637i 0.303596 0.491083i
\(106\) 278.071 2.62331
\(107\) −23.2260 + 86.6807i −0.217066 + 0.810100i 0.768363 + 0.640014i \(0.221071\pi\)
−0.985429 + 0.170086i \(0.945595\pi\)
\(108\) −4.07136 15.1945i −0.0376978 0.140690i
\(109\) 68.1153 + 39.3264i 0.624911 + 0.360792i 0.778778 0.627299i \(-0.215840\pi\)
−0.153868 + 0.988091i \(0.549173\pi\)
\(110\) 1.58138 213.577i 0.0143762 1.94161i
\(111\) −112.763 −1.01588
\(112\) −63.6817 116.321i −0.568586 1.03858i
\(113\) −158.518 + 158.518i −1.40281 + 1.40281i −0.611801 + 0.791012i \(0.709555\pi\)
−0.791012 + 0.611801i \(0.790445\pi\)
\(114\) −50.4992 + 29.1557i −0.442975 + 0.255752i
\(115\) 39.9258 + 70.3513i 0.347181 + 0.611750i
\(116\) −32.9359 + 57.0466i −0.283930 + 0.491781i
\(117\) 0.162890 0.607914i 0.00139222 0.00519585i
\(118\) 128.813 128.813i 1.09164 1.09164i
\(119\) 136.711 33.3244i 1.14883 0.280037i
\(120\) 5.61954 + 21.6112i 0.0468295 + 0.180093i
\(121\) −69.3291 120.082i −0.572968 0.992410i
\(122\) −88.9350 + 23.8301i −0.728975 + 0.195328i
\(123\) −1.01734 3.79676i −0.00827104 0.0308679i
\(124\) −37.6068 + 21.7123i −0.303280 + 0.175099i
\(125\) −90.3297 + 86.4034i −0.722638 + 0.691227i
\(126\) −13.1838 54.0855i −0.104633 0.429250i
\(127\) −84.0175 84.0175i −0.661555 0.661555i 0.294191 0.955747i \(-0.404950\pi\)
−0.955747 + 0.294191i \(0.904950\pi\)
\(128\) 77.3421 + 20.7238i 0.604235 + 0.161904i
\(129\) −74.4909 43.0074i −0.577449 0.333390i
\(130\) 0.739546 2.68048i 0.00568882 0.0206191i
\(131\) −93.7670 162.409i −0.715779 1.23976i −0.962658 0.270719i \(-0.912739\pi\)
0.246880 0.969046i \(-0.420595\pi\)
\(132\) −59.7459 59.7459i −0.452621 0.452621i
\(133\) −77.9778 + 42.6901i −0.586299 + 0.320978i
\(134\) 87.7272i 0.654681i
\(135\) −0.192363 + 25.9800i −0.00142491 + 0.192445i
\(136\) −25.9158 + 44.8874i −0.190557 + 0.330054i
\(137\) 62.4691 16.7385i 0.455979 0.122179i −0.0235169 0.999723i \(-0.507486\pi\)
0.479495 + 0.877544i \(0.340820\pi\)
\(138\) 71.7515 + 19.2257i 0.519938 + 0.139317i
\(139\) 93.0694i 0.669564i 0.942296 + 0.334782i \(0.108663\pi\)
−0.942296 + 0.334782i \(0.891337\pi\)
\(140\) −24.3303 103.126i −0.173788 0.736613i
\(141\) 100.132 0.710155
\(142\) 40.8556 152.475i 0.287715 1.07377i
\(143\) −0.874933 3.26529i −0.00611841 0.0228342i
\(144\) 49.2194 + 28.4169i 0.341802 + 0.197339i
\(145\) 77.4969 76.3578i 0.534462 0.526605i
\(146\) 91.8105 0.628839
\(147\) −18.2222 82.8912i −0.123961 0.563886i
\(148\) −139.365 + 139.365i −0.941653 + 0.941653i
\(149\) −60.2245 + 34.7706i −0.404191 + 0.233360i −0.688291 0.725435i \(-0.741639\pi\)
0.284099 + 0.958795i \(0.408305\pi\)
\(150\) −1.69974 + 114.775i −0.0113316 + 0.765169i
\(151\) 7.35747 12.7435i 0.0487250 0.0843941i −0.840634 0.541603i \(-0.817818\pi\)
0.889359 + 0.457209i \(0.151151\pi\)
\(152\) 8.47519 31.6298i 0.0557578 0.208091i
\(153\) −42.6427 + 42.6427i −0.278710 + 0.278710i
\(154\) −206.582 216.182i −1.34144 1.40378i
\(155\) 69.4123 18.0492i 0.447821 0.116447i
\(156\) −0.550009 0.952643i −0.00352570 0.00610669i
\(157\) 111.548 29.8891i 0.710494 0.190376i 0.114568 0.993415i \(-0.463452\pi\)
0.595926 + 0.803039i \(0.296785\pi\)
\(158\) −2.27578 8.49333i −0.0144037 0.0537553i
\(159\) −157.344 + 90.8428i −0.989587 + 0.571338i
\(160\) 172.058 + 101.043i 1.07536 + 0.631521i
\(161\) 108.695 + 31.7864i 0.675125 + 0.197431i
\(162\) 16.8703 + 16.8703i 0.104138 + 0.104138i
\(163\) 102.160 + 27.3737i 0.626750 + 0.167937i 0.558194 0.829710i \(-0.311494\pi\)
0.0685554 + 0.997647i \(0.478161\pi\)
\(164\) −5.94978 3.43510i −0.0362791 0.0209458i
\(165\) 68.8786 + 121.368i 0.417446 + 0.735562i
\(166\) 8.40370 + 14.5556i 0.0506247 + 0.0876846i
\(167\) −15.1287 15.1287i −0.0905911 0.0905911i 0.660359 0.750950i \(-0.270404\pi\)
−0.750950 + 0.660359i \(0.770404\pi\)
\(168\) 26.7117 + 16.2415i 0.158998 + 0.0966756i
\(169\) 168.956i 0.999740i
\(170\) −189.793 + 187.003i −1.11643 + 1.10002i
\(171\) 19.0497 32.9951i 0.111402 0.192954i
\(172\) −145.217 + 38.9108i −0.844285 + 0.226225i
\(173\) 157.352 + 42.1625i 0.909552 + 0.243714i 0.683114 0.730312i \(-0.260625\pi\)
0.226438 + 0.974026i \(0.427292\pi\)
\(174\) 99.9065i 0.574175i
\(175\) −6.56311 + 174.877i −0.0375035 + 0.999296i
\(176\) 305.271 1.73450
\(177\) −30.8062 + 114.970i −0.174046 + 0.649549i
\(178\) 97.5360 + 364.009i 0.547955 + 2.04500i
\(179\) −117.423 67.7943i −0.655996 0.378739i 0.134754 0.990879i \(-0.456976\pi\)
−0.790750 + 0.612140i \(0.790309\pi\)
\(180\) 31.8712 + 32.3467i 0.177062 + 0.179704i
\(181\) −232.181 −1.28277 −0.641383 0.767221i \(-0.721639\pi\)
−0.641383 + 0.767221i \(0.721639\pi\)
\(182\) −1.86940 3.41465i −0.0102714 0.0187618i
\(183\) 42.5382 42.5382i 0.232449 0.232449i
\(184\) −36.1258 + 20.8572i −0.196336 + 0.113354i
\(185\) 283.105 160.668i 1.53030 0.868474i
\(186\) 32.9306 57.0375i 0.177046 0.306653i
\(187\) −83.8370 + 312.884i −0.448326 + 1.67318i
\(188\) 123.754 123.754i 0.658265 0.658265i
\(189\) 25.1291 + 26.2969i 0.132958 + 0.139137i
\(190\) 85.2424 145.151i 0.448644 0.763955i
\(191\) −50.1041 86.7828i −0.262325 0.454360i 0.704534 0.709670i \(-0.251156\pi\)
−0.966859 + 0.255310i \(0.917823\pi\)
\(192\) 50.2092 13.4535i 0.261506 0.0700704i
\(193\) −56.2382 209.884i −0.291390 1.08748i −0.944042 0.329824i \(-0.893011\pi\)
0.652653 0.757657i \(-0.273656\pi\)
\(194\) −367.509 + 212.181i −1.89438 + 1.09372i
\(195\) 0.457217 + 1.75833i 0.00234470 + 0.00901708i
\(196\) −124.967 79.9248i −0.637586 0.407780i
\(197\) −173.120 173.120i −0.878782 0.878782i 0.114626 0.993409i \(-0.463433\pi\)
−0.993409 + 0.114626i \(0.963433\pi\)
\(198\) 123.783 + 33.1676i 0.625168 + 0.167513i
\(199\) 9.01589 + 5.20533i 0.0453060 + 0.0261574i 0.522482 0.852650i \(-0.325006\pi\)
−0.477176 + 0.878808i \(0.658340\pi\)
\(200\) −44.9007 46.2506i −0.224504 0.231253i
\(201\) 28.6596 + 49.6398i 0.142585 + 0.246964i
\(202\) −35.7555 35.7555i −0.177007 0.177007i
\(203\) 3.45782 152.273i 0.0170336 0.750115i
\(204\) 105.405i 0.516690i
\(205\) 7.96387 + 8.08268i 0.0388481 + 0.0394277i
\(206\) −79.0308 + 136.885i −0.383645 + 0.664492i
\(207\) −46.8809 + 12.5617i −0.226478 + 0.0606845i
\(208\) 3.83889 + 1.02863i 0.0184562 + 0.00494533i
\(209\) 204.644i 0.979157i
\(210\) 110.162 + 117.004i 0.524581 + 0.557160i
\(211\) −215.645 −1.02202 −0.511008 0.859576i \(-0.670728\pi\)
−0.511008 + 0.859576i \(0.670728\pi\)
\(212\) −82.1897 + 306.736i −0.387687 + 1.44687i
\(213\) 26.6942 + 99.6240i 0.125325 + 0.467718i
\(214\) −206.018 118.944i −0.962700 0.555815i
\(215\) 248.296 + 1.83845i 1.15487 + 0.00855091i
\(216\) −13.3979 −0.0620274
\(217\) 52.1655 85.7944i 0.240394 0.395366i
\(218\) −147.433 + 147.433i −0.676298 + 0.676298i
\(219\) −51.9503 + 29.9935i −0.237216 + 0.136957i
\(220\) 235.127 + 64.8717i 1.06876 + 0.294871i
\(221\) −2.10856 + 3.65213i −0.00954099 + 0.0165255i
\(222\) 77.3675 288.739i 0.348502 1.30063i
\(223\) −134.520 + 134.520i −0.603230 + 0.603230i −0.941168 0.337938i \(-0.890270\pi\)
0.337938 + 0.941168i \(0.390270\pi\)
\(224\) 271.400 66.1560i 1.21161 0.295339i
\(225\) −36.5341 65.5001i −0.162374 0.291111i
\(226\) −297.138 514.659i −1.31477 2.27725i
\(227\) −47.3332 + 12.6829i −0.208516 + 0.0558718i −0.361565 0.932347i \(-0.617758\pi\)
0.153049 + 0.988219i \(0.451091\pi\)
\(228\) −17.2352 64.3226i −0.0755929 0.282117i
\(229\) −23.3799 + 13.4984i −0.102095 + 0.0589448i −0.550178 0.835047i \(-0.685440\pi\)
0.448083 + 0.893992i \(0.352107\pi\)
\(230\) −207.534 + 53.9648i −0.902321 + 0.234630i
\(231\) 187.517 + 54.8369i 0.811763 + 0.237389i
\(232\) 39.6715 + 39.6715i 0.170998 + 0.170998i
\(233\) −80.4192 21.5483i −0.345147 0.0924818i 0.0820815 0.996626i \(-0.473843\pi\)
−0.427228 + 0.904144i \(0.640510\pi\)
\(234\) 1.44486 + 0.834188i 0.00617460 + 0.00356491i
\(235\) −251.393 + 142.671i −1.06976 + 0.607109i
\(236\) 104.019 + 180.166i 0.440758 + 0.763415i
\(237\) 4.06242 + 4.06242i 0.0171410 + 0.0171410i
\(238\) −8.46834 + 372.924i −0.0355813 + 1.56691i
\(239\) 47.8746i 0.200312i −0.994972 0.100156i \(-0.968066\pi\)
0.994972 0.100156i \(-0.0319342\pi\)
\(240\) −164.060 1.21474i −0.683584 0.00506143i
\(241\) 119.934 207.732i 0.497652 0.861958i −0.502345 0.864667i \(-0.667529\pi\)
0.999996 + 0.00270956i \(0.000862479\pi\)
\(242\) 355.046 95.1344i 1.46713 0.393117i
\(243\) −15.0573 4.03459i −0.0619642 0.0166032i
\(244\) 105.146i 0.430928i
\(245\) 163.855 + 182.145i 0.668794 + 0.743447i
\(246\) 10.4199 0.0423574
\(247\) 0.689559 2.57347i 0.00279174 0.0104189i
\(248\) 9.57250 + 35.7251i 0.0385988 + 0.144053i
\(249\) −9.51035 5.49080i −0.0381942 0.0220514i
\(250\) −159.267 290.579i −0.637070 1.16232i
\(251\) −173.528 −0.691346 −0.345673 0.938355i \(-0.612349\pi\)
−0.345673 + 0.938355i \(0.612349\pi\)
\(252\) 63.5578 + 1.44327i 0.252214 + 0.00572726i
\(253\) −184.339 + 184.339i −0.728612 + 0.728612i
\(254\) 272.779 157.489i 1.07393 0.620036i
\(255\) 46.3011 167.818i 0.181573 0.658110i
\(256\) −166.152 + 287.783i −0.649030 + 1.12415i
\(257\) −82.6939 + 308.618i −0.321766 + 1.20085i 0.595757 + 0.803165i \(0.296852\pi\)
−0.917523 + 0.397683i \(0.869814\pi\)
\(258\) 161.233 161.233i 0.624933 0.624933i
\(259\) 127.914 437.406i 0.493875 1.68883i
\(260\) 2.73821 + 1.60806i 0.0105316 + 0.00618483i
\(261\) 32.6384 + 56.5314i 0.125051 + 0.216595i
\(262\) 480.197 128.668i 1.83281 0.491101i
\(263\) −0.393152 1.46726i −0.00149487 0.00557894i 0.965174 0.261607i \(-0.0842526\pi\)
−0.966669 + 0.256028i \(0.917586\pi\)
\(264\) −62.3229 + 35.9822i −0.236072 + 0.136296i
\(265\) 265.596 452.260i 1.00225 1.70664i
\(266\) −55.8106 228.959i −0.209814 0.860748i
\(267\) −174.108 174.108i −0.652090 0.652090i
\(268\) 96.7708 + 25.9297i 0.361085 + 0.0967524i
\(269\) 244.004 + 140.876i 0.907077 + 0.523701i 0.879490 0.475918i \(-0.157884\pi\)
0.0275875 + 0.999619i \(0.491218\pi\)
\(270\) −66.3922 18.3177i −0.245897 0.0678432i
\(271\) 246.806 + 427.480i 0.910723 + 1.57742i 0.813046 + 0.582200i \(0.197808\pi\)
0.0976771 + 0.995218i \(0.468859\pi\)
\(272\) −269.282 269.282i −0.990009 0.990009i
\(273\) 2.17332 + 1.32144i 0.00796087 + 0.00484045i
\(274\) 171.442i 0.625700i
\(275\) −345.856 206.568i −1.25766 0.751156i
\(276\) −42.4153 + 73.4655i −0.153679 + 0.266179i
\(277\) −29.3313 + 7.85929i −0.105889 + 0.0283729i −0.311375 0.950287i \(-0.600789\pi\)
0.205485 + 0.978660i \(0.434123\pi\)
\(278\) −238.312 63.8556i −0.857238 0.229696i
\(279\) 43.0323i 0.154238i
\(280\) −90.2042 2.71670i −0.322158 0.00970252i
\(281\) 292.290 1.04018 0.520089 0.854112i \(-0.325899\pi\)
0.520089 + 0.854112i \(0.325899\pi\)
\(282\) −68.7012 + 256.396i −0.243621 + 0.909207i
\(283\) −132.786 495.563i −0.469207 1.75111i −0.642550 0.766244i \(-0.722124\pi\)
0.173343 0.984862i \(-0.444543\pi\)
\(284\) 156.118 + 90.1345i 0.549710 + 0.317375i
\(285\) −0.814323 + 109.981i −0.00285728 + 0.385897i
\(286\) 8.96136 0.0313334
\(287\) 15.8816 + 0.360639i 0.0553366 + 0.00125658i
\(288\) −84.6549 + 84.6549i −0.293941 + 0.293941i
\(289\) 99.6699 57.5444i 0.344878 0.199116i
\(290\) 142.349 + 250.827i 0.490860 + 0.864921i
\(291\) 138.635 240.122i 0.476408 0.825163i
\(292\) −27.1365 + 101.275i −0.0929334 + 0.346832i
\(293\) 395.050 395.050i 1.34829 1.34829i 0.460780 0.887515i \(-0.347570\pi\)
0.887515 0.460780i \(-0.152430\pi\)
\(294\) 224.752 + 10.2126i 0.764464 + 0.0347368i
\(295\) −86.4699 332.540i −0.293118 1.12725i
\(296\) 83.9327 + 145.376i 0.283557 + 0.491134i
\(297\) −80.8773 + 21.6710i −0.272314 + 0.0729664i
\(298\) −47.7128 178.066i −0.160110 0.597538i
\(299\) −2.93927 + 1.69699i −0.00983032 + 0.00567554i
\(300\) −126.105 35.7993i −0.420349 0.119331i
\(301\) 251.324 240.164i 0.834965 0.797886i
\(302\) 27.5828 + 27.5828i 0.0913339 + 0.0913339i
\(303\) 31.9129 + 8.55104i 0.105323 + 0.0282213i
\(304\) 208.359 + 120.296i 0.685392 + 0.395711i
\(305\) −46.1876 + 167.407i −0.151435 + 0.548874i
\(306\) −79.9328 138.448i −0.261218 0.452444i
\(307\) 359.887 + 359.887i 1.17227 + 1.17227i 0.981667 + 0.190605i \(0.0610448\pi\)
0.190605 + 0.981667i \(0.438955\pi\)
\(308\) 299.527 163.981i 0.972491 0.532404i
\(309\) 103.274i 0.334220i
\(310\) −1.40769 + 190.120i −0.00454095 + 0.613290i
\(311\) −201.048 + 348.225i −0.646457 + 1.11970i 0.337507 + 0.941323i \(0.390417\pi\)
−0.983963 + 0.178372i \(0.942917\pi\)
\(312\) −0.904976 + 0.242488i −0.00290057 + 0.000777204i
\(313\) −430.931 115.468i −1.37678 0.368906i −0.506827 0.862048i \(-0.669182\pi\)
−0.869949 + 0.493142i \(0.835848\pi\)
\(314\) 306.134i 0.974950i
\(315\) −100.558 30.2169i −0.319232 0.0959265i
\(316\) 10.0415 0.0317770
\(317\) 54.1975 202.268i 0.170970 0.638069i −0.826233 0.563329i \(-0.809521\pi\)
0.997203 0.0747404i \(-0.0238128\pi\)
\(318\) −124.656 465.221i −0.391999 1.46296i
\(319\) 303.647 + 175.311i 0.951872 + 0.549564i
\(320\) −106.887 + 105.316i −0.334023 + 0.329113i
\(321\) 155.432 0.484211
\(322\) −155.968 + 256.514i −0.484374 + 0.796628i
\(323\) −180.518 + 180.518i −0.558880 + 0.558880i
\(324\) −23.5958 + 13.6230i −0.0728265 + 0.0420464i
\(325\) −3.65321 3.76304i −0.0112407 0.0115786i
\(326\) −140.186 + 242.809i −0.430017 + 0.744812i
\(327\) 35.2591 131.589i 0.107826 0.402412i
\(328\) −4.13760 + 4.13760i −0.0126146 + 0.0126146i
\(329\) −113.585 + 388.411i −0.345244 + 1.18058i
\(330\) −358.030 + 93.0983i −1.08494 + 0.282116i
\(331\) 150.975 + 261.497i 0.456119 + 0.790020i 0.998752 0.0499493i \(-0.0159060\pi\)
−0.542633 + 0.839970i \(0.682573\pi\)
\(332\) −18.5400 + 4.96779i −0.0558435 + 0.0149632i
\(333\) 50.5503 + 188.656i 0.151803 + 0.566535i
\(334\) 49.1183 28.3584i 0.147061 0.0849055i
\(335\) −142.681 83.7917i −0.425914 0.250125i
\(336\) −166.061 + 158.687i −0.494230 + 0.472282i
\(337\) −232.153 232.153i −0.688883 0.688883i 0.273102 0.961985i \(-0.411950\pi\)
−0.961985 + 0.273102i \(0.911950\pi\)
\(338\) −432.626 115.922i −1.27996 0.342964i
\(339\) 336.267 + 194.144i 0.991938 + 0.572696i
\(340\) −150.184 264.631i −0.441716 0.778328i
\(341\) 115.570 + 200.173i 0.338915 + 0.587017i
\(342\) 71.4166 + 71.4166i 0.208821 + 0.208821i
\(343\) 342.205 + 23.3444i 0.997681 + 0.0680596i
\(344\) 128.046i 0.372228i
\(345\) 99.8018 98.3347i 0.289281 0.285028i
\(346\) −215.921 + 373.986i −0.624050 + 1.08089i
\(347\) −184.356 + 49.3981i −0.531286 + 0.142358i −0.514482 0.857501i \(-0.672016\pi\)
−0.0168038 + 0.999859i \(0.505349\pi\)
\(348\) 110.206 + 29.5295i 0.316683 + 0.0848549i
\(349\) 10.4041i 0.0298112i −0.999889 0.0149056i \(-0.995255\pi\)
0.999889 0.0149056i \(-0.00474477\pi\)
\(350\) −443.284 136.790i −1.26653 0.390828i
\(351\) −1.09008 −0.00310565
\(352\) −166.434 + 621.141i −0.472825 + 1.76461i
\(353\) 84.2818 + 314.544i 0.238759 + 0.891059i 0.976418 + 0.215886i \(0.0692641\pi\)
−0.737660 + 0.675172i \(0.764069\pi\)
\(354\) −273.255 157.764i −0.771906 0.445660i
\(355\) −208.966 212.083i −0.588636 0.597418i
\(356\) −430.363 −1.20888
\(357\) −117.039 213.783i −0.327839 0.598831i
\(358\) 254.158 254.158i 0.709939 0.709939i
\(359\) 196.189 113.270i 0.546487 0.315514i −0.201217 0.979547i \(-0.564490\pi\)
0.747704 + 0.664032i \(0.231156\pi\)
\(360\) 33.6371 19.0897i 0.0934363 0.0530270i
\(361\) −99.8573 + 172.958i −0.276613 + 0.479108i
\(362\) 159.301 594.518i 0.440057 1.64232i
\(363\) −169.821 + 169.821i −0.467827 + 0.467827i
\(364\) 4.31920 1.05284i 0.0118659 0.00289242i
\(365\) 87.6918 149.322i 0.240252 0.409103i
\(366\) 79.7369 + 138.108i 0.217860 + 0.377345i
\(367\) 30.4304 8.15380i 0.0829166 0.0222174i −0.217122 0.976144i \(-0.569667\pi\)
0.300039 + 0.953927i \(0.403000\pi\)
\(368\) −79.3253 296.046i −0.215558 0.804473i
\(369\) −5.89604 + 3.40408i −0.0159784 + 0.00922515i
\(370\) 217.163 + 835.149i 0.586927 + 2.25716i
\(371\) −173.893 713.385i −0.468715 1.92287i
\(372\) 53.1840 + 53.1840i 0.142968 + 0.142968i
\(373\) −137.880 36.9449i −0.369652 0.0990479i 0.0692108 0.997602i \(-0.477952\pi\)
−0.438863 + 0.898554i \(0.644619\pi\)
\(374\) −743.645 429.344i −1.98836 1.14798i
\(375\) 185.049 + 112.391i 0.493465 + 0.299709i
\(376\) −74.5310 129.092i −0.198221 0.343329i
\(377\) 3.22775 + 3.22775i 0.00856167 + 0.00856167i
\(378\) −84.5767 + 46.3028i −0.223748 + 0.122494i
\(379\) 678.102i 1.78919i 0.446882 + 0.894593i \(0.352534\pi\)
−0.446882 + 0.894593i \(0.647466\pi\)
\(380\) 134.919 + 136.932i 0.355051 + 0.360348i
\(381\) −102.900 + 178.228i −0.270079 + 0.467790i
\(382\) 256.592 68.7535i 0.671706 0.179983i
\(383\) 313.516 + 84.0064i 0.818580 + 0.219338i 0.643725 0.765257i \(-0.277388\pi\)
0.174854 + 0.984594i \(0.444055\pi\)
\(384\) 138.686i 0.361162i
\(385\) −548.917 + 129.505i −1.42576 + 0.336376i
\(386\) 576.011 1.49226
\(387\) −38.5593 + 143.905i −0.0996365 + 0.371849i
\(388\) −125.429 468.109i −0.323272 1.20647i
\(389\) −442.039 255.211i −1.13635 0.656070i −0.190823 0.981624i \(-0.561116\pi\)
−0.945523 + 0.325555i \(0.894449\pi\)
\(390\) −4.81606 0.0356593i −0.0123489 9.14340e-5i
\(391\) 325.214 0.831749
\(392\) −93.3013 + 85.1907i −0.238013 + 0.217323i
\(393\) −229.681 + 229.681i −0.584431 + 0.584431i
\(394\) 562.068 324.510i 1.42657 0.823629i
\(395\) −15.9874 4.41094i −0.0404745 0.0111669i
\(396\) −73.1735 + 126.740i −0.184782 + 0.320051i
\(397\) 4.62529 17.2618i 0.0116506 0.0434806i −0.959856 0.280494i \(-0.909502\pi\)
0.971506 + 0.237013i \(0.0761685\pi\)
\(398\) −19.5146 + 19.5146i −0.0490315 + 0.0490315i
\(399\) 106.378 + 111.322i 0.266613 + 0.279002i
\(400\) 413.624 230.708i 1.03406 0.576769i
\(401\) −66.9804 116.014i −0.167034 0.289311i 0.770342 0.637631i \(-0.220085\pi\)
−0.937376 + 0.348320i \(0.886752\pi\)
\(402\) −146.771 + 39.3270i −0.365101 + 0.0978285i
\(403\) 0.778838 + 2.90666i 0.00193260 + 0.00721256i
\(404\) 50.0097 28.8731i 0.123786 0.0714681i
\(405\) 43.5517 11.3247i 0.107535 0.0279622i
\(406\) 387.536 + 113.330i 0.954523 + 0.279137i
\(407\) 741.809 + 741.809i 1.82263 + 1.82263i
\(408\) 86.7158 + 23.2354i 0.212539 + 0.0569496i
\(409\) −426.695 246.353i −1.04326 0.602329i −0.122509 0.992467i \(-0.539094\pi\)
−0.920756 + 0.390138i \(0.872427\pi\)
\(410\) −26.1605 + 14.8466i −0.0638060 + 0.0362112i
\(411\) −56.0082 97.0091i −0.136273 0.236032i
\(412\) −127.637 127.637i −0.309799 0.309799i
\(413\) −411.023 249.914i −0.995213 0.605119i
\(414\) 128.661i 0.310776i
\(415\) 31.7003 + 0.234717i 0.0763862 + 0.000565582i
\(416\) −4.18594 + 7.25026i −0.0100624 + 0.0174285i
\(417\) 155.708 41.7219i 0.373401 0.100052i
\(418\) 524.008 + 140.408i 1.25361 + 0.335903i
\(419\) 274.467i 0.655053i 0.944842 + 0.327526i \(0.106215\pi\)
−0.944842 + 0.327526i \(0.893785\pi\)
\(420\) −161.626 + 86.9353i −0.384823 + 0.206989i
\(421\) −175.509 −0.416887 −0.208444 0.978034i \(-0.566840\pi\)
−0.208444 + 0.978034i \(0.566840\pi\)
\(422\) 147.956 552.179i 0.350606 1.30848i
\(423\) −44.8879 167.524i −0.106118 0.396038i
\(424\) 234.232 + 135.234i 0.552433 + 0.318948i
\(425\) 122.867 + 487.298i 0.289099 + 1.14658i
\(426\) −273.411 −0.641809
\(427\) 116.752 + 213.259i 0.273423 + 0.499435i
\(428\) 192.099 192.099i 0.448830 0.448830i
\(429\) −5.07072 + 2.92758i −0.0118199 + 0.00682420i
\(430\) −175.065 + 634.522i −0.407129 + 1.47563i
\(431\) 183.897 318.520i 0.426676 0.739025i −0.569899 0.821715i \(-0.693018\pi\)
0.996575 + 0.0826899i \(0.0263511\pi\)
\(432\) 25.4779 95.0846i 0.0589765 0.220103i
\(433\) −22.6024 + 22.6024i −0.0521995 + 0.0521995i −0.732725 0.680525i \(-0.761752\pi\)
0.680525 + 0.732725i \(0.261752\pi\)
\(434\) 183.893 + 192.438i 0.423716 + 0.443407i
\(435\) −162.490 95.4246i −0.373540 0.219367i
\(436\) −119.054 206.208i −0.273061 0.472955i
\(437\) −198.460 + 53.1771i −0.454141 + 0.121687i
\(438\) −41.1575 153.602i −0.0939670 0.350689i
\(439\) 348.602 201.265i 0.794082 0.458464i −0.0473155 0.998880i \(-0.515067\pi\)
0.841398 + 0.540416i \(0.181733\pi\)
\(440\) 105.201 179.137i 0.239093 0.407129i
\(441\) −130.511 + 67.6455i −0.295943 + 0.153391i
\(442\) −7.90490 7.90490i −0.0178844 0.0178844i
\(443\) 335.058 + 89.7786i 0.756340 + 0.202661i 0.616328 0.787489i \(-0.288619\pi\)
0.140011 + 0.990150i \(0.455286\pi\)
\(444\) 295.637 + 170.686i 0.665849 + 0.384428i
\(445\) 685.192 + 189.045i 1.53976 + 0.424820i
\(446\) −252.155 436.746i −0.565371 0.979251i
\(447\) 85.1704 + 85.1704i 0.190538 + 0.190538i
\(448\) −4.76918 + 210.022i −0.0106455 + 0.468800i
\(449\) 144.105i 0.320946i −0.987040 0.160473i \(-0.948698\pi\)
0.987040 0.160473i \(-0.0513020\pi\)
\(450\) 192.785 48.6087i 0.428411 0.108019i
\(451\) −18.2843 + 31.6694i −0.0405418 + 0.0702204i
\(452\) 655.539 175.651i 1.45031 0.388609i
\(453\) −24.6186 6.59653i −0.0543456 0.0145619i
\(454\) 129.903i 0.286129i
\(455\) −7.33920 0.221037i −0.0161301 0.000485795i
\(456\) −56.7171 −0.124380
\(457\) 195.866 730.982i 0.428591 1.59952i −0.327364 0.944898i \(-0.606160\pi\)
0.755955 0.654624i \(-0.227173\pi\)
\(458\) −18.5226 69.1275i −0.0404425 0.150933i
\(459\) 90.4588 + 52.2264i 0.197078 + 0.113783i
\(460\) 1.81314 244.878i 0.00394161 0.532344i
\(461\) −371.997 −0.806935 −0.403468 0.914994i \(-0.632195\pi\)
−0.403468 + 0.914994i \(0.632195\pi\)
\(462\) −269.071 + 442.530i −0.582405 + 0.957857i
\(463\) 316.624 316.624i 0.683853 0.683853i −0.277013 0.960866i \(-0.589345\pi\)
0.960866 + 0.277013i \(0.0893446\pi\)
\(464\) −356.987 + 206.107i −0.769370 + 0.444196i
\(465\) −61.3136 108.038i −0.131857 0.232339i
\(466\) 110.352 191.136i 0.236808 0.410163i
\(467\) 217.569 811.979i 0.465887 1.73871i −0.188046 0.982160i \(-0.560216\pi\)
0.653933 0.756552i \(-0.273118\pi\)
\(468\) −1.34724 + 1.34724i −0.00287872 + 0.00287872i
\(469\) −225.063 + 54.8608i −0.479878 + 0.116974i
\(470\) −192.838 741.600i −0.410293 1.57787i
\(471\) −100.011 173.224i −0.212337 0.367779i
\(472\) 171.151 45.8598i 0.362608 0.0971606i
\(473\) 207.114 + 772.960i 0.437873 + 1.63416i
\(474\) −13.1894 + 7.61491i −0.0278258 + 0.0160652i
\(475\) −154.659 277.280i −0.325598 0.583747i
\(476\) −408.864 119.567i −0.858959 0.251191i
\(477\) 222.518 + 222.518i 0.466496 + 0.466496i
\(478\) 122.587 + 32.8471i 0.256458 + 0.0687177i
\(479\) −206.858 119.430i −0.431854 0.249331i 0.268282 0.963340i \(-0.413544\pi\)
−0.700136 + 0.714009i \(0.746877\pi\)
\(480\) 91.9176 333.155i 0.191495 0.694072i
\(481\) 6.82894 + 11.8281i 0.0141974 + 0.0245906i
\(482\) 449.628 + 449.628i 0.932837 + 0.932837i
\(483\) 4.45303 196.100i 0.00921953 0.406004i
\(484\) 419.766i 0.867285i
\(485\) −5.92625 + 800.386i −0.0122191 + 1.65028i
\(486\) 20.6618 35.7873i 0.0425140 0.0736365i
\(487\) −220.071 + 58.9679i −0.451891 + 0.121084i −0.477584 0.878586i \(-0.658487\pi\)
0.0256929 + 0.999670i \(0.491821\pi\)
\(488\) −86.5033 23.1785i −0.177261 0.0474969i
\(489\) 183.189i 0.374619i
\(490\) −578.819 + 294.593i −1.18126 + 0.601210i
\(491\) −162.810 −0.331589 −0.165795 0.986160i \(-0.553019\pi\)
−0.165795 + 0.986160i \(0.553019\pi\)
\(492\) −3.07983 + 11.4941i −0.00625982 + 0.0233620i
\(493\) −113.207 422.493i −0.229628 0.856984i
\(494\) 6.11647 + 3.53135i 0.0123815 + 0.00714848i
\(495\) 172.175 169.644i 0.347828 0.342715i
\(496\) −271.743 −0.547869
\(497\) −416.721 9.46289i −0.838473 0.0190400i
\(498\) 20.5848 20.5848i 0.0413349 0.0413349i
\(499\) −828.405 + 478.280i −1.66013 + 0.958477i −0.687481 + 0.726202i \(0.741284\pi\)
−0.972650 + 0.232275i \(0.925383\pi\)
\(500\) 367.609 89.7991i 0.735217 0.179598i
\(501\) −18.5288 + 32.0928i −0.0369836 + 0.0640576i
\(502\) 119.059 444.333i 0.237169 0.885126i
\(503\) −210.562 + 210.562i −0.418612 + 0.418612i −0.884725 0.466113i \(-0.845654\pi\)
0.466113 + 0.884725i \(0.345654\pi\)
\(504\) 15.1980 51.9704i 0.0301548 0.103116i
\(505\) −92.3049 + 24.0020i −0.182782 + 0.0475286i
\(506\) −345.539 598.492i −0.682884 1.18279i
\(507\) 282.669 75.7409i 0.557532 0.149390i
\(508\) 93.0985 + 347.448i 0.183265 + 0.683953i
\(509\) 27.4957 15.8746i 0.0540190 0.0311879i −0.472747 0.881198i \(-0.656738\pi\)
0.526766 + 0.850010i \(0.323404\pi\)
\(510\) 397.945 + 233.699i 0.780284 + 0.458233i
\(511\) −57.4143 235.538i −0.112357 0.460936i
\(512\) −396.422 396.422i −0.774262 0.774262i
\(513\) −63.7416 17.0795i −0.124253 0.0332934i
\(514\) −733.506 423.490i −1.42705 0.823910i
\(515\) 147.148 + 259.282i 0.285724 + 0.503460i
\(516\) 130.198 + 225.510i 0.252322 + 0.437034i
\(517\) −658.715 658.715i −1.27411 1.27411i
\(518\) 1032.25 + 627.641i 1.99277 + 1.21166i
\(519\) 282.157i 0.543654i
\(520\) 1.92655 1.89823i 0.00370490 0.00365044i
\(521\) −150.818 + 261.225i −0.289478 + 0.501391i −0.973685 0.227897i \(-0.926815\pi\)
0.684207 + 0.729288i \(0.260148\pi\)
\(522\) −167.147 + 44.7869i −0.320205 + 0.0857986i
\(523\) −909.011 243.569i −1.73807 0.465715i −0.756055 0.654509i \(-0.772876\pi\)
−0.982017 + 0.188794i \(0.939542\pi\)
\(524\) 567.730i 1.08345i
\(525\) 295.517 67.4149i 0.562889 0.128409i
\(526\) 4.02679 0.00765550
\(527\) 74.6291 278.520i 0.141611 0.528500i
\(528\) −136.849 510.729i −0.259184 0.967289i
\(529\) −231.458 133.633i −0.437539 0.252614i
\(530\) 975.822 + 990.381i 1.84117 + 1.86864i
\(531\) 206.159 0.388246
\(532\) 269.058 + 6.10975i 0.505747 + 0.0114845i
\(533\) −0.336644 + 0.336644i −0.000631602 + 0.000631602i
\(534\) 565.275 326.362i 1.05857 0.611164i
\(535\) −390.229 + 221.463i −0.729401 + 0.413950i
\(536\) 42.6643 73.8967i 0.0795975 0.137867i
\(537\) −60.7827 + 226.844i −0.113189 + 0.422429i
\(538\) −528.137 + 528.137i −0.981667 + 0.981667i
\(539\) −425.423 + 665.173i −0.789283 + 1.23409i
\(540\) 39.8296 67.8222i 0.0737585 0.125597i
\(541\) 224.676 + 389.150i 0.415297 + 0.719316i 0.995460 0.0951848i \(-0.0303442\pi\)
−0.580162 + 0.814501i \(0.697011\pi\)
\(542\) −1263.94 + 338.670i −2.33198 + 0.624853i
\(543\) 104.084 + 388.446i 0.191683 + 0.715369i
\(544\) 694.728 401.101i 1.27707 0.737319i
\(545\) 98.9688 + 380.607i 0.181594 + 0.698361i
\(546\) −4.87479 + 4.65832i −0.00892819 + 0.00853172i
\(547\) −510.619 510.619i −0.933489 0.933489i 0.0644326 0.997922i \(-0.479476\pi\)
−0.997922 + 0.0644326i \(0.979476\pi\)
\(548\) −189.115 50.6733i −0.345101 0.0924695i
\(549\) −90.2371 52.0984i −0.164366 0.0948969i
\(550\) 766.229 743.865i 1.39314 1.35248i
\(551\) 138.167 + 239.313i 0.250757 + 0.434324i
\(552\) 51.0895 + 51.0895i 0.0925535 + 0.0925535i
\(553\) −20.3663 + 11.1498i −0.0368288 + 0.0201625i
\(554\) 80.4976i 0.145303i
\(555\) −395.715 401.618i −0.712999 0.723636i
\(556\) 140.877 244.005i 0.253375 0.438858i
\(557\) −246.800 + 66.1299i −0.443088 + 0.118725i −0.473463 0.880813i \(-0.656996\pi\)
0.0303753 + 0.999539i \(0.490330\pi\)
\(558\) −110.188 29.5248i −0.197469 0.0529118i
\(559\) 10.4181i 0.0186371i
\(560\) 190.815 635.010i 0.340741 1.13395i
\(561\) 561.048 1.00009
\(562\) −200.542 + 748.434i −0.356837 + 1.33173i
\(563\) 13.8459 + 51.6736i 0.0245931 + 0.0917827i 0.977132 0.212635i \(-0.0682047\pi\)
−0.952539 + 0.304418i \(0.901538\pi\)
\(564\) −262.521 151.567i −0.465463 0.268735i
\(565\) −1120.86 8.29912i −1.98382 0.0146887i
\(566\) 1360.04 2.40289
\(567\) 32.7305 53.8304i 0.0577257 0.0949390i
\(568\) 108.568 108.568i 0.191140 0.191140i
\(569\) 444.007 256.348i 0.780329 0.450523i −0.0562176 0.998419i \(-0.517904\pi\)
0.836547 + 0.547895i \(0.184571\pi\)
\(570\) −281.056 77.5436i −0.493081 0.136041i
\(571\) 50.9402 88.2310i 0.0892122 0.154520i −0.817966 0.575266i \(-0.804898\pi\)
0.907178 + 0.420746i \(0.138232\pi\)
\(572\) −2.64872 + 9.88516i −0.00463063 + 0.0172818i
\(573\) −122.729 + 122.729i −0.214188 + 0.214188i
\(574\) −11.8199 + 40.4188i −0.0205922 + 0.0704160i
\(575\) −110.454 + 389.081i −0.192094 + 0.676663i
\(576\) −45.0164 77.9706i −0.0781534 0.135366i
\(577\) 297.934 79.8311i 0.516350 0.138355i 0.00877199 0.999962i \(-0.497208\pi\)
0.507578 + 0.861606i \(0.330541\pi\)
\(578\) 78.9633 + 294.695i 0.136615 + 0.509853i
\(579\) −325.932 + 188.177i −0.562922 + 0.325003i
\(580\) −318.759 + 82.8865i −0.549584 + 0.142908i
\(581\) 32.0869 30.6620i 0.0552270 0.0527745i
\(582\) 519.736 + 519.736i 0.893017 + 0.893017i
\(583\) 1632.69 + 437.479i 2.80050 + 0.750393i
\(584\) 77.3362 + 44.6501i 0.132425 + 0.0764556i
\(585\) 2.73678 1.55318i 0.00467826 0.00265500i
\(586\) 740.513 + 1282.61i 1.26367 + 2.18875i
\(587\) 686.341 + 686.341i 1.16923 + 1.16923i 0.982389 + 0.186845i \(0.0598263\pi\)
0.186845 + 0.982389i \(0.440174\pi\)
\(588\) −77.6958 + 244.903i −0.132136 + 0.416502i
\(589\) 182.168i 0.309283i
\(590\) 910.824 + 6.74396i 1.54377 + 0.0114304i
\(591\) −212.028 + 367.243i −0.358761 + 0.621393i
\(592\) −1191.34 + 319.218i −2.01239 + 0.539219i
\(593\) −869.051 232.862i −1.46552 0.392684i −0.564125 0.825689i \(-0.690787\pi\)
−0.901391 + 0.433005i \(0.857453\pi\)
\(594\) 221.962i 0.373673i
\(595\) 598.442 + 369.967i 1.00579 + 0.621794i
\(596\) 210.525 0.353230
\(597\) 4.66697 17.4174i 0.00781737 0.0291748i
\(598\) −2.32863 8.69056i −0.00389403 0.0145327i
\(599\) −598.597 345.600i −0.999328 0.576962i −0.0912783 0.995825i \(-0.529095\pi\)
−0.908049 + 0.418863i \(0.862429\pi\)
\(600\) −57.2503 + 95.8539i −0.0954172 + 0.159757i
\(601\) 498.794 0.829940 0.414970 0.909835i \(-0.363792\pi\)
0.414970 + 0.909835i \(0.363792\pi\)
\(602\) 442.525 + 808.316i 0.735091 + 1.34272i
\(603\) 70.2013 70.2013i 0.116420 0.116420i
\(604\) −38.5790 + 22.2736i −0.0638725 + 0.0368768i
\(605\) 184.390 668.321i 0.304777 1.10466i
\(606\) −43.7914 + 75.8489i −0.0722630 + 0.125163i
\(607\) −146.716 + 547.550i −0.241706 + 0.902060i 0.733304 + 0.679901i \(0.237977\pi\)
−0.975010 + 0.222159i \(0.928690\pi\)
\(608\) −358.367 + 358.367i −0.589420 + 0.589420i
\(609\) −256.308 + 62.4772i −0.420867 + 0.102590i
\(610\) −396.969 233.126i −0.650769 0.382174i
\(611\) −6.06400 10.5032i −0.00992471 0.0171901i
\(612\) 176.346 47.2517i 0.288147 0.0772087i
\(613\) 169.020 + 630.791i 0.275726 + 1.02902i 0.955353 + 0.295466i \(0.0954749\pi\)
−0.679627 + 0.733558i \(0.737858\pi\)
\(614\) −1168.44 + 674.601i −1.90300 + 1.09870i
\(615\) 9.95248 16.9472i 0.0161829 0.0275564i
\(616\) −68.8779 282.567i −0.111815 0.458712i
\(617\) −171.584 171.584i −0.278095 0.278095i 0.554253 0.832348i \(-0.313004\pi\)
−0.832348 + 0.554253i \(0.813004\pi\)
\(618\) 264.442 + 70.8571i 0.427900 + 0.114655i
\(619\) 51.9976 + 30.0209i 0.0840027 + 0.0484990i 0.541413 0.840757i \(-0.317890\pi\)
−0.457410 + 0.889256i \(0.651223\pi\)
\(620\) −209.303 57.7468i −0.337585 0.0931399i
\(621\) 42.0323 + 72.8020i 0.0676848 + 0.117234i
\(622\) −753.720 753.720i −1.21177 1.21177i
\(623\) 872.864 477.862i 1.40107 0.767034i
\(624\) 6.88371i 0.0110316i
\(625\) −624.726 18.5076i −0.999561 0.0296121i
\(626\) 591.329 1024.21i 0.944615 1.63612i
\(627\) −342.376 + 91.7393i −0.546054 + 0.146315i
\(628\) −337.693 90.4845i −0.537727 0.144084i
\(629\) 1308.71i 2.08062i
\(630\) 146.367 236.756i 0.232328 0.375803i
\(631\) −472.374 −0.748612 −0.374306 0.927305i \(-0.622119\pi\)
−0.374306 + 0.927305i \(0.622119\pi\)
\(632\) 2.21356 8.26110i 0.00350246 0.0130714i
\(633\) 96.6712 + 360.782i 0.152719 + 0.569956i
\(634\) 480.739 + 277.555i 0.758263 + 0.437784i
\(635\) 4.39869 594.077i 0.00692708 0.935555i
\(636\) 550.024 0.864818
\(637\) −7.59118 + 6.93129i −0.0119171 + 0.0108811i
\(638\) −657.233 + 657.233i −1.03015 + 1.03015i
\(639\) 154.708 89.3204i 0.242109 0.139782i
\(640\) 197.603 + 348.188i 0.308755 + 0.544043i
\(641\) −251.987 + 436.454i −0.393115 + 0.680895i −0.992859 0.119297i \(-0.961936\pi\)
0.599743 + 0.800192i \(0.295269\pi\)
\(642\) −106.643 + 397.996i −0.166110 + 0.619931i
\(643\) 269.091 269.091i 0.418493 0.418493i −0.466191 0.884684i \(-0.654374\pi\)
0.884684 + 0.466191i \(0.154374\pi\)
\(644\) −236.858 247.865i −0.367792 0.384883i
\(645\) −108.232 416.232i −0.167802 0.645321i
\(646\) −338.378 586.087i −0.523804 0.907256i
\(647\) 1033.93 277.041i 1.59804 0.428193i 0.653588 0.756851i \(-0.273263\pi\)
0.944449 + 0.328658i \(0.106596\pi\)
\(648\) 6.00612 + 22.4152i 0.00926871 + 0.0345913i
\(649\) 958.986 553.671i 1.47764 0.853114i
\(650\) 12.1421 6.77252i 0.0186801 0.0104193i
\(651\) −166.922 48.8141i −0.256409 0.0749832i
\(652\) −226.404 226.404i −0.347246 0.347246i
\(653\) 456.208 + 122.241i 0.698634 + 0.187198i 0.590619 0.806951i \(-0.298884\pi\)
0.108015 + 0.994149i \(0.465550\pi\)
\(654\) 312.752 + 180.568i 0.478215 + 0.276097i
\(655\) 249.386 903.898i 0.380742 1.38000i
\(656\) −21.4963 37.2326i −0.0327687 0.0567571i
\(657\) 73.4688 + 73.4688i 0.111825 + 0.111825i
\(658\) −916.627 557.336i −1.39305 0.847016i
\(659\) 299.482i 0.454449i −0.973842 0.227225i \(-0.927035\pi\)
0.973842 0.227225i \(-0.0729652\pi\)
\(660\) 3.12797 422.456i 0.00473934 0.640085i
\(661\) −94.8665 + 164.314i −0.143520 + 0.248583i −0.928820 0.370532i \(-0.879175\pi\)
0.785300 + 0.619115i \(0.212509\pi\)
\(662\) −773.170 + 207.170i −1.16793 + 0.312946i
\(663\) 7.05538 + 1.89048i 0.0106416 + 0.00285141i
\(664\) 16.3478i 0.0246203i
\(665\) −425.690 127.916i −0.640136 0.192355i
\(666\) −517.753 −0.777407
\(667\) 91.1097 340.026i 0.136596 0.509784i
\(668\) 16.7639 + 62.5637i 0.0250956 + 0.0936582i
\(669\) 285.361 + 164.753i 0.426548 + 0.246268i
\(670\) 312.451 307.858i 0.466344 0.459489i
\(671\) −559.673 −0.834088
\(672\) −232.346 424.404i −0.345754 0.631554i
\(673\) −501.108 + 501.108i −0.744589 + 0.744589i −0.973457 0.228868i \(-0.926497\pi\)
0.228868 + 0.973457i \(0.426497\pi\)
\(674\) 753.731 435.167i 1.11830 0.645648i
\(675\) −93.2060 + 90.4856i −0.138083 + 0.134053i
\(676\) 255.744 442.961i 0.378319 0.655268i
\(677\) 58.6475 218.875i 0.0866285 0.323302i −0.908989 0.416820i \(-0.863145\pi\)
0.995618 + 0.0935180i \(0.0298113\pi\)
\(678\) −727.837 + 727.837i −1.07351 + 1.07351i
\(679\) 774.171 + 810.148i 1.14016 + 1.19315i
\(680\) −250.817 + 65.2196i −0.368848 + 0.0959112i
\(681\) 42.4378 + 73.5044i 0.0623169 + 0.107936i
\(682\) −591.853 + 158.587i −0.867820 + 0.232532i
\(683\) −201.929 753.610i −0.295650 1.10338i −0.940699 0.339241i \(-0.889830\pi\)
0.645049 0.764141i \(-0.276837\pi\)
\(684\) −99.8875 + 57.6701i −0.146034 + 0.0843129i
\(685\) 278.836 + 163.751i 0.407060 + 0.239052i
\(686\) −294.564 + 860.228i −0.429394 + 1.25398i
\(687\) 33.0641 + 33.0641i 0.0481283 + 0.0481283i
\(688\) −908.742 243.497i −1.32085 0.353920i
\(689\) 19.0576 + 11.0029i 0.0276598 + 0.0159694i
\(690\) 183.320 + 323.019i 0.265681 + 0.468144i
\(691\) 147.342 + 255.204i 0.213230 + 0.369325i 0.952724 0.303839i \(-0.0982684\pi\)
−0.739494 + 0.673163i \(0.764935\pi\)
\(692\) −348.720 348.720i −0.503930 0.503930i
\(693\) 7.68222 338.305i 0.0110855 0.488175i
\(694\) 505.952i 0.729038i
\(695\) −331.477 + 326.605i −0.476946 + 0.469935i
\(696\) 48.5874 84.1559i 0.0698095 0.120914i
\(697\) 44.0647 11.8071i 0.0632205 0.0169399i
\(698\) 26.6406 + 7.13832i 0.0381670 + 0.0102268i
\(699\) 144.204i 0.206300i
\(700\) 281.913 448.550i 0.402733 0.640786i
\(701\) −1042.91 −1.48775 −0.743874 0.668320i \(-0.767014\pi\)
−0.743874 + 0.668320i \(0.767014\pi\)
\(702\) 0.747913 2.79125i 0.00106540 0.00397614i
\(703\) 213.993 + 798.633i 0.304400 + 1.13604i
\(704\) −418.804 241.797i −0.594892 0.343461i
\(705\) 351.389 + 356.631i 0.498424 + 0.505860i
\(706\) −863.243 −1.22272
\(707\) −69.3701 + 114.090i −0.0981190 + 0.161372i
\(708\) 254.793 254.793i 0.359877 0.359877i
\(709\) 56.4816 32.6096i 0.0796637 0.0459938i −0.459639 0.888106i \(-0.652021\pi\)
0.539303 + 0.842112i \(0.318688\pi\)
\(710\) 686.430 389.563i 0.966803 0.548680i
\(711\) 4.97542 8.61769i 0.00699778 0.0121205i
\(712\) −94.8691 + 354.056i −0.133243 + 0.497270i
\(713\) 164.093 164.093i 0.230144 0.230144i
\(714\) 627.710 153.009i 0.879146 0.214299i
\(715\) 8.55935 14.5749i 0.0119711 0.0203845i
\(716\) 205.237 + 355.480i 0.286643 + 0.496481i
\(717\) −80.0957 + 21.4616i −0.111710 + 0.0299325i
\(718\) 155.430 + 580.073i 0.216477 + 0.807901i
\(719\) 647.135 373.624i 0.900049 0.519643i 0.0228327 0.999739i \(-0.492732\pi\)
0.877216 + 0.480096i \(0.159398\pi\)
\(720\) 71.5139 + 275.023i 0.0993249 + 0.381976i
\(721\) 400.599 + 117.150i 0.555616 + 0.162482i
\(722\) −374.361 374.361i −0.518505 0.518505i
\(723\) −401.307 107.530i −0.555058 0.148727i
\(724\) 608.721 + 351.445i 0.840774 + 0.485421i
\(725\) 543.914 + 8.05498i 0.750226 + 0.0111103i
\(726\) −318.326 551.357i −0.438466 0.759445i
\(727\) 532.464 + 532.464i 0.732412 + 0.732412i 0.971097 0.238685i \(-0.0767163\pi\)
−0.238685 + 0.971097i \(0.576716\pi\)
\(728\) 0.0859602 3.78546i 0.000118077 0.00519981i
\(729\) 27.0000i 0.0370370i
\(730\) 322.187 + 326.994i 0.441352 + 0.447936i
\(731\) 499.138 864.532i 0.682815 1.18267i
\(732\) −175.913 + 47.1359i −0.240319 + 0.0643933i
\(733\) −94.0010 25.1875i −0.128241 0.0343622i 0.194127 0.980976i \(-0.437812\pi\)
−0.322369 + 0.946614i \(0.604479\pi\)
\(734\) 83.5140i 0.113779i
\(735\) 231.280 355.787i 0.314667 0.484064i
\(736\) 645.619 0.877200
\(737\) 138.018 515.091i 0.187270 0.698902i
\(738\) −4.67112 17.4329i −0.00632944 0.0236218i
\(739\) −913.914 527.648i −1.23669 0.714003i −0.268273 0.963343i \(-0.586453\pi\)
−0.968416 + 0.249340i \(0.919786\pi\)
\(740\) −985.430 7.29636i −1.33166 0.00985995i
\(741\) −4.61462 −0.00622755
\(742\) 1945.99 + 44.1896i 2.62263 + 0.0595547i
\(743\) 750.889 750.889i 1.01062 1.01062i 0.0106743 0.999943i \(-0.496602\pi\)
0.999943 0.0106743i \(-0.00339779\pi\)
\(744\) 55.4779 32.0302i 0.0745671 0.0430514i
\(745\) −335.183 92.4773i −0.449910 0.124131i
\(746\) 189.201 327.706i 0.253621 0.439284i
\(747\) −4.92292 + 18.3726i −0.00659025 + 0.0245952i
\(748\) 693.404 693.404i 0.927010 0.927010i
\(749\) −176.315 + 602.918i −0.235401 + 0.804964i
\(750\) −414.750 + 396.723i −0.553000 + 0.528964i
\(751\) 286.483 + 496.203i 0.381469 + 0.660723i 0.991272 0.131829i \(-0.0420851\pi\)
−0.609804 + 0.792552i \(0.708752\pi\)
\(752\) 1057.89 283.461i 1.40677 0.376942i
\(753\) 77.7904 + 290.318i 0.103307 + 0.385548i
\(754\) −10.4795 + 6.05035i −0.0138986 + 0.00802434i
\(755\) 71.2068 18.5158i 0.0943136 0.0245243i
\(756\) −26.0775 106.981i −0.0344941 0.141510i
\(757\) 498.849 + 498.849i 0.658982 + 0.658982i 0.955139 0.296157i \(-0.0957053\pi\)
−0.296157 + 0.955139i \(0.595705\pi\)
\(758\) −1736.34 465.250i −2.29068 0.613786i
\(759\) 391.042 + 225.768i 0.515207 + 0.297455i
\(760\) 142.395 80.8119i 0.187362 0.106331i
\(761\) −67.0095 116.064i −0.0880545 0.152515i 0.818634 0.574315i \(-0.194732\pi\)
−0.906689 + 0.421800i \(0.861398\pi\)