Properties

Label 105.3.v.a.67.3
Level 105
Weight 3
Character 105.67
Analytic conductor 2.861
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 67.3
Character \(\chi\) \(=\) 105.67
Dual form 105.3.v.a.58.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.773463 + 2.88660i) q^{2} +(0.448288 + 1.67303i) q^{3} +(-4.27013 - 2.46536i) q^{4} +(4.24741 + 2.63808i) q^{5} -5.17611 q^{6} +(-4.68804 + 5.19830i) q^{7} +(1.96674 - 1.96674i) q^{8} +(-2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(-0.773463 + 2.88660i) q^{2} +(0.448288 + 1.67303i) q^{3} +(-4.27013 - 2.46536i) q^{4} +(4.24741 + 2.63808i) q^{5} -5.17611 q^{6} +(-4.68804 + 5.19830i) q^{7} +(1.96674 - 1.96674i) q^{8} +(-2.59808 + 1.50000i) q^{9} +(-10.9003 + 10.2201i) q^{10} +(6.71313 - 11.6275i) q^{11} +(2.21038 - 8.24925i) q^{12} +(-3.94411 + 3.94411i) q^{13} +(-11.3794 - 17.5532i) q^{14} +(-2.50953 + 8.28868i) q^{15} +(-5.70544 - 9.88212i) q^{16} +(9.46609 - 2.53643i) q^{17} +(-2.32039 - 8.65981i) q^{18} +(4.57992 - 2.64422i) q^{19} +(-11.6332 - 21.7363i) q^{20} +(-10.7985 - 5.51290i) q^{21} +(28.3716 + 28.3716i) q^{22} +(7.39285 + 1.98091i) q^{23} +(4.17208 + 2.40875i) q^{24} +(11.0811 + 22.4100i) q^{25} +(-8.33445 - 14.4357i) q^{26} +(-3.67423 - 3.67423i) q^{27} +(32.8342 - 10.6397i) q^{28} +36.7188i q^{29} +(-21.9851 - 13.6550i) q^{30} +(-9.71723 + 16.8307i) q^{31} +(43.6852 - 11.7054i) q^{32} +(22.4626 + 6.01883i) q^{33} +29.2867i q^{34} +(-33.6256 + 9.71192i) q^{35} +14.7922 q^{36} +(-11.7317 + 43.7832i) q^{37} +(4.09041 + 15.2656i) q^{38} +(-8.36672 - 4.83053i) q^{39} +(13.5420 - 3.16514i) q^{40} +57.9301 q^{41} +(24.2658 - 26.9070i) q^{42} +(46.3359 - 46.3359i) q^{43} +(-57.3319 + 33.1006i) q^{44} +(-14.9922 - 0.482811i) q^{45} +(-11.4362 + 19.8080i) q^{46} +(16.4446 - 61.3721i) q^{47} +(13.9754 - 13.9754i) q^{48} +(-5.04463 - 48.7396i) q^{49} +(-73.2597 + 14.6533i) q^{50} +(8.48707 + 14.7000i) q^{51} +(26.5655 - 7.11820i) q^{52} +(10.4187 + 38.8830i) q^{53} +(13.4479 - 7.76417i) q^{54} +(59.1877 - 31.6770i) q^{55} +(1.00355 + 19.4438i) q^{56} +(6.47699 + 6.47699i) q^{57} +(-105.992 - 28.4006i) q^{58} +(60.4517 + 34.9018i) q^{59} +(31.1506 - 29.2068i) q^{60} +(-39.4523 - 68.3334i) q^{61} +(-41.0677 - 41.0677i) q^{62} +(4.38243 - 20.5376i) q^{63} +89.5118i q^{64} +(-27.1571 + 6.34739i) q^{65} +(-34.7479 + 60.1852i) q^{66} +(-107.241 + 28.7353i) q^{67} +(-46.6746 - 12.5064i) q^{68} +13.2565i q^{69} +(-2.02632 - 104.575i) q^{70} -121.479 q^{71} +(-2.15963 + 8.05985i) q^{72} +(-1.25968 - 4.70119i) q^{73} +(-117.311 - 67.7293i) q^{74} +(-32.5252 + 28.5851i) q^{75} -26.0758 q^{76} +(28.9718 + 89.4070i) q^{77} +(20.4152 - 20.4152i) q^{78} +(116.005 - 66.9753i) q^{79} +(1.83643 - 57.0249i) q^{80} +(4.50000 - 7.79423i) q^{81} +(-44.8068 + 167.221i) q^{82} +(99.6896 - 99.6896i) q^{83} +(32.5197 + 50.1630i) q^{84} +(46.8977 + 14.1990i) q^{85} +(97.9142 + 169.592i) q^{86} +(-61.4317 + 16.4606i) q^{87} +(-9.66526 - 36.0712i) q^{88} +(20.5641 - 11.8727i) q^{89} +(12.9896 - 42.9032i) q^{90} +(-2.01253 - 38.9928i) q^{91} +(-26.6847 - 26.6847i) q^{92} +(-32.5145 - 8.71223i) q^{93} +(164.438 + 94.9381i) q^{94} +(26.4285 + 0.851106i) q^{95} +(39.1670 + 67.8393i) q^{96} +(-40.9086 - 40.9086i) q^{97} +(144.594 + 23.1364i) q^{98} +40.2788i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} + O(q^{10}) \) \( 64q + 4q^{5} - 4q^{7} + 24q^{8} - 16q^{10} + 16q^{11} - 48q^{15} + 80q^{16} + 56q^{17} + 24q^{21} - 96q^{22} + 72q^{23} - 4q^{25} - 288q^{26} - 380q^{28} - 48q^{30} - 136q^{31} - 48q^{32} - 72q^{33} + 76q^{35} + 384q^{36} - 28q^{37} - 68q^{38} + 164q^{40} + 128q^{41} - 12q^{42} + 344q^{43} + 240q^{46} + 412q^{47} - 288q^{48} - 72q^{50} - 24q^{51} + 388q^{52} - 40q^{53} - 8q^{55} - 864q^{56} - 192q^{57} + 56q^{58} - 180q^{60} - 216q^{61} - 912q^{62} - 84q^{63} + 20q^{65} - 72q^{66} - 368q^{67} - 492q^{68} + 416q^{70} + 784q^{71} + 36q^{72} - 316q^{73} + 96q^{75} - 32q^{76} + 844q^{77} + 624q^{78} + 908q^{80} + 288q^{81} + 556q^{82} + 1408q^{83} - 536q^{85} + 1024q^{86} + 108q^{87} + 372q^{88} + 216q^{90} - 1064q^{91} - 1704q^{92} + 144q^{93} + 260q^{95} + 352q^{97} + 272q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.773463 + 2.88660i −0.386731 + 1.44330i 0.448688 + 0.893688i \(0.351891\pi\)
−0.835419 + 0.549613i \(0.814775\pi\)
\(3\) 0.448288 + 1.67303i 0.149429 + 0.557678i
\(4\) −4.27013 2.46536i −1.06753 0.616340i
\(5\) 4.24741 + 2.63808i 0.849483 + 0.527616i
\(6\) −5.17611 −0.862686
\(7\) −4.68804 + 5.19830i −0.669719 + 0.742614i
\(8\) 1.96674 1.96674i 0.245842 0.245842i
\(9\) −2.59808 + 1.50000i −0.288675 + 0.166667i
\(10\) −10.9003 + 10.2201i −1.09003 + 1.02201i
\(11\) 6.71313 11.6275i 0.610285 1.05704i −0.380907 0.924613i \(-0.624388\pi\)
0.991192 0.132431i \(-0.0422784\pi\)
\(12\) 2.21038 8.24925i 0.184198 0.687438i
\(13\) −3.94411 + 3.94411i −0.303393 + 0.303393i −0.842340 0.538947i \(-0.818822\pi\)
0.538947 + 0.842340i \(0.318822\pi\)
\(14\) −11.3794 17.5532i −0.812814 1.25380i
\(15\) −2.50953 + 8.28868i −0.167302 + 0.552579i
\(16\) −5.70544 9.88212i −0.356590 0.617632i
\(17\) 9.46609 2.53643i 0.556829 0.149202i 0.0305799 0.999532i \(-0.490265\pi\)
0.526249 + 0.850330i \(0.323598\pi\)
\(18\) −2.32039 8.65981i −0.128910 0.481100i
\(19\) 4.57992 2.64422i 0.241049 0.139169i −0.374610 0.927182i \(-0.622223\pi\)
0.615659 + 0.788013i \(0.288890\pi\)
\(20\) −11.6332 21.7363i −0.581659 1.08682i
\(21\) −10.7985 5.51290i −0.514215 0.262519i
\(22\) 28.3716 + 28.3716i 1.28962 + 1.28962i
\(23\) 7.39285 + 1.98091i 0.321428 + 0.0861264i 0.415925 0.909399i \(-0.363458\pi\)
−0.0944974 + 0.995525i \(0.530124\pi\)
\(24\) 4.17208 + 2.40875i 0.173837 + 0.100365i
\(25\) 11.0811 + 22.4100i 0.443243 + 0.896402i
\(26\) −8.33445 14.4357i −0.320556 0.555219i
\(27\) −3.67423 3.67423i −0.136083 0.136083i
\(28\) 32.8342 10.6397i 1.17265 0.379990i
\(29\) 36.7188i 1.26616i 0.774085 + 0.633082i \(0.218211\pi\)
−0.774085 + 0.633082i \(0.781789\pi\)
\(30\) −21.9851 13.6550i −0.732837 0.455167i
\(31\) −9.71723 + 16.8307i −0.313459 + 0.542927i −0.979109 0.203337i \(-0.934821\pi\)
0.665650 + 0.746264i \(0.268155\pi\)
\(32\) 43.6852 11.7054i 1.36516 0.365794i
\(33\) 22.4626 + 6.01883i 0.680684 + 0.182389i
\(34\) 29.2867i 0.861373i
\(35\) −33.6256 + 9.71192i −0.960730 + 0.277483i
\(36\) 14.7922 0.410893
\(37\) −11.7317 + 43.7832i −0.317072 + 1.18333i 0.604973 + 0.796246i \(0.293184\pi\)
−0.922045 + 0.387083i \(0.873483\pi\)
\(38\) 4.09041 + 15.2656i 0.107642 + 0.401727i
\(39\) −8.36672 4.83053i −0.214531 0.123860i
\(40\) 13.5420 3.16514i 0.338549 0.0791285i
\(41\) 57.9301 1.41293 0.706464 0.707749i \(-0.250289\pi\)
0.706464 + 0.707749i \(0.250289\pi\)
\(42\) 24.2658 26.9070i 0.577757 0.640643i
\(43\) 46.3359 46.3359i 1.07758 1.07758i 0.0808525 0.996726i \(-0.474236\pi\)
0.996726 0.0808525i \(-0.0257643\pi\)
\(44\) −57.3319 + 33.1006i −1.30300 + 0.752286i
\(45\) −14.9922 0.482811i −0.333161 0.0107291i
\(46\) −11.4362 + 19.8080i −0.248613 + 0.430610i
\(47\) 16.4446 61.3721i 0.349885 1.30579i −0.536915 0.843636i \(-0.680410\pi\)
0.886800 0.462153i \(-0.152923\pi\)
\(48\) 13.9754 13.9754i 0.291155 0.291155i
\(49\) −5.04463 48.7396i −0.102952 0.994686i
\(50\) −73.2597 + 14.6533i −1.46519 + 0.293066i
\(51\) 8.48707 + 14.7000i 0.166413 + 0.288236i
\(52\) 26.5655 7.11820i 0.510875 0.136889i
\(53\) 10.4187 + 38.8830i 0.196578 + 0.733641i 0.991853 + 0.127391i \(0.0406602\pi\)
−0.795274 + 0.606250i \(0.792673\pi\)
\(54\) 13.4479 7.76417i 0.249036 0.143781i
\(55\) 59.1877 31.6770i 1.07614 0.575945i
\(56\) 1.00355 + 19.4438i 0.0179206 + 0.347212i
\(57\) 6.47699 + 6.47699i 0.113631 + 0.113631i
\(58\) −105.992 28.4006i −1.82746 0.489666i
\(59\) 60.4517 + 34.9018i 1.02461 + 0.591556i 0.915434 0.402467i \(-0.131847\pi\)
0.109171 + 0.994023i \(0.465181\pi\)
\(60\) 31.1506 29.2068i 0.519177 0.486781i
\(61\) −39.4523 68.3334i −0.646759 1.12022i −0.983892 0.178763i \(-0.942790\pi\)
0.337133 0.941457i \(-0.390543\pi\)
\(62\) −41.0677 41.0677i −0.662383 0.662383i
\(63\) 4.38243 20.5376i 0.0695623 0.325994i
\(64\) 89.5118i 1.39862i
\(65\) −27.1571 + 6.34739i −0.417802 + 0.0976522i
\(66\) −34.7479 + 60.1852i −0.526484 + 0.911897i
\(67\) −107.241 + 28.7353i −1.60062 + 0.428885i −0.945229 0.326407i \(-0.894162\pi\)
−0.655389 + 0.755291i \(0.727495\pi\)
\(68\) −46.6746 12.5064i −0.686392 0.183918i
\(69\) 13.2565i 0.192123i
\(70\) −2.02632 104.575i −0.0289475 1.49394i
\(71\) −121.479 −1.71097 −0.855486 0.517826i \(-0.826741\pi\)
−0.855486 + 0.517826i \(0.826741\pi\)
\(72\) −2.15963 + 8.05985i −0.0299949 + 0.111942i
\(73\) −1.25968 4.70119i −0.0172559 0.0643998i 0.956761 0.290875i \(-0.0939464\pi\)
−0.974017 + 0.226475i \(0.927280\pi\)
\(74\) −117.311 67.7293i −1.58528 0.915261i
\(75\) −32.5252 + 28.5851i −0.433670 + 0.381135i
\(76\) −26.0758 −0.343103
\(77\) 28.9718 + 89.4070i 0.376257 + 1.16113i
\(78\) 20.4152 20.4152i 0.261733 0.261733i
\(79\) 116.005 66.9753i 1.46841 0.847788i 0.469039 0.883177i \(-0.344600\pi\)
0.999374 + 0.0353889i \(0.0112670\pi\)
\(80\) 1.83643 57.0249i 0.0229554 0.712811i
\(81\) 4.50000 7.79423i 0.0555556 0.0962250i
\(82\) −44.8068 + 167.221i −0.546424 + 2.03928i
\(83\) 99.6896 99.6896i 1.20108 1.20108i 0.227242 0.973838i \(-0.427029\pi\)
0.973838 0.227242i \(-0.0729707\pi\)
\(84\) 32.5197 + 50.1630i 0.387140 + 0.597179i
\(85\) 46.8977 + 14.1990i 0.551738 + 0.167047i
\(86\) 97.9142 + 169.592i 1.13854 + 1.97200i
\(87\) −61.4317 + 16.4606i −0.706112 + 0.189202i
\(88\) −9.66526 36.0712i −0.109832 0.409900i
\(89\) 20.5641 11.8727i 0.231058 0.133401i −0.380002 0.924986i \(-0.624077\pi\)
0.611060 + 0.791584i \(0.290743\pi\)
\(90\) 12.9896 42.9032i 0.144329 0.476702i
\(91\) −2.01253 38.9928i −0.0221158 0.428492i
\(92\) −26.6847 26.6847i −0.290052 0.290052i
\(93\) −32.5145 8.71223i −0.349618 0.0936799i
\(94\) 164.438 + 94.9381i 1.74934 + 1.00998i
\(95\) 26.4285 + 0.851106i 0.278195 + 0.00895901i
\(96\) 39.1670 + 67.8393i 0.407990 + 0.706659i
\(97\) −40.9086 40.9086i −0.421738 0.421738i 0.464064 0.885802i \(-0.346391\pi\)
−0.885802 + 0.464064i \(0.846391\pi\)
\(98\) 144.594 + 23.1364i 1.47545 + 0.236086i
\(99\) 40.2788i 0.406857i
\(100\) 7.93124 123.013i 0.0793124 1.23013i
\(101\) 34.1609 59.1683i 0.338226 0.585825i −0.645873 0.763445i \(-0.723506\pi\)
0.984099 + 0.177620i \(0.0568397\pi\)
\(102\) −48.9976 + 13.1289i −0.480368 + 0.128714i
\(103\) −122.562 32.8404i −1.18992 0.318839i −0.391067 0.920362i \(-0.627894\pi\)
−0.798855 + 0.601524i \(0.794561\pi\)
\(104\) 15.5141i 0.149174i
\(105\) −31.3223 51.9029i −0.298307 0.494314i
\(106\) −120.298 −1.13489
\(107\) −15.7086 + 58.6252i −0.146809 + 0.547899i 0.852859 + 0.522141i \(0.174867\pi\)
−0.999668 + 0.0257581i \(0.991800\pi\)
\(108\) 6.63114 + 24.7478i 0.0613995 + 0.229146i
\(109\) −18.6575 10.7719i −0.171170 0.0988251i 0.411967 0.911199i \(-0.364842\pi\)
−0.583137 + 0.812374i \(0.698175\pi\)
\(110\) 45.6594 + 195.352i 0.415085 + 1.77593i
\(111\) −78.5098 −0.707296
\(112\) 78.1175 + 16.6691i 0.697478 + 0.148831i
\(113\) 12.3946 12.3946i 0.109686 0.109686i −0.650134 0.759820i \(-0.725287\pi\)
0.759820 + 0.650134i \(0.225287\pi\)
\(114\) −23.7062 + 13.6868i −0.207949 + 0.120060i
\(115\) 26.1747 + 27.9167i 0.227606 + 0.242754i
\(116\) 90.5250 156.794i 0.780388 1.35167i
\(117\) 4.33093 16.1633i 0.0370165 0.138148i
\(118\) −147.505 + 147.505i −1.25004 + 1.25004i
\(119\) −31.1923 + 61.0985i −0.262120 + 0.513432i
\(120\) 11.3661 + 21.2373i 0.0947174 + 0.176977i
\(121\) −29.6323 51.3247i −0.244895 0.424171i
\(122\) 227.766 61.0298i 1.86694 0.500244i
\(123\) 25.9693 + 96.9189i 0.211133 + 0.787959i
\(124\) 82.9877 47.9129i 0.669255 0.386395i
\(125\) −12.0536 + 124.417i −0.0964288 + 0.995340i
\(126\) 55.8943 + 28.5354i 0.443606 + 0.226472i
\(127\) −21.0785 21.0785i −0.165973 0.165973i 0.619234 0.785207i \(-0.287443\pi\)
−0.785207 + 0.619234i \(0.787443\pi\)
\(128\) −83.6445 22.4125i −0.653472 0.175097i
\(129\) 98.2932 + 56.7496i 0.761963 + 0.439920i
\(130\) 2.68264 83.3014i 0.0206357 0.640780i
\(131\) −62.6091 108.442i −0.477932 0.827803i 0.521748 0.853100i \(-0.325280\pi\)
−0.999680 + 0.0252971i \(0.991947\pi\)
\(132\) −81.0795 81.0795i −0.614239 0.614239i
\(133\) −7.72540 + 36.2040i −0.0580857 + 0.272211i
\(134\) 331.789i 2.47604i
\(135\) −5.91307 25.2989i −0.0438005 0.187399i
\(136\) 13.6288 23.6058i 0.100212 0.173572i
\(137\) 35.3927 9.48345i 0.258341 0.0692222i −0.127324 0.991861i \(-0.540639\pi\)
0.385665 + 0.922639i \(0.373972\pi\)
\(138\) −38.2662 10.2534i −0.277291 0.0743000i
\(139\) 84.6491i 0.608986i −0.952515 0.304493i \(-0.901513\pi\)
0.952515 0.304493i \(-0.0984870\pi\)
\(140\) 167.529 + 41.4280i 1.19663 + 0.295914i
\(141\) 110.049 0.780493
\(142\) 93.9595 350.662i 0.661687 2.46945i
\(143\) 19.3828 + 72.3374i 0.135544 + 0.505856i
\(144\) 29.6464 + 17.1163i 0.205877 + 0.118863i
\(145\) −96.8671 + 155.960i −0.668049 + 1.07559i
\(146\) 14.5448 0.0996217
\(147\) 79.2815 30.2892i 0.539330 0.206049i
\(148\) 158.037 158.037i 1.06782 1.06782i
\(149\) −28.2589 + 16.3153i −0.189657 + 0.109499i −0.591822 0.806069i \(-0.701591\pi\)
0.402165 + 0.915567i \(0.368258\pi\)
\(150\) −57.3569 115.997i −0.382379 0.773313i
\(151\) 78.0454 135.179i 0.516857 0.895223i −0.482951 0.875647i \(-0.660435\pi\)
0.999808 0.0195756i \(-0.00623149\pi\)
\(152\) 3.80702 14.2080i 0.0250462 0.0934737i
\(153\) −20.7890 + 20.7890i −0.135876 + 0.135876i
\(154\) −280.491 + 14.4770i −1.82137 + 0.0940063i
\(155\) −85.6740 + 45.8523i −0.552735 + 0.295821i
\(156\) 23.8180 + 41.2539i 0.152679 + 0.264448i
\(157\) −64.2534 + 17.2166i −0.409257 + 0.109660i −0.457573 0.889172i \(-0.651281\pi\)
0.0483159 + 0.998832i \(0.484615\pi\)
\(158\) 103.606 + 386.662i 0.655733 + 2.44723i
\(159\) −60.3819 + 34.8615i −0.379760 + 0.219255i
\(160\) 216.429 + 65.5272i 1.35268 + 0.409545i
\(161\) −44.9553 + 29.1437i −0.279225 + 0.181017i
\(162\) 19.0183 + 19.0183i 0.117397 + 0.117397i
\(163\) 56.4617 + 15.1289i 0.346391 + 0.0928152i 0.427820 0.903864i \(-0.359282\pi\)
−0.0814289 + 0.996679i \(0.525948\pi\)
\(164\) −247.369 142.818i −1.50835 0.870844i
\(165\) 79.5298 + 84.8226i 0.481999 + 0.514076i
\(166\) 210.658 + 364.871i 1.26902 + 2.19802i
\(167\) −93.0212 93.0212i −0.557013 0.557013i 0.371443 0.928456i \(-0.378863\pi\)
−0.928456 + 0.371443i \(0.878863\pi\)
\(168\) −32.0803 + 10.3954i −0.190954 + 0.0618775i
\(169\) 137.888i 0.815905i
\(170\) −77.2606 + 124.393i −0.454474 + 0.731722i
\(171\) −7.93266 + 13.7398i −0.0463898 + 0.0803495i
\(172\) −312.095 + 83.6255i −1.81450 + 0.486195i
\(173\) −233.906 62.6748i −1.35206 0.362282i −0.491162 0.871068i \(-0.663428\pi\)
−0.860893 + 0.508786i \(0.830094\pi\)
\(174\) 190.061i 1.09230i
\(175\) −168.443 47.4564i −0.962529 0.271179i
\(176\) −153.206 −0.870486
\(177\) −31.2921 + 116.784i −0.176792 + 0.659795i
\(178\) 18.3662 + 68.5435i 0.103181 + 0.385076i
\(179\) −228.989 132.207i −1.27927 0.738585i −0.302553 0.953133i \(-0.597839\pi\)
−0.976713 + 0.214548i \(0.931172\pi\)
\(180\) 62.8284 + 39.0229i 0.349047 + 0.216794i
\(181\) 286.020 1.58022 0.790110 0.612965i \(-0.210023\pi\)
0.790110 + 0.612965i \(0.210023\pi\)
\(182\) 114.113 + 24.3501i 0.626996 + 0.133792i
\(183\) 96.6381 96.6381i 0.528077 0.528077i
\(184\) 18.4357 10.6439i 0.100194 0.0578471i
\(185\) −165.333 + 155.016i −0.893690 + 0.837925i
\(186\) 50.2975 87.1178i 0.270417 0.468375i
\(187\) 34.0548 127.094i 0.182111 0.679649i
\(188\) −221.525 + 221.525i −1.17832 + 1.17832i
\(189\) 36.3247 1.87483i 0.192194 0.00991972i
\(190\) −22.8983 + 75.6303i −0.120517 + 0.398054i
\(191\) 38.1037 + 65.9976i 0.199496 + 0.345537i 0.948365 0.317181i \(-0.102736\pi\)
−0.748869 + 0.662718i \(0.769403\pi\)
\(192\) −149.756 + 40.1271i −0.779980 + 0.208995i
\(193\) 63.3927 + 236.585i 0.328459 + 1.22583i 0.910788 + 0.412874i \(0.135475\pi\)
−0.582329 + 0.812953i \(0.697858\pi\)
\(194\) 149.728 86.4456i 0.771795 0.445596i
\(195\) −22.7936 42.5893i −0.116890 0.218407i
\(196\) −98.6195 + 220.561i −0.503161 + 1.12531i
\(197\) 136.078 + 136.078i 0.690750 + 0.690750i 0.962397 0.271647i \(-0.0875684\pi\)
−0.271647 + 0.962397i \(0.587568\pi\)
\(198\) −116.269 31.1542i −0.587217 0.157344i
\(199\) −107.888 62.2892i −0.542151 0.313011i 0.203799 0.979013i \(-0.434671\pi\)
−0.745950 + 0.666002i \(0.768004\pi\)
\(200\) 65.8683 + 22.2811i 0.329341 + 0.111406i
\(201\) −96.1501 166.537i −0.478359 0.828541i
\(202\) 144.373 + 144.373i 0.714720 + 0.714720i
\(203\) −190.875 172.139i −0.940272 0.847975i
\(204\) 83.6947i 0.410268i
\(205\) 246.053 + 152.824i 1.20026 + 0.745484i
\(206\) 189.594 328.387i 0.920360 1.59411i
\(207\) −22.1785 + 5.94272i −0.107143 + 0.0287088i
\(208\) 61.4790 + 16.4733i 0.295572 + 0.0791984i
\(209\) 71.0040i 0.339732i
\(210\) 174.050 50.2700i 0.828808 0.239381i
\(211\) −25.5567 −0.121122 −0.0605610 0.998164i \(-0.519289\pi\)
−0.0605610 + 0.998164i \(0.519289\pi\)
\(212\) 51.3715 191.721i 0.242318 0.904344i
\(213\) −54.4576 203.238i −0.255669 0.954171i
\(214\) −157.078 90.6889i −0.734008 0.423780i
\(215\) 319.045 74.5699i 1.48393 0.346837i
\(216\) −14.4525 −0.0669098
\(217\) −41.9365 129.416i −0.193256 0.596388i
\(218\) 45.5252 45.5252i 0.208831 0.208831i
\(219\) 7.30054 4.21497i 0.0333358 0.0192464i
\(220\) −330.834 10.6542i −1.50379 0.0484283i
\(221\) −27.3313 + 47.3393i −0.123671 + 0.214205i
\(222\) 60.7244 226.627i 0.273533 1.02084i
\(223\) −58.9789 + 58.9789i −0.264479 + 0.264479i −0.826871 0.562392i \(-0.809881\pi\)
0.562392 + 0.826871i \(0.309881\pi\)
\(224\) −143.949 + 281.964i −0.642631 + 1.25877i
\(225\) −62.4045 41.6014i −0.277353 0.184895i
\(226\) 26.1914 + 45.3649i 0.115891 + 0.200730i
\(227\) −397.945 + 106.629i −1.75306 + 0.469732i −0.985276 0.170972i \(-0.945309\pi\)
−0.767788 + 0.640704i \(0.778642\pi\)
\(228\) −11.6895 43.6257i −0.0512696 0.191341i
\(229\) 325.569 187.967i 1.42170 0.820818i 0.425255 0.905074i \(-0.360184\pi\)
0.996444 + 0.0842553i \(0.0268511\pi\)
\(230\) −100.829 + 53.9634i −0.438389 + 0.234624i
\(231\) −136.593 + 88.5507i −0.591312 + 0.383337i
\(232\) 72.2163 + 72.2163i 0.311277 + 0.311277i
\(233\) −23.4568 6.28523i −0.100673 0.0269752i 0.208131 0.978101i \(-0.433262\pi\)
−0.308804 + 0.951126i \(0.599929\pi\)
\(234\) 43.3071 + 25.0034i 0.185073 + 0.106852i
\(235\) 231.752 217.291i 0.986177 0.924641i
\(236\) −172.091 298.070i −0.729199 1.26301i
\(237\) 164.055 + 164.055i 0.692216 + 0.692216i
\(238\) −152.241 137.297i −0.639668 0.576878i
\(239\) 50.6675i 0.211998i 0.994366 + 0.105999i \(0.0338040\pi\)
−0.994366 + 0.105999i \(0.966196\pi\)
\(240\) 96.2277 22.4911i 0.400949 0.0937131i
\(241\) 58.3080 100.992i 0.241942 0.419055i −0.719326 0.694673i \(-0.755549\pi\)
0.961267 + 0.275618i \(0.0888824\pi\)
\(242\) 171.074 45.8390i 0.706916 0.189417i
\(243\) 15.0573 + 4.03459i 0.0619642 + 0.0166032i
\(244\) 389.057i 1.59449i
\(245\) 107.152 220.326i 0.437357 0.899288i
\(246\) −299.853 −1.21891
\(247\) −7.63463 + 28.4928i −0.0309094 + 0.115356i
\(248\) 13.9904 + 52.2129i 0.0564130 + 0.210536i
\(249\) 211.474 + 122.094i 0.849292 + 0.490339i
\(250\) −349.821 131.026i −1.39928 0.524105i
\(251\) 320.629 1.27741 0.638704 0.769452i \(-0.279471\pi\)
0.638704 + 0.769452i \(0.279471\pi\)
\(252\) −69.3462 + 76.8941i −0.275183 + 0.305135i
\(253\) 72.6621 72.6621i 0.287202 0.287202i
\(254\) 77.1488 44.5419i 0.303736 0.175362i
\(255\) −2.73177 + 84.8267i −0.0107128 + 0.332654i
\(256\) −49.6319 + 85.9650i −0.193875 + 0.335801i
\(257\) 51.4131 191.876i 0.200051 0.746600i −0.790850 0.612009i \(-0.790361\pi\)
0.990901 0.134591i \(-0.0429719\pi\)
\(258\) −239.840 + 239.840i −0.929612 + 0.929612i
\(259\) −172.600 266.242i −0.666407 1.02796i
\(260\) 131.613 + 39.8480i 0.506204 + 0.153261i
\(261\) −55.0782 95.3982i −0.211027 0.365510i
\(262\) 361.455 96.8516i 1.37960 0.369663i
\(263\) 4.10646 + 15.3255i 0.0156139 + 0.0582720i 0.973293 0.229565i \(-0.0737304\pi\)
−0.957679 + 0.287837i \(0.907064\pi\)
\(264\) 56.0155 32.3406i 0.212180 0.122502i
\(265\) −58.3240 + 192.637i −0.220091 + 0.726933i
\(266\) −98.5313 50.3026i −0.370418 0.189108i
\(267\) 29.0821 + 29.0821i 0.108922 + 0.108922i
\(268\) 528.778 + 141.686i 1.97305 + 0.528677i
\(269\) 89.8942 + 51.9004i 0.334179 + 0.192938i 0.657695 0.753284i \(-0.271532\pi\)
−0.323516 + 0.946223i \(0.604865\pi\)
\(270\) 77.6015 + 2.49909i 0.287413 + 0.00925587i
\(271\) 78.5571 + 136.065i 0.289878 + 0.502084i 0.973781 0.227490i \(-0.0730518\pi\)
−0.683902 + 0.729574i \(0.739718\pi\)
\(272\) −79.0736 79.0736i −0.290712 0.290712i
\(273\) 64.3340 20.8470i 0.235656 0.0763627i
\(274\) 109.500i 0.399634i
\(275\) 334.961 + 21.5966i 1.21804 + 0.0785332i
\(276\) 32.6820 56.6069i 0.118413 0.205097i
\(277\) −201.983 + 54.1211i −0.729179 + 0.195383i −0.604264 0.796784i \(-0.706533\pi\)
−0.124916 + 0.992167i \(0.539866\pi\)
\(278\) 244.348 + 65.4729i 0.878950 + 0.235514i
\(279\) 58.3034i 0.208973i
\(280\) −47.0319 + 85.2335i −0.167971 + 0.304405i
\(281\) 454.909 1.61889 0.809446 0.587194i \(-0.199768\pi\)
0.809446 + 0.587194i \(0.199768\pi\)
\(282\) −85.1192 + 317.669i −0.301841 + 1.12649i
\(283\) −26.5708 99.1636i −0.0938898 0.350401i 0.902959 0.429727i \(-0.141390\pi\)
−0.996849 + 0.0793253i \(0.974723\pi\)
\(284\) 518.731 + 299.489i 1.82652 + 1.05454i
\(285\) 10.4236 + 44.5973i 0.0365742 + 0.156482i
\(286\) −223.801 −0.782522
\(287\) −271.578 + 301.138i −0.946266 + 1.04926i
\(288\) −95.9393 + 95.9393i −0.333122 + 0.333122i
\(289\) −167.108 + 96.4798i −0.578228 + 0.333840i
\(290\) −375.271 400.246i −1.29404 1.38016i
\(291\) 50.1026 86.7803i 0.172174 0.298214i
\(292\) −6.21112 + 23.1802i −0.0212710 + 0.0793843i
\(293\) 102.346 102.346i 0.349302 0.349302i −0.510547 0.859850i \(-0.670557\pi\)
0.859850 + 0.510547i \(0.170557\pi\)
\(294\) 26.1116 + 252.282i 0.0888150 + 0.858102i
\(295\) 164.690 + 307.719i 0.558270 + 1.04311i
\(296\) 63.0369 + 109.183i 0.212963 + 0.368862i
\(297\) −67.3878 + 18.0565i −0.226895 + 0.0607963i
\(298\) −25.2385 94.1914i −0.0846930 0.316079i
\(299\) −36.9711 + 21.3453i −0.123649 + 0.0713889i
\(300\) 209.359 41.8758i 0.697865 0.139586i
\(301\) 23.6435 + 458.092i 0.0785498 + 1.52190i
\(302\) 329.842 + 329.842i 1.09219 + 1.09219i
\(303\) 114.304 + 30.6278i 0.377242 + 0.101082i
\(304\) −52.2610 30.1729i −0.171911 0.0992529i
\(305\) 12.6987 394.319i 0.0416350 1.29285i
\(306\) −43.9300 76.0890i −0.143562 0.248657i
\(307\) 29.1999 + 29.1999i 0.0951137 + 0.0951137i 0.753063 0.657949i \(-0.228576\pi\)
−0.657949 + 0.753063i \(0.728576\pi\)
\(308\) 96.7072 453.205i 0.313985 1.47144i
\(309\) 219.772i 0.711236i
\(310\) −66.0917 282.772i −0.213199 0.912167i
\(311\) −201.089 + 348.297i −0.646589 + 1.11992i 0.337343 + 0.941382i \(0.390472\pi\)
−0.983932 + 0.178543i \(0.942862\pi\)
\(312\) −25.9555 + 6.95477i −0.0831909 + 0.0222909i
\(313\) −277.198 74.2751i −0.885618 0.237301i −0.212788 0.977098i \(-0.568254\pi\)
−0.672829 + 0.739798i \(0.734921\pi\)
\(314\) 198.790i 0.633091i
\(315\) 72.7939 75.6707i 0.231092 0.240224i
\(316\) −660.473 −2.09010
\(317\) 90.0106 335.924i 0.283945 1.05970i −0.665662 0.746254i \(-0.731851\pi\)
0.949607 0.313444i \(-0.101483\pi\)
\(318\) −53.9282 201.263i −0.169585 0.632901i
\(319\) 426.947 + 246.498i 1.33839 + 0.772721i
\(320\) −236.139 + 380.194i −0.737936 + 1.18811i
\(321\) −105.124 −0.327489
\(322\) −49.3549 152.310i −0.153276 0.473011i
\(323\) 36.6471 36.6471i 0.113458 0.113458i
\(324\) −38.4312 + 22.1882i −0.118615 + 0.0684822i
\(325\) −132.093 44.6827i −0.406439 0.137485i
\(326\) −87.3421 + 151.281i −0.267921 + 0.464052i
\(327\) 9.65785 36.0436i 0.0295347 0.110225i
\(328\) 113.933 113.933i 0.347358 0.347358i
\(329\) 241.938 + 373.199i 0.735373 + 1.13434i
\(330\) −306.362 + 163.964i −0.928371 + 0.496860i
\(331\) −36.2176 62.7307i −0.109419 0.189519i 0.806116 0.591757i \(-0.201566\pi\)
−0.915535 + 0.402239i \(0.868232\pi\)
\(332\) −671.458 + 179.917i −2.02246 + 0.541918i
\(333\) −35.1950 131.349i −0.105691 0.394443i
\(334\) 340.464 196.567i 1.01935 0.588523i
\(335\) −531.305 160.861i −1.58598 0.480182i
\(336\) 7.13115 + 138.166i 0.0212236 + 0.411208i
\(337\) −255.737 255.737i −0.758865 0.758865i 0.217251 0.976116i \(-0.430291\pi\)
−0.976116 + 0.217251i \(0.930291\pi\)
\(338\) −398.028 106.651i −1.17760 0.315536i
\(339\) 26.2928 + 15.1802i 0.0775600 + 0.0447793i
\(340\) −165.254 176.251i −0.486040 0.518387i
\(341\) 130.466 + 225.974i 0.382599 + 0.662680i
\(342\) −33.5256 33.5256i −0.0980282 0.0980282i
\(343\) 277.013 + 202.270i 0.807617 + 0.589707i
\(344\) 182.261i 0.529829i
\(345\) −34.9717 + 56.3058i −0.101367 + 0.163205i
\(346\) 361.835 626.716i 1.04576 1.81132i
\(347\) 278.775 74.6974i 0.803385 0.215266i 0.166315 0.986073i \(-0.446813\pi\)
0.637070 + 0.770806i \(0.280146\pi\)
\(348\) 302.902 + 81.1625i 0.870409 + 0.233225i
\(349\) 480.492i 1.37677i 0.725347 + 0.688384i \(0.241680\pi\)
−0.725347 + 0.688384i \(0.758320\pi\)
\(350\) 267.272 449.521i 0.763634 1.28435i
\(351\) 28.9832 0.0825731
\(352\) 157.160 586.529i 0.446477 1.66627i
\(353\) 24.9800 + 93.2268i 0.0707650 + 0.264098i 0.992240 0.124340i \(-0.0396813\pi\)
−0.921475 + 0.388438i \(0.873015\pi\)
\(354\) −312.905 180.656i −0.883912 0.510327i
\(355\) −515.972 320.471i −1.45344 0.902736i
\(356\) −117.082 −0.328882
\(357\) −116.203 24.7960i −0.325498 0.0694565i
\(358\) 558.742 558.742i 1.56073 1.56073i
\(359\) −280.865 + 162.157i −0.782353 + 0.451692i −0.837264 0.546799i \(-0.815846\pi\)
0.0549104 + 0.998491i \(0.482513\pi\)
\(360\) −30.4354 + 28.5362i −0.0845427 + 0.0792673i
\(361\) −166.516 + 288.415i −0.461264 + 0.798932i
\(362\) −221.226 + 825.626i −0.611121 + 2.28073i
\(363\) 72.5841 72.5841i 0.199956 0.199956i
\(364\) −87.5375 + 171.466i −0.240488 + 0.471060i
\(365\) 7.05173 23.2910i 0.0193198 0.0638110i
\(366\) 204.210 + 353.702i 0.557950 + 0.966398i
\(367\) 249.220 66.7783i 0.679074 0.181957i 0.0972351 0.995261i \(-0.469000\pi\)
0.581839 + 0.813304i \(0.302333\pi\)
\(368\) −22.6039 84.3589i −0.0614237 0.229236i
\(369\) −150.507 + 86.8951i −0.407877 + 0.235488i
\(370\) −319.591 597.149i −0.863760 1.61392i
\(371\) −250.968 128.125i −0.676464 0.345352i
\(372\) 117.362 + 117.362i 0.315490 + 0.315490i
\(373\) −474.026 127.015i −1.27085 0.340523i −0.440492 0.897756i \(-0.645196\pi\)
−0.830356 + 0.557234i \(0.811863\pi\)
\(374\) 340.531 + 196.605i 0.910510 + 0.525683i
\(375\) −213.558 + 35.6088i −0.569488 + 0.0949567i
\(376\) −88.3607 153.045i −0.235002 0.407035i
\(377\) −144.823 144.823i −0.384145 0.384145i
\(378\) −22.6839 + 106.305i −0.0600104 + 0.281230i
\(379\) 177.802i 0.469134i −0.972100 0.234567i \(-0.924633\pi\)
0.972100 0.234567i \(-0.0753672\pi\)
\(380\) −110.755 68.7901i −0.291460 0.181027i
\(381\) 25.8158 44.7143i 0.0677581 0.117360i
\(382\) −219.981 + 58.9436i −0.575866 + 0.154303i
\(383\) 445.189 + 119.288i 1.16237 + 0.311457i 0.787913 0.615786i \(-0.211162\pi\)
0.374460 + 0.927243i \(0.377828\pi\)
\(384\) 149.987i 0.390592i
\(385\) −112.808 + 456.178i −0.293007 + 1.18488i
\(386\) −731.958 −1.89626
\(387\) −50.8803 + 189.888i −0.131474 + 0.490667i
\(388\) 73.8306 + 275.540i 0.190285 + 0.710153i
\(389\) −258.574 149.288i −0.664714 0.383773i 0.129357 0.991598i \(-0.458709\pi\)
−0.794071 + 0.607825i \(0.792042\pi\)
\(390\) 140.568 32.8548i 0.360432 0.0842431i
\(391\) 75.0058 0.191831
\(392\) −105.780 85.9367i −0.269846 0.219226i
\(393\) 153.360 153.360i 0.390230 0.390230i
\(394\) −498.053 + 287.551i −1.26409 + 0.729825i
\(395\) 669.406 + 21.5576i 1.69470 + 0.0545762i
\(396\) 99.3017 171.996i 0.250762 0.434332i
\(397\) −23.2619 + 86.8147i −0.0585943 + 0.218677i −0.989015 0.147817i \(-0.952775\pi\)
0.930420 + 0.366494i \(0.119442\pi\)
\(398\) 263.252 263.252i 0.661436 0.661436i
\(399\) −64.0337 + 3.30497i −0.160485 + 0.00828313i
\(400\) 158.236 237.364i 0.395591 0.593409i
\(401\) −48.6620 84.2851i −0.121352 0.210187i 0.798949 0.601398i \(-0.205390\pi\)
−0.920301 + 0.391211i \(0.872056\pi\)
\(402\) 555.094 148.737i 1.38083 0.369993i
\(403\) −28.0565 104.708i −0.0696190 0.259822i
\(404\) −291.743 + 168.438i −0.722135 + 0.416925i
\(405\) 39.6752 21.2340i 0.0979634 0.0524295i
\(406\) 644.532 417.838i 1.58752 1.02916i
\(407\) 430.332 + 430.332i 1.05733 + 1.05733i
\(408\) 45.6030 + 12.2193i 0.111772 + 0.0299492i
\(409\) −232.510 134.240i −0.568485 0.328215i 0.188059 0.982158i \(-0.439780\pi\)
−0.756544 + 0.653943i \(0.773114\pi\)
\(410\) −631.456 + 592.054i −1.54014 + 1.44403i
\(411\) 31.7322 + 54.9618i 0.0772074 + 0.133727i
\(412\) 442.392 + 442.392i 1.07377 + 1.07377i
\(413\) −464.830 + 150.625i −1.12550 + 0.364710i
\(414\) 68.6171i 0.165742i
\(415\) 686.413 160.434i 1.65401 0.386588i
\(416\) −126.132 + 218.466i −0.303201 + 0.525160i
\(417\) 141.621 37.9471i 0.339618 0.0910003i
\(418\) 204.960 + 54.9190i 0.490336 + 0.131385i
\(419\) 515.863i 1.23118i 0.788068 + 0.615588i \(0.211081\pi\)
−0.788068 + 0.615588i \(0.788919\pi\)
\(420\) 5.79078 + 298.853i 0.0137876 + 0.711554i
\(421\) −470.236 −1.11695 −0.558475 0.829521i \(-0.688613\pi\)
−0.558475 + 0.829521i \(0.688613\pi\)
\(422\) 19.7672 73.7721i 0.0468417 0.174815i
\(423\) 49.3338 + 184.116i 0.116628 + 0.435263i
\(424\) 96.9634 + 55.9819i 0.228687 + 0.132033i
\(425\) 161.736 + 184.029i 0.380555 + 0.433010i
\(426\) 628.789 1.47603
\(427\) 540.172 + 115.265i 1.26504 + 0.269941i
\(428\) 211.610 211.610i 0.494416 0.494416i
\(429\) −112.334 + 64.8560i −0.261850 + 0.151179i
\(430\) −31.5160 + 978.634i −0.0732931 + 2.27589i
\(431\) −135.577 + 234.827i −0.314564 + 0.544841i −0.979345 0.202198i \(-0.935192\pi\)
0.664781 + 0.747039i \(0.268525\pi\)
\(432\) −15.3461 + 57.2724i −0.0355233 + 0.132575i
\(433\) −135.694 + 135.694i −0.313381 + 0.313381i −0.846218 0.532837i \(-0.821126\pi\)
0.532837 + 0.846218i \(0.321126\pi\)
\(434\) 406.009 20.9554i 0.935506 0.0482842i
\(435\) −304.350 92.1469i −0.699656 0.211832i
\(436\) 53.1134 + 91.9950i 0.121820 + 0.210998i
\(437\) 39.0966 10.4759i 0.0894660 0.0239723i
\(438\) 6.52024 + 24.3339i 0.0148864 + 0.0555568i
\(439\) −406.331 + 234.596i −0.925584 + 0.534386i −0.885412 0.464806i \(-0.846124\pi\)
−0.0401720 + 0.999193i \(0.512791\pi\)
\(440\) 54.1064 178.707i 0.122969 0.406153i
\(441\) 86.2158 + 119.062i 0.195501 + 0.269983i
\(442\) −115.510 115.510i −0.261335 0.261335i
\(443\) −297.069 79.5993i −0.670584 0.179682i −0.0925661 0.995707i \(-0.529507\pi\)
−0.578018 + 0.816024i \(0.696174\pi\)
\(444\) 335.247 + 193.555i 0.755061 + 0.435934i
\(445\) 118.666 + 3.82152i 0.266664 + 0.00858767i
\(446\) −124.631 215.867i −0.279441 0.484006i
\(447\) −39.9641 39.9641i −0.0894052 0.0894052i
\(448\) −465.309 419.635i −1.03864 0.936685i
\(449\) 556.174i 1.23870i −0.785117 0.619348i \(-0.787397\pi\)
0.785117 0.619348i \(-0.212603\pi\)
\(450\) 168.354 147.960i 0.374121 0.328800i
\(451\) 388.892 673.581i 0.862289 1.49353i
\(452\) −83.4834 + 22.3693i −0.184698 + 0.0494896i
\(453\) 261.145 + 69.9736i 0.576479 + 0.154467i
\(454\) 1231.18i 2.71186i
\(455\) 94.3180 170.928i 0.207292 0.375665i
\(456\) 25.4771 0.0558708
\(457\) −132.915 + 496.047i −0.290843 + 1.08544i 0.653620 + 0.756823i \(0.273250\pi\)
−0.944463 + 0.328618i \(0.893417\pi\)
\(458\) 290.772 + 1085.17i 0.634872 + 2.36938i
\(459\) −44.1001 25.4612i −0.0960786 0.0554710i
\(460\) −42.9447 183.738i −0.0933580 0.399430i
\(461\) −140.261 −0.304254 −0.152127 0.988361i \(-0.548612\pi\)
−0.152127 + 0.988361i \(0.548612\pi\)
\(462\) −149.961 462.781i −0.324591 1.00169i
\(463\) −440.572 + 440.572i −0.951560 + 0.951560i −0.998880 0.0473198i \(-0.984932\pi\)
0.0473198 + 0.998880i \(0.484932\pi\)
\(464\) 362.859 209.497i 0.782024 0.451502i
\(465\) −115.119 122.780i −0.247568 0.264044i
\(466\) 36.2859 62.8490i 0.0778667 0.134869i
\(467\) 114.858 428.655i 0.245948 0.917892i −0.726956 0.686684i \(-0.759066\pi\)
0.972904 0.231208i \(-0.0742677\pi\)
\(468\) −58.3419 + 58.3419i −0.124662 + 0.124662i
\(469\) 353.377 692.185i 0.753470 1.47587i
\(470\) 447.980 + 837.041i 0.953150 + 1.78094i
\(471\) −57.6080 99.7800i −0.122310 0.211847i
\(472\) 187.535 50.2500i 0.397321 0.106462i
\(473\) −227.711 849.829i −0.481419 1.79668i
\(474\) −600.453 + 346.672i −1.26678 + 0.731375i
\(475\) 110.008 + 73.3355i 0.231595 + 0.154391i
\(476\) 283.825 183.998i 0.596270 0.386551i
\(477\) −85.3929 85.3929i −0.179021 0.179021i
\(478\) −146.257 39.1894i −0.305977 0.0819862i
\(479\) 190.500 + 109.985i 0.397703 + 0.229614i 0.685492 0.728080i \(-0.259587\pi\)
−0.287789 + 0.957694i \(0.592920\pi\)
\(480\) −12.6069 + 391.467i −0.0262643 + 0.815557i
\(481\) −126.415 218.957i −0.262816 0.455211i
\(482\) 246.426 + 246.426i 0.511257 + 0.511257i
\(483\) −68.9112 62.1469i −0.142673 0.128669i
\(484\) 292.217i 0.603755i
\(485\) −65.8357 281.676i −0.135744 0.580776i
\(486\) −23.2925 + 40.3438i −0.0479270 + 0.0830120i
\(487\) 373.904 100.187i 0.767770 0.205723i 0.146384 0.989228i \(-0.453237\pi\)
0.621386 + 0.783504i \(0.286570\pi\)
\(488\) −211.987 56.8016i −0.434399 0.116397i
\(489\) 101.244i 0.207044i
\(490\) 553.114 + 479.720i 1.12880 + 0.979021i
\(491\) 285.045 0.580539 0.290269 0.956945i \(-0.406255\pi\)
0.290269 + 0.956945i \(0.406255\pi\)
\(492\) 128.048 477.880i 0.260259 0.971301i
\(493\) 93.1347 + 347.583i 0.188914 + 0.705037i
\(494\) −76.3423 44.0763i −0.154539 0.0892232i
\(495\) −106.259 + 171.081i −0.214664 + 0.345618i
\(496\) 221.764 0.447106
\(497\) 569.498 631.484i 1.14587 1.27059i
\(498\) −516.005 + 516.005i −1.03615 + 1.03615i
\(499\) −439.080 + 253.503i −0.879920 + 0.508022i −0.870632 0.491935i \(-0.836290\pi\)
−0.00928793 + 0.999957i \(0.502956\pi\)
\(500\) 358.204 501.562i 0.716409 1.00312i
\(501\) 113.927 197.328i 0.227400 0.393868i
\(502\) −247.995 + 925.530i −0.494014 + 1.84368i
\(503\) 261.451 261.451i 0.519784 0.519784i −0.397722 0.917506i \(-0.630199\pi\)
0.917506 + 0.397722i \(0.130199\pi\)
\(504\) −31.7731 49.0113i −0.0630418 0.0972446i
\(505\) 301.186 161.193i 0.596408 0.319195i
\(506\) 153.545 + 265.948i 0.303449 + 0.525589i
\(507\) −230.691 + 61.8135i −0.455012 + 0.121920i
\(508\) 38.0419 + 141.974i 0.0748856 + 0.279477i
\(509\) −9.46947 + 5.46720i −0.0186041 + 0.0107411i −0.509273 0.860605i \(-0.670086\pi\)
0.490669 + 0.871346i \(0.336752\pi\)
\(510\) −242.748 73.4958i −0.475976 0.144109i
\(511\) 30.3436 + 15.4911i 0.0593808 + 0.0303153i
\(512\) −454.686 454.686i −0.888059 0.888059i
\(513\) −26.5432 7.11223i −0.0517411 0.0138640i
\(514\) 514.104 + 296.818i 1.00020 + 0.577467i
\(515\) −433.936 462.815i −0.842594 0.898670i
\(516\) −279.816 484.656i −0.542280 0.939256i
\(517\) −603.209 603.209i −1.16675 1.16675i
\(518\) 902.033 292.298i 1.74138 0.564282i
\(519\) 419.428i 0.808146i
\(520\) −40.9274 + 65.8947i −0.0787065 + 0.126721i
\(521\) 71.2494 123.408i 0.136755 0.236867i −0.789511 0.613736i \(-0.789666\pi\)
0.926267 + 0.376869i \(0.122999\pi\)
\(522\) 317.977 85.2018i 0.609152 0.163222i
\(523\) −30.8250 8.25954i −0.0589389 0.0157926i 0.229229 0.973372i \(-0.426379\pi\)
−0.288168 + 0.957580i \(0.593046\pi\)
\(524\) 617.416i 1.17827i
\(525\) 3.88536 303.084i 0.00740068 0.577303i
\(526\) −47.4149 −0.0901424
\(527\) −49.2942 + 183.968i −0.0935374 + 0.349086i
\(528\) −68.6802 256.318i −0.130076 0.485451i
\(529\) −407.397 235.211i −0.770127 0.444633i
\(530\) −510.956 317.356i −0.964068 0.598785i
\(531\) −209.411 −0.394371
\(532\) 122.244 135.550i 0.229783 0.254793i
\(533\) −228.483 + 228.483i −0.428673 + 0.428673i
\(534\) −106.442 + 61.4545i −0.199330 + 0.115083i
\(535\) −221.379 + 207.565i −0.413792 + 0.387972i
\(536\) −154.401 + 267.431i −0.288062 + 0.498938i
\(537\) 118.533 442.372i 0.220732 0.823784i
\(538\) −219.346 + 219.346i −0.407706 + 0.407706i
\(539\) −600.585 268.539i −1.11426 0.498218i
\(540\) −37.1214 + 122.607i −0.0687433 + 0.227051i
\(541\) −86.8285 150.391i −0.160496 0.277988i 0.774551 0.632512i \(-0.217976\pi\)
−0.935047 + 0.354524i \(0.884643\pi\)
\(542\) −453.526 + 121.522i −0.836764 + 0.224210i
\(543\) 128.219 + 478.521i 0.236131 + 0.881253i
\(544\) 383.838 221.609i 0.705584 0.407369i
\(545\) −50.8291 94.9729i −0.0932643 0.174262i
\(546\) 10.4171 + 201.831i 0.0190789 + 0.369654i
\(547\) 95.8716 + 95.8716i 0.175268 + 0.175268i 0.789289 0.614021i \(-0.210449\pi\)
−0.614021 + 0.789289i \(0.710449\pi\)
\(548\) −174.511 46.7602i −0.318452 0.0853289i
\(549\) 205.000 + 118.357i 0.373407 + 0.215586i
\(550\) −321.421 + 950.196i −0.584402 + 1.72763i
\(551\) 97.0925 + 168.169i 0.176211 + 0.305207i
\(552\) 26.0721 + 26.0721i 0.0472320 + 0.0472320i
\(553\) −195.676 + 917.009i −0.353845 + 1.65824i
\(554\) 624.904i 1.12799i
\(555\) −333.464 207.115i −0.600836 0.373181i
\(556\) −208.690 + 361.462i −0.375342 + 0.650112i
\(557\) −46.7512 + 12.5270i −0.0839340 + 0.0224900i −0.300542 0.953769i \(-0.597167\pi\)
0.216608 + 0.976259i \(0.430501\pi\)
\(558\) 168.299 + 45.0955i 0.301611 + 0.0808163i
\(559\) 365.508i 0.653860i
\(560\) 287.823 + 276.881i 0.513970 + 0.494430i
\(561\) 227.899 0.406238
\(562\) −351.855 + 1313.14i −0.626076 + 2.33655i
\(563\) −72.9609 272.294i −0.129593 0.483648i 0.870369 0.492401i \(-0.163881\pi\)
−0.999962 + 0.00875281i \(0.997214\pi\)
\(564\) −469.925 271.312i −0.833201 0.481049i
\(565\) 85.3427 19.9470i 0.151049 0.0353044i
\(566\) 306.797 0.542045
\(567\) 19.4206 + 59.9320i 0.0342514 + 0.105700i
\(568\) −238.918 + 238.918i −0.420629 + 0.420629i
\(569\) 466.721 269.461i 0.820247 0.473570i −0.0302544 0.999542i \(-0.509632\pi\)
0.850502 + 0.525972i \(0.176298\pi\)
\(570\) −136.797 4.40542i −0.239995 0.00772881i
\(571\) 150.339 260.394i 0.263290 0.456032i −0.703824 0.710374i \(-0.748526\pi\)
0.967114 + 0.254342i \(0.0818590\pi\)
\(572\) 95.5709 356.676i 0.167082 0.623559i
\(573\) −93.3347 + 93.3347i −0.162888 + 0.162888i
\(574\) −659.210 1016.86i −1.14845 1.77153i
\(575\) 37.5284 + 187.625i 0.0652668 + 0.326304i
\(576\) −134.268 232.559i −0.233104 0.403748i
\(577\) −269.861 + 72.3090i −0.467697 + 0.125319i −0.484968 0.874532i \(-0.661169\pi\)
0.0172714 + 0.999851i \(0.494502\pi\)
\(578\) −149.247 556.998i −0.258213 0.963664i
\(579\) −367.396 + 212.116i −0.634535 + 0.366349i
\(580\) 798.132 427.156i 1.37609 0.736477i
\(581\) 50.8680 + 985.565i 0.0875524 + 1.69633i
\(582\) 211.748 + 211.748i 0.363828 + 0.363828i
\(583\) 522.053 + 139.884i 0.895460 + 0.239938i
\(584\) −11.7235 6.76855i −0.0200744 0.0115900i
\(585\) 61.0352 57.2267i 0.104334 0.0978235i
\(586\) 216.271 + 374.592i 0.369062 + 0.639235i
\(587\) −210.055 210.055i −0.357845 0.357845i 0.505173 0.863018i \(-0.331429\pi\)
−0.863018 + 0.505173i \(0.831429\pi\)
\(588\) −413.216 66.1187i −0.702749 0.112447i
\(589\) 102.778i 0.174496i
\(590\) −1015.64 + 237.385i −1.72143 + 0.402347i
\(591\) −166.660 + 288.664i −0.281997 + 0.488434i
\(592\) 499.605 133.869i 0.843927 0.226129i
\(593\) 1014.23 + 271.762i 1.71034 + 0.458284i 0.975508 0.219966i \(-0.0705946\pi\)
0.734831 + 0.678250i \(0.237261\pi\)
\(594\) 208.488i 0.350989i
\(595\) −293.669 + 177.223i −0.493561 + 0.297854i
\(596\) 160.892 0.269953
\(597\) 55.8470 208.424i 0.0935461 0.349119i
\(598\) −33.0196 123.231i −0.0552167 0.206071i
\(599\) 516.500 + 298.201i 0.862270 + 0.497832i 0.864772 0.502165i \(-0.167463\pi\)
−0.00250190 + 0.999997i \(0.500796\pi\)
\(600\) −7.74914 + 120.188i −0.0129152 + 0.200314i
\(601\) −480.552 −0.799588 −0.399794 0.916605i \(-0.630918\pi\)
−0.399794 + 0.916605i \(0.630918\pi\)
\(602\) −1340.62 286.068i −2.22694 0.475196i
\(603\) 235.519 235.519i 0.390578 0.390578i
\(604\) −666.528 + 384.820i −1.10352 + 0.637119i
\(605\) 9.53788 296.170i 0.0157651 0.489537i
\(606\) −176.821 + 306.262i −0.291783 + 0.505383i
\(607\) −220.289 + 822.130i −0.362914 + 1.35441i 0.507312 + 0.861762i \(0.330639\pi\)
−0.870226 + 0.492652i \(0.836028\pi\)
\(608\) 169.123 169.123i 0.278163 0.278163i
\(609\) 202.427 396.508i 0.332393 0.651081i
\(610\) 1128.42 + 341.647i 1.84987 + 0.560077i
\(611\) 177.199 + 306.918i 0.290015 + 0.502320i
\(612\) 140.024 37.5193i 0.228797 0.0613060i
\(613\) −276.060 1030.27i −0.450343 1.68070i −0.701431 0.712737i \(-0.747455\pi\)
0.251089 0.967964i \(-0.419211\pi\)
\(614\) −106.874 + 61.7035i −0.174061 + 0.100494i
\(615\) −145.377 + 480.164i −0.236386 + 0.780754i
\(616\) 232.820 + 118.860i 0.377955 + 0.192955i
\(617\) −270.729 270.729i −0.438783 0.438783i 0.452819 0.891602i \(-0.350418\pi\)
−0.891602 + 0.452819i \(0.850418\pi\)
\(618\) 634.395 + 169.986i 1.02653 + 0.275057i
\(619\) −136.247 78.6625i −0.220109 0.127080i 0.385892 0.922544i \(-0.373894\pi\)
−0.606001 + 0.795464i \(0.707227\pi\)
\(620\) 478.881 + 15.4219i 0.772389 + 0.0248741i
\(621\) −19.8847 34.4414i −0.0320205 0.0554611i
\(622\) −849.859 849.859i −1.36633 1.36633i
\(623\) −34.6875 + 162.558i −0.0556782 + 0.260928i
\(624\) 110.241i 0.176669i
\(625\) −379.420 + 496.654i −0.607072 + 0.794647i
\(626\) 428.805 742.712i 0.684992 1.18644i
\(627\) 118.792 31.8302i 0.189461 0.0507659i
\(628\) 316.816 + 84.8905i 0.504483 + 0.135176i
\(629\) 444.212i 0.706219i
\(630\) 162.128 + 268.656i 0.257346 + 0.426437i
\(631\) −131.406 −0.208250 −0.104125 0.994564i \(-0.533204\pi\)
−0.104125 + 0.994564i \(0.533204\pi\)
\(632\) 96.4279 359.874i 0.152576 0.569421i
\(633\) −11.4568 42.7572i −0.0180992 0.0675470i
\(634\) 900.060 + 519.650i 1.41965 + 0.819637i
\(635\) −33.9224 145.136i −0.0534211 0.228561i
\(636\) 343.785 0.540542
\(637\) 212.131 + 172.338i 0.333016 + 0.270546i
\(638\) −1041.77 + 1041.77i −1.63287 + 1.63287i
\(639\) 315.612 182.219i 0.493915 0.285162i
\(640\) −296.147 315.856i −0.462729 0.493525i
\(641\) −128.958 + 223.362i −0.201182 + 0.348458i −0.948910 0.315548i \(-0.897812\pi\)
0.747727 + 0.664006i \(0.231145\pi\)
\(642\) 81.3094 303.451i 0.126650 0.472665i
\(643\) 778.940 778.940i 1.21142 1.21142i 0.240854 0.970561i \(-0.422573\pi\)
0.970561 0.240854i \(-0.0774274\pi\)
\(644\) 263.814 13.6162i 0.409650 0.0211432i
\(645\) 267.782 + 500.345i 0.415166 + 0.775728i
\(646\) 77.4404 + 134.131i 0.119877 + 0.207633i
\(647\) −368.344 + 98.6974i −0.569310 + 0.152546i −0.531980 0.846757i \(-0.678552\pi\)
−0.0373301 + 0.999303i \(0.511885\pi\)
\(648\) −6.47889 24.1795i −0.00999829 0.0373141i
\(649\) 811.641 468.601i 1.25060 0.722035i
\(650\) 231.150 346.738i 0.355615 0.533444i
\(651\) 197.718 128.177i 0.303714 0.196892i
\(652\) −203.801 203.801i −0.312578 0.312578i
\(653\) −1089.41 291.908i −1.66832 0.447026i −0.703665 0.710532i \(-0.748454\pi\)
−0.964658 + 0.263506i \(0.915121\pi\)
\(654\) 96.5735 + 55.7567i 0.147666 + 0.0852550i
\(655\) 20.1522 625.767i 0.0307668 0.955369i
\(656\) −330.517 572.472i −0.503836 0.872670i
\(657\) 10.3245 + 10.3245i 0.0157146 + 0.0157146i
\(658\) −1264.41 + 409.723i −1.92159 + 0.622679i
\(659\) 737.560i 1.11921i 0.828759 + 0.559605i \(0.189047\pi\)
−0.828759 + 0.559605i \(0.810953\pi\)
\(660\) −130.484 558.273i −0.197703 0.845868i
\(661\) −166.939 + 289.147i −0.252555 + 0.437439i −0.964229 0.265072i \(-0.914604\pi\)
0.711673 + 0.702511i \(0.247938\pi\)
\(662\) 209.092 56.0259i 0.315848 0.0846313i
\(663\) −91.4524 24.5046i −0.137937 0.0369602i
\(664\) 392.127i 0.590553i
\(665\) −128.322 + 133.393i −0.192966 + 0.200591i
\(666\) 406.376 0.610174
\(667\) −72.7365 + 271.456i −0.109050 + 0.406981i
\(668\) 167.882 + 626.543i 0.251320 + 0.937939i
\(669\) −125.113 72.2341i −0.187015 0.107973i
\(670\) 875.286 1409.25i 1.30640 2.10335i
\(671\) −1059.40 −1.57883
\(672\) −536.266 114.431i −0.798014 0.170284i
\(673\) −183.139 + 183.139i −0.272123 + 0.272123i −0.829954 0.557831i \(-0.811634\pi\)
0.557831 + 0.829954i \(0.311634\pi\)
\(674\) 936.016 540.409i 1.38875 0.801794i
\(675\) 41.6253 123.054i 0.0616671 0.182302i
\(676\) 339.943 588.799i 0.502875 0.871005i
\(677\) 216.220 806.946i 0.319380 1.19194i −0.600461 0.799654i \(-0.705016\pi\)
0.919842 0.392290i \(-0.128317\pi\)
\(678\) −64.1557 + 64.1557i −0.0946249 + 0.0946249i
\(679\) 404.436 20.8742i 0.595635 0.0307425i
\(680\) 120.161 64.3098i 0.176708 0.0945733i
\(681\) −356.788 617.975i −0.523918 0.907452i
\(682\) −753.208 + 201.821i −1.10441 + 0.295926i
\(683\) 243.613 + 909.178i 0.356681 + 1.33115i 0.878355 + 0.478008i \(0.158641\pi\)
−0.521674 + 0.853145i \(0.674692\pi\)
\(684\) 67.7469 39.1137i 0.0990452 0.0571838i
\(685\) 175.346 + 53.0887i 0.255979 + 0.0775017i
\(686\) −798.131 + 643.177i −1.16346 + 0.937576i
\(687\) 460.424 + 460.424i 0.670195 + 0.670195i
\(688\) −722.263 193.530i −1.04980 0.281293i
\(689\) −194.451 112.266i −0.282222 0.162941i
\(690\) −135.483 144.500i −0.196352 0.209420i
\(691\) −409.191 708.740i −0.592172 1.02567i −0.993939 0.109931i \(-0.964937\pi\)
0.401767 0.915742i \(-0.368396\pi\)
\(692\) 844.291 + 844.291i 1.22007 + 1.22007i
\(693\) −209.381 188.828i −0.302137 0.272480i
\(694\) 862.487i 1.24278i
\(695\) 223.311 359.540i 0.321311 0.517323i
\(696\) −88.4465 + 153.194i −0.127078 + 0.220106i
\(697\) 548.371 146.936i 0.786760 0.210812i
\(698\) −1386.99 371.643i −1.98709 0.532439i
\(699\) 42.0616i 0.0601739i
\(700\) 602.274 + 617.916i 0.860392 + 0.882738i
\(701\) 480.047 0.684803 0.342402 0.939554i \(-0.388760\pi\)
0.342402 + 0.939554i \(0.388760\pi\)
\(702\) −22.4174 + 83.6629i −0.0319336 + 0.119178i
\(703\) 62.0422 + 231.545i 0.0882535 + 0.329366i
\(704\) 1040.80 + 600.905i 1.47841 + 0.853558i
\(705\) 467.426 + 290.319i 0.663015 + 0.411800i
\(706\) −288.430 −0.408541
\(707\) 147.427 + 454.962i 0.208525 + 0.643510i
\(708\) 421.535 421.535i 0.595389 0.595389i
\(709\) 1211.17 699.271i 1.70828 0.986278i 0.771597 0.636112i \(-0.219458\pi\)
0.936688 0.350166i \(-0.113875\pi\)
\(710\) 1324.16 1241.53i 1.86501 1.74864i
\(711\) −200.926 + 348.014i −0.282596 + 0.489471i
\(712\) 17.0938 63.7948i 0.0240081 0.0895994i
\(713\) −105.178 + 105.178i −0.147515 + 0.147515i
\(714\) 161.455 316.253i 0.226127 0.442931i
\(715\) −108.505 + 358.380i −0.151756 + 0.501231i
\(716\) 651.874 + 1129.08i 0.910438 + 1.57693i
\(717\) −84.7684 + 22.7136i −0.118226 + 0.0316787i
\(718\) −250.845 936.168i −0.349367 1.30385i
\(719\) −742.957 + 428.946i −1.03332 + 0.596587i −0.917934 0.396734i \(-0.870144\pi\)
−0.115386 + 0.993321i \(0.536810\pi\)
\(720\) 80.7661 + 150.910i 0.112175 + 0.209597i
\(721\) 745.289 483.157i 1.03369 0.670120i
\(722\) −703.744 703.744i −0.974715 0.974715i
\(723\) 195.102 + 52.2775i 0.269851 + 0.0723063i
\(724\) −1221.34 705.142i −1.68694 0.973953i
\(725\) −822.869 + 406.883i −1.13499 + 0.561218i
\(726\) 153.380 + 265.663i 0.211268 + 0.365926i
\(727\) 8.47406 + 8.47406i 0.0116562 + 0.0116562i 0.712911 0.701255i \(-0.247376\pi\)
−0.701255 + 0.712911i \(0.747376\pi\)
\(728\) −80.6468 72.7305i −0.110779 0.0999046i
\(729\) 27.0000i 0.0370370i
\(730\) 61.7777 + 38.3703i 0.0846270 + 0.0525620i
\(731\) 321.092 556.147i 0.439250 0.760804i
\(732\) −650.905 + 174.409i −0.889214 + 0.238264i
\(733\) 1076.99 + 288.580i 1.46930 + 0.393697i 0.902690 0.430292i \(-0.141589\pi\)
0.566606 + 0.823989i \(0.308256\pi\)
\(734\) 771.050i 1.05048i
\(735\) 416.647 + 80.5002i 0.566867 + 0.109524i
\(736\) 346.145 0.470306
\(737\) −385.807 + 1439.85i −0.523483 + 1.95367i
\(738\) −134.420 501.663i −0.182141 0.679761i
\(739\) 635.156 + 366.708i 0.859481 + 0.496221i 0.863838 0.503769i \(-0.168054\pi\)
−0.00435760 + 0.999991i \(0.501387\pi\)
\(740\) 1088.16 254.334i 1.47049 0.343695i
\(741\) −51.0919 −0.0689500
\(742\) 563.962 625.345i 0.760056 0.842784i
\(743\) −342.256 + 342.256i −0.460641 + 0.460641i −0.898865 0.438225i \(-0.855607\pi\)
0.438225 + 0.898865i \(0.355607\pi\)
\(744\) −81.0822 + 46.8128i −0.108981 + 0.0629205i
\(745\) −163.068 5.25146i −0.218884 0.00704895i
\(746\) 733.284 1270.08i 0.982954 1.70253i
\(747\) −109.467 + 408.536i −0.146542 + 0.546902i
\(748\) −458.752 + 458.752i −0.613304 + 0.613304i
\(749\) −231.109 356.495i −0.308557 0.475961i
\(750\) 62.3908 643.999i 0.0831878 0.858665i
\(751\) −217.704 377.075i −0.289886 0.502097i 0.683897 0.729579i \(-0.260284\pi\)
−0.973782 + 0.227482i \(0.926951\pi\)
\(752\) −700.310 + 187.648i −0.931264 + 0.249531i
\(753\) 143.734 + 536.424i 0.190882 + 0.712382i
\(754\) 530.061 306.031i 0.702999 0.405877i
\(755\) 688.103 368.270i 0.911395 0.487774i
\(756\) −159.733 81.5477i −0.211287 0.107867i
\(757\) 136.675 + 136.675i 0.180548 + 0.180548i 0.791595 0.611047i \(-0.209251\pi\)
−0.611047 + 0.791595i \(0.709251\pi\)
\(758\) 513.243 + 137.523i 0.677101 + 0.181429i
\(759\) 154.140 + 88.9926i 0.203083 + 0.117250i
\(760\) 53.6519 50.3041i 0.0705946 0.0661896i
\(761\) 191.516 + 331.716i 0.251664 + 0.435895i 0.963984 0.265960i \(-0.0856889\pi\)
−0.712320 + 0.701855i \(0.752356\pi\)
\(762\)