Properties

Label 105.3.t.b.11.7
Level 105
Weight 3
Character 105.11
Analytic conductor 2.861
Analytic rank 0
Dimension 36
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.t (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 11.7
Character \(\chi\) \(=\) 105.11
Dual form 105.3.t.b.86.7

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.987174 + 0.569945i) q^{2} +(-0.202464 - 2.99316i) q^{3} +(-1.35032 + 2.33883i) q^{4} +(-1.93649 + 1.11803i) q^{5} +(1.90581 + 2.83938i) q^{6} +(2.61061 - 6.49498i) q^{7} -7.63801i q^{8} +(-8.91802 + 1.21201i) q^{9} +O(q^{10})\) \(q+(-0.987174 + 0.569945i) q^{2} +(-0.202464 - 2.99316i) q^{3} +(-1.35032 + 2.33883i) q^{4} +(-1.93649 + 1.11803i) q^{5} +(1.90581 + 2.83938i) q^{6} +(2.61061 - 6.49498i) q^{7} -7.63801i q^{8} +(-8.91802 + 1.21201i) q^{9} +(1.27444 - 2.20739i) q^{10} +(-12.8353 - 7.41045i) q^{11} +(7.27389 + 3.56821i) q^{12} -23.9894 q^{13} +(1.12465 + 7.89958i) q^{14} +(3.73852 + 5.56987i) q^{15} +(-1.04805 - 1.81528i) q^{16} +(5.54599 + 3.20198i) q^{17} +(8.11286 - 6.27925i) q^{18} +(3.55819 + 6.16296i) q^{19} -6.03883i q^{20} +(-19.9691 - 6.49898i) q^{21} +16.8942 q^{22} +(28.8602 - 16.6624i) q^{23} +(-22.8618 + 1.54642i) q^{24} +(2.50000 - 4.33013i) q^{25} +(23.6818 - 13.6727i) q^{26} +(5.43333 + 26.4477i) q^{27} +(11.6655 + 14.8761i) q^{28} -32.6179i q^{29} +(-6.86510 - 3.36768i) q^{30} +(-1.00299 + 1.73724i) q^{31} +(28.5281 + 16.4707i) q^{32} +(-19.5820 + 39.9184i) q^{33} -7.29982 q^{34} +(2.20618 + 15.4962i) q^{35} +(9.20752 - 22.4943i) q^{36} +(9.06147 + 15.6949i) q^{37} +(-7.02511 - 4.05595i) q^{38} +(4.85700 + 71.8042i) q^{39} +(8.53955 + 14.7909i) q^{40} +40.8628i q^{41} +(23.4170 - 4.96565i) q^{42} -29.7063 q^{43} +(34.6636 - 20.0130i) q^{44} +(15.9146 - 12.3177i) q^{45} +(-18.9933 + 32.8974i) q^{46} +(6.22822 - 3.59586i) q^{47} +(-5.22122 + 3.50451i) q^{48} +(-35.3694 - 33.9117i) q^{49} +5.69945i q^{50} +(8.46118 - 17.2483i) q^{51} +(32.3935 - 56.1072i) q^{52} +(-34.1430 - 19.7125i) q^{53} +(-20.4374 - 23.0118i) q^{54} +33.1406 q^{55} +(-49.6087 - 19.9399i) q^{56} +(17.7263 - 11.8980i) q^{57} +(18.5904 + 32.1996i) q^{58} +(-66.6011 - 38.4521i) q^{59} +(-18.0752 + 1.22265i) q^{60} +(13.9524 + 24.1662i) q^{61} -2.28661i q^{62} +(-15.4095 + 61.0864i) q^{63} -29.1652 q^{64} +(46.4554 - 26.8210i) q^{65} +(-3.42047 - 50.5671i) q^{66} +(50.9881 - 88.3139i) q^{67} +(-14.9778 + 8.64743i) q^{68} +(-55.7164 - 83.0095i) q^{69} +(-11.0099 - 14.0401i) q^{70} +65.1176i q^{71} +(9.25737 + 68.1159i) q^{72} +(58.9896 - 102.173i) q^{73} +(-17.8905 - 10.3291i) q^{74} +(-13.4669 - 6.60621i) q^{75} -19.2188 q^{76} +(-81.6386 + 64.0190i) q^{77} +(-45.7192 - 68.1151i) q^{78} +(17.0304 + 29.4975i) q^{79} +(4.05908 + 2.34351i) q^{80} +(78.0620 - 21.6175i) q^{81} +(-23.2896 - 40.3387i) q^{82} +34.5698i q^{83} +(42.1647 - 37.9285i) q^{84} -14.3197 q^{85} +(29.3253 - 16.9310i) q^{86} +(-97.6307 + 6.60395i) q^{87} +(-56.6011 + 98.0360i) q^{88} +(-28.7047 + 16.5727i) q^{89} +(-8.69006 + 21.2302i) q^{90} +(-62.6271 + 155.811i) q^{91} +89.9987i q^{92} +(5.40289 + 2.65039i) q^{93} +(-4.09889 + 7.09949i) q^{94} +(-13.7808 - 7.95635i) q^{95} +(43.5235 - 88.7238i) q^{96} -5.32173 q^{97} +(54.2436 + 13.3181i) q^{98} +(123.447 + 50.5300i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36q + 4q^{3} + 36q^{4} - 24q^{6} - 58q^{7} - 2q^{9} + O(q^{10}) \) \( 36q + 4q^{3} + 36q^{4} - 24q^{6} - 58q^{7} - 2q^{9} + 20q^{10} - 42q^{12} - 100q^{13} + 20q^{15} - 12q^{16} - 14q^{18} + 50q^{19} - 12q^{21} + 256q^{22} - 140q^{24} + 90q^{25} + 4q^{27} - 48q^{28} + 60q^{30} - 82q^{31} - 76q^{33} - 64q^{34} + 296q^{36} - 26q^{37} - 130q^{39} - 60q^{40} - 98q^{42} - 204q^{43} + 40q^{45} + 28q^{46} + 532q^{48} - 382q^{49} + 208q^{51} + 200q^{52} - 44q^{54} - 160q^{55} + 252q^{57} + 264q^{58} - 130q^{60} - 324q^{61} - 258q^{63} - 24q^{64} - 164q^{66} - 142q^{67} - 112q^{69} + 200q^{70} - 322q^{72} + 386q^{73} - 20q^{75} - 424q^{76} - 440q^{78} + 334q^{79} + 186q^{81} - 68q^{82} + 80q^{84} - 200q^{85} + 342q^{87} + 180q^{88} + 100q^{90} + 46q^{91} - 2q^{93} + 324q^{94} + 732q^{96} + 1616q^{97} + 384q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.987174 + 0.569945i −0.493587 + 0.284973i −0.726061 0.687630i \(-0.758651\pi\)
0.232474 + 0.972603i \(0.425318\pi\)
\(3\) −0.202464 2.99316i −0.0674880 0.997720i
\(4\) −1.35032 + 2.33883i −0.337581 + 0.584708i
\(5\) −1.93649 + 1.11803i −0.387298 + 0.223607i
\(6\) 1.90581 + 2.83938i 0.317634 + 0.473230i
\(7\) 2.61061 6.49498i 0.372944 0.927854i
\(8\) 7.63801i 0.954751i
\(9\) −8.91802 + 1.21201i −0.990891 + 0.134668i
\(10\) 1.27444 2.20739i 0.127444 0.220739i
\(11\) −12.8353 7.41045i −1.16684 0.673678i −0.213909 0.976854i \(-0.568620\pi\)
−0.952935 + 0.303176i \(0.901953\pi\)
\(12\) 7.27389 + 3.56821i 0.606157 + 0.297351i
\(13\) −23.9894 −1.84534 −0.922671 0.385589i \(-0.873998\pi\)
−0.922671 + 0.385589i \(0.873998\pi\)
\(14\) 1.12465 + 7.89958i 0.0803324 + 0.564256i
\(15\) 3.73852 + 5.56987i 0.249235 + 0.371325i
\(16\) −1.04805 1.81528i −0.0655031 0.113455i
\(17\) 5.54599 + 3.20198i 0.326235 + 0.188352i 0.654168 0.756349i \(-0.273019\pi\)
−0.327933 + 0.944701i \(0.606352\pi\)
\(18\) 8.11286 6.27925i 0.450714 0.348847i
\(19\) 3.55819 + 6.16296i 0.187273 + 0.324367i 0.944340 0.328971i \(-0.106702\pi\)
−0.757067 + 0.653337i \(0.773368\pi\)
\(20\) 6.03883i 0.301942i
\(21\) −19.9691 6.49898i −0.950908 0.309475i
\(22\) 16.8942 0.767919
\(23\) 28.8602 16.6624i 1.25479 0.724453i 0.282733 0.959199i \(-0.408759\pi\)
0.972057 + 0.234746i \(0.0754257\pi\)
\(24\) −22.8618 + 1.54642i −0.952574 + 0.0644342i
\(25\) 2.50000 4.33013i 0.100000 0.173205i
\(26\) 23.6818 13.6727i 0.910837 0.525872i
\(27\) 5.43333 + 26.4477i 0.201234 + 0.979543i
\(28\) 11.6655 + 14.8761i 0.416624 + 0.531289i
\(29\) 32.6179i 1.12476i −0.826880 0.562378i \(-0.809887\pi\)
0.826880 0.562378i \(-0.190113\pi\)
\(30\) −6.86510 3.36768i −0.228837 0.112256i
\(31\) −1.00299 + 1.73724i −0.0323546 + 0.0560398i −0.881749 0.471718i \(-0.843634\pi\)
0.849395 + 0.527758i \(0.176967\pi\)
\(32\) 28.5281 + 16.4707i 0.891502 + 0.514709i
\(33\) −19.5820 + 39.9184i −0.593394 + 1.20965i
\(34\) −7.29982 −0.214701
\(35\) 2.20618 + 15.4962i 0.0630337 + 0.442749i
\(36\) 9.20752 22.4943i 0.255764 0.624843i
\(37\) 9.06147 + 15.6949i 0.244904 + 0.424187i 0.962105 0.272680i \(-0.0879101\pi\)
−0.717200 + 0.696867i \(0.754577\pi\)
\(38\) −7.02511 4.05595i −0.184871 0.106735i
\(39\) 4.85700 + 71.8042i 0.124538 + 1.84113i
\(40\) 8.53955 + 14.7909i 0.213489 + 0.369773i
\(41\) 40.8628i 0.996654i 0.866989 + 0.498327i \(0.166052\pi\)
−0.866989 + 0.498327i \(0.833948\pi\)
\(42\) 23.4170 4.96565i 0.557548 0.118230i
\(43\) −29.7063 −0.690844 −0.345422 0.938448i \(-0.612264\pi\)
−0.345422 + 0.938448i \(0.612264\pi\)
\(44\) 34.6636 20.0130i 0.787809 0.454842i
\(45\) 15.9146 12.3177i 0.353658 0.273727i
\(46\) −18.9933 + 32.8974i −0.412899 + 0.715162i
\(47\) 6.22822 3.59586i 0.132515 0.0765077i −0.432277 0.901741i \(-0.642290\pi\)
0.564792 + 0.825233i \(0.308956\pi\)
\(48\) −5.22122 + 3.50451i −0.108775 + 0.0730106i
\(49\) −35.3694 33.9117i −0.721825 0.692076i
\(50\) 5.69945i 0.113989i
\(51\) 8.46118 17.2483i 0.165905 0.338203i
\(52\) 32.3935 56.1072i 0.622952 1.07899i
\(53\) −34.1430 19.7125i −0.644207 0.371933i 0.142026 0.989863i \(-0.454638\pi\)
−0.786233 + 0.617930i \(0.787972\pi\)
\(54\) −20.4374 23.0118i −0.378470 0.426144i
\(55\) 33.1406 0.602556
\(56\) −49.6087 19.9399i −0.885869 0.356069i
\(57\) 17.7263 11.8980i 0.310988 0.208737i
\(58\) 18.5904 + 32.1996i 0.320525 + 0.555165i
\(59\) −66.6011 38.4521i −1.12883 0.651731i −0.185191 0.982703i \(-0.559290\pi\)
−0.943641 + 0.330971i \(0.892624\pi\)
\(60\) −18.0752 + 1.22265i −0.301253 + 0.0203774i
\(61\) 13.9524 + 24.1662i 0.228727 + 0.396167i 0.957431 0.288662i \(-0.0932103\pi\)
−0.728704 + 0.684829i \(0.759877\pi\)
\(62\) 2.28661i 0.0368807i
\(63\) −15.4095 + 61.0864i −0.244595 + 0.969625i
\(64\) −29.1652 −0.455706
\(65\) 46.4554 26.8210i 0.714698 0.412631i
\(66\) −3.42047 50.5671i −0.0518253 0.766168i
\(67\) 50.9881 88.3139i 0.761016 1.31812i −0.181311 0.983426i \(-0.558034\pi\)
0.942327 0.334693i \(-0.108632\pi\)
\(68\) −14.9778 + 8.64743i −0.220262 + 0.127168i
\(69\) −55.7164 83.0095i −0.807485 1.20304i
\(70\) −11.0099 14.0401i −0.157284 0.200572i
\(71\) 65.1176i 0.917149i 0.888656 + 0.458575i \(0.151640\pi\)
−0.888656 + 0.458575i \(0.848360\pi\)
\(72\) 9.25737 + 68.1159i 0.128575 + 0.946054i
\(73\) 58.9896 102.173i 0.808077 1.39963i −0.106117 0.994354i \(-0.533842\pi\)
0.914194 0.405276i \(-0.132825\pi\)
\(74\) −17.8905 10.3291i −0.241763 0.139582i
\(75\) −13.4669 6.60621i −0.179559 0.0880827i
\(76\) −19.2188 −0.252879
\(77\) −81.6386 + 64.0190i −1.06024 + 0.831416i
\(78\) −45.7192 68.1151i −0.586144 0.873270i
\(79\) 17.0304 + 29.4975i 0.215574 + 0.373386i 0.953450 0.301551i \(-0.0975043\pi\)
−0.737876 + 0.674937i \(0.764171\pi\)
\(80\) 4.05908 + 2.34351i 0.0507385 + 0.0292939i
\(81\) 78.0620 21.6175i 0.963729 0.266883i
\(82\) −23.2896 40.3387i −0.284019 0.491936i
\(83\) 34.5698i 0.416504i 0.978075 + 0.208252i \(0.0667774\pi\)
−0.978075 + 0.208252i \(0.933223\pi\)
\(84\) 42.1647 37.9285i 0.501961 0.451530i
\(85\) −14.3197 −0.168467
\(86\) 29.3253 16.9310i 0.340992 0.196872i
\(87\) −97.6307 + 6.60395i −1.12219 + 0.0759075i
\(88\) −56.6011 + 98.0360i −0.643194 + 1.11405i
\(89\) −28.7047 + 16.5727i −0.322525 + 0.186210i −0.652517 0.757774i \(-0.726287\pi\)
0.329993 + 0.943983i \(0.392954\pi\)
\(90\) −8.69006 + 21.2302i −0.0965562 + 0.235891i
\(91\) −62.6271 + 155.811i −0.688210 + 1.71221i
\(92\) 89.9987i 0.978247i
\(93\) 5.40289 + 2.65039i 0.0580956 + 0.0284988i
\(94\) −4.09889 + 7.09949i −0.0436052 + 0.0755264i
\(95\) −13.7808 7.95635i −0.145061 0.0837511i
\(96\) 43.5235 88.7238i 0.453370 0.924206i
\(97\) −5.32173 −0.0548632 −0.0274316 0.999624i \(-0.508733\pi\)
−0.0274316 + 0.999624i \(0.508733\pi\)
\(98\) 54.2436 + 13.3181i 0.553506 + 0.135899i
\(99\) 123.447 + 50.5300i 1.24694 + 0.510404i
\(100\) 6.75162 + 11.6942i 0.0675162 + 0.116942i
\(101\) −54.4292 31.4247i −0.538903 0.311136i 0.205731 0.978608i \(-0.434043\pi\)
−0.744634 + 0.667473i \(0.767376\pi\)
\(102\) 1.47795 + 21.8495i 0.0144897 + 0.214211i
\(103\) −53.9650 93.4701i −0.523932 0.907477i −0.999612 0.0278586i \(-0.991131\pi\)
0.475680 0.879619i \(-0.342202\pi\)
\(104\) 183.232i 1.76184i
\(105\) 45.9360 9.74087i 0.437486 0.0927702i
\(106\) 44.9401 0.423963
\(107\) 70.6904 40.8131i 0.660658 0.381431i −0.131870 0.991267i \(-0.542098\pi\)
0.792528 + 0.609836i \(0.208765\pi\)
\(108\) −69.1934 23.0053i −0.640679 0.213012i
\(109\) 30.5961 52.9940i 0.280698 0.486184i −0.690859 0.722990i \(-0.742767\pi\)
0.971557 + 0.236806i \(0.0761006\pi\)
\(110\) −32.7155 + 18.8883i −0.297414 + 0.171712i
\(111\) 45.1428 30.3001i 0.406692 0.272974i
\(112\) −14.5262 + 2.06808i −0.129698 + 0.0184650i
\(113\) 206.567i 1.82803i −0.405684 0.914013i \(-0.632967\pi\)
0.405684 0.914013i \(-0.367033\pi\)
\(114\) −10.7178 + 21.8485i −0.0940155 + 0.191653i
\(115\) −37.2583 + 64.5333i −0.323985 + 0.561159i
\(116\) 76.2878 + 44.0448i 0.657654 + 0.379697i
\(117\) 213.938 29.0755i 1.82853 0.248509i
\(118\) 87.6625 0.742902
\(119\) 35.2752 27.6620i 0.296430 0.232454i
\(120\) 42.5427 28.5549i 0.354523 0.237957i
\(121\) 49.3296 + 85.4414i 0.407683 + 0.706128i
\(122\) −27.5468 15.9042i −0.225794 0.130362i
\(123\) 122.309 8.27325i 0.994382 0.0672622i
\(124\) −2.70873 4.69166i −0.0218446 0.0378360i
\(125\) 11.1803i 0.0894427i
\(126\) −19.6041 69.0855i −0.155588 0.548298i
\(127\) −98.3201 −0.774174 −0.387087 0.922043i \(-0.626519\pi\)
−0.387087 + 0.922043i \(0.626519\pi\)
\(128\) −85.3211 + 49.2602i −0.666571 + 0.384845i
\(129\) 6.01445 + 88.9156i 0.0466236 + 0.689268i
\(130\) −30.5730 + 52.9540i −0.235177 + 0.407339i
\(131\) −5.29133 + 3.05495i −0.0403918 + 0.0233202i −0.520060 0.854130i \(-0.674090\pi\)
0.479668 + 0.877450i \(0.340757\pi\)
\(132\) −66.9203 99.7018i −0.506972 0.755316i
\(133\) 49.3174 7.02125i 0.370807 0.0527914i
\(134\) 116.242i 0.867475i
\(135\) −40.0910 45.1410i −0.296970 0.334378i
\(136\) 24.4568 42.3603i 0.179829 0.311473i
\(137\) −158.164 91.3161i −1.15448 0.666541i −0.204507 0.978865i \(-0.565559\pi\)
−0.949976 + 0.312324i \(0.898892\pi\)
\(138\) 102.313 + 50.1896i 0.741397 + 0.363693i
\(139\) −81.2651 −0.584641 −0.292321 0.956320i \(-0.594427\pi\)
−0.292321 + 0.956320i \(0.594427\pi\)
\(140\) −39.2221 15.7650i −0.280158 0.112607i
\(141\) −12.0240 17.9140i −0.0852765 0.127050i
\(142\) −37.1135 64.2824i −0.261362 0.452693i
\(143\) 307.911 + 177.773i 2.15323 + 1.24317i
\(144\) 11.5467 + 14.9184i 0.0801852 + 0.103600i
\(145\) 36.4680 + 63.1644i 0.251503 + 0.435616i
\(146\) 134.483i 0.921119i
\(147\) −94.3421 + 112.732i −0.641783 + 0.766886i
\(148\) −48.9437 −0.330701
\(149\) 108.076 62.3975i 0.725340 0.418775i −0.0913747 0.995817i \(-0.529126\pi\)
0.816715 + 0.577041i \(0.195793\pi\)
\(150\) 17.0594 1.15393i 0.113729 0.00769289i
\(151\) −34.8705 + 60.3975i −0.230930 + 0.399983i −0.958082 0.286493i \(-0.907510\pi\)
0.727152 + 0.686477i \(0.240844\pi\)
\(152\) 47.0728 27.1775i 0.309689 0.178799i
\(153\) −53.3401 21.8335i −0.348628 0.142703i
\(154\) 44.1042 109.728i 0.286391 0.712516i
\(155\) 4.48552i 0.0289388i
\(156\) −174.496 85.5993i −1.11857 0.548714i
\(157\) −75.8353 + 131.351i −0.483028 + 0.836628i −0.999810 0.0194883i \(-0.993796\pi\)
0.516782 + 0.856117i \(0.327130\pi\)
\(158\) −33.6239 19.4128i −0.212810 0.122866i
\(159\) −52.0898 + 106.186i −0.327609 + 0.667840i
\(160\) −73.6591 −0.460369
\(161\) −32.8794 230.945i −0.204220 1.43444i
\(162\) −64.7400 + 65.8314i −0.399630 + 0.406366i
\(163\) 20.6594 + 35.7831i 0.126745 + 0.219528i 0.922414 0.386204i \(-0.126214\pi\)
−0.795669 + 0.605732i \(0.792880\pi\)
\(164\) −95.5712 55.1781i −0.582751 0.336452i
\(165\) −6.70977 99.1950i −0.0406653 0.601182i
\(166\) −19.7029 34.1264i −0.118692 0.205581i
\(167\) 65.7703i 0.393834i −0.980420 0.196917i \(-0.936907\pi\)
0.980420 0.196917i \(-0.0630929\pi\)
\(168\) −49.6392 + 152.524i −0.295472 + 0.907880i
\(169\) 406.493 2.40529
\(170\) 14.1360 8.16144i 0.0831532 0.0480085i
\(171\) −39.2016 50.6488i −0.229249 0.296192i
\(172\) 40.1131 69.4779i 0.233216 0.403941i
\(173\) −204.420 + 118.022i −1.18162 + 0.682209i −0.956389 0.292096i \(-0.905647\pi\)
−0.225232 + 0.974305i \(0.572314\pi\)
\(174\) 92.6146 62.1634i 0.532268 0.357261i
\(175\) −21.5975 27.5417i −0.123415 0.157381i
\(176\) 31.0661i 0.176512i
\(177\) −101.609 + 207.133i −0.574063 + 1.17024i
\(178\) 18.8910 32.7202i 0.106129 0.183821i
\(179\) 98.3428 + 56.7782i 0.549401 + 0.317197i 0.748880 0.662705i \(-0.230592\pi\)
−0.199479 + 0.979902i \(0.563925\pi\)
\(180\) 7.31915 + 53.8544i 0.0406620 + 0.299191i
\(181\) 94.3627 0.521341 0.260671 0.965428i \(-0.416056\pi\)
0.260671 + 0.965428i \(0.416056\pi\)
\(182\) −26.9798 189.507i −0.148241 1.04124i
\(183\) 69.5085 46.6544i 0.379828 0.254942i
\(184\) −127.268 220.434i −0.691672 1.19801i
\(185\) −35.0949 20.2621i −0.189702 0.109525i
\(186\) −6.84418 + 0.462955i −0.0367966 + 0.00248901i
\(187\) −47.4563 82.1967i −0.253777 0.439554i
\(188\) 19.4223i 0.103310i
\(189\) 185.961 + 33.7552i 0.983922 + 0.178599i
\(190\) 18.1387 0.0954671
\(191\) −96.4070 + 55.6606i −0.504748 + 0.291417i −0.730672 0.682728i \(-0.760793\pi\)
0.225924 + 0.974145i \(0.427460\pi\)
\(192\) 5.90489 + 87.2960i 0.0307546 + 0.454667i
\(193\) 77.5358 134.296i 0.401740 0.695834i −0.592196 0.805794i \(-0.701739\pi\)
0.993936 + 0.109960i \(0.0350722\pi\)
\(194\) 5.25347 3.03309i 0.0270798 0.0156345i
\(195\) −89.6851 133.618i −0.459924 0.685221i
\(196\) 127.074 36.9313i 0.648336 0.188425i
\(197\) 67.7367i 0.343841i −0.985111 0.171921i \(-0.945003\pi\)
0.985111 0.171921i \(-0.0549973\pi\)
\(198\) −150.663 + 20.4760i −0.760924 + 0.103414i
\(199\) −20.2389 + 35.0548i −0.101703 + 0.176155i −0.912386 0.409330i \(-0.865762\pi\)
0.810683 + 0.585485i \(0.199096\pi\)
\(200\) −33.0735 19.0950i −0.165368 0.0954751i
\(201\) −274.661 134.735i −1.36647 0.670324i
\(202\) 71.6414 0.354661
\(203\) −211.853 85.1527i −1.04361 0.419472i
\(204\) 28.9156 + 43.0801i 0.141743 + 0.211177i
\(205\) −45.6860 79.1305i −0.222859 0.386002i
\(206\) 106.546 + 61.5142i 0.517212 + 0.298613i
\(207\) −237.180 + 183.575i −1.14580 + 0.886834i
\(208\) 25.1421 + 43.5474i 0.120876 + 0.209363i
\(209\) 105.471i 0.504647i
\(210\) −39.7951 + 35.7969i −0.189500 + 0.170462i
\(211\) −225.238 −1.06748 −0.533738 0.845650i \(-0.679213\pi\)
−0.533738 + 0.845650i \(0.679213\pi\)
\(212\) 92.2082 53.2364i 0.434944 0.251115i
\(213\) 194.907 13.1840i 0.915058 0.0618965i
\(214\) −46.5225 + 80.5793i −0.217395 + 0.376539i
\(215\) 57.5260 33.2126i 0.267563 0.154477i
\(216\) 202.007 41.4998i 0.935220 0.192129i
\(217\) 8.66488 + 11.0497i 0.0399303 + 0.0509201i
\(218\) 69.7525i 0.319965i
\(219\) −317.763 155.879i −1.45097 0.711776i
\(220\) −44.7505 + 77.5101i −0.203411 + 0.352319i
\(221\) −133.045 76.8137i −0.602015 0.347573i
\(222\) −27.2944 + 55.6404i −0.122948 + 0.250632i
\(223\) 190.035 0.852174 0.426087 0.904682i \(-0.359892\pi\)
0.426087 + 0.904682i \(0.359892\pi\)
\(224\) 181.452 142.290i 0.810055 0.635225i
\(225\) −17.0469 + 41.6462i −0.0757639 + 0.185094i
\(226\) 117.732 + 203.918i 0.520938 + 0.902291i
\(227\) 336.012 + 193.996i 1.48023 + 0.854610i 0.999749 0.0223962i \(-0.00712953\pi\)
0.480479 + 0.877006i \(0.340463\pi\)
\(228\) 3.89112 + 57.5251i 0.0170663 + 0.252303i
\(229\) 25.2334 + 43.7055i 0.110189 + 0.190854i 0.915847 0.401529i \(-0.131521\pi\)
−0.805657 + 0.592382i \(0.798188\pi\)
\(230\) 84.9408i 0.369308i
\(231\) 208.148 + 231.396i 0.901074 + 1.00171i
\(232\) −249.136 −1.07386
\(233\) 175.684 101.431i 0.754008 0.435327i −0.0731321 0.997322i \(-0.523299\pi\)
0.827140 + 0.561995i \(0.189966\pi\)
\(234\) −194.623 + 150.636i −0.831722 + 0.643743i
\(235\) −8.04059 + 13.9267i −0.0342153 + 0.0592626i
\(236\) 179.866 103.846i 0.762144 0.440024i
\(237\) 84.8427 56.9468i 0.357986 0.240282i
\(238\) −19.0570 + 47.4121i −0.0800714 + 0.199211i
\(239\) 54.4765i 0.227935i 0.993484 + 0.113968i \(0.0363560\pi\)
−0.993484 + 0.113968i \(0.963644\pi\)
\(240\) 6.19269 12.6240i 0.0258029 0.0525998i
\(241\) −120.038 + 207.911i −0.498082 + 0.862703i −0.999998 0.00221369i \(-0.999295\pi\)
0.501916 + 0.864916i \(0.332629\pi\)
\(242\) −97.3939 56.2304i −0.402454 0.232357i
\(243\) −80.5094 229.275i −0.331315 0.943520i
\(244\) −75.3609 −0.308856
\(245\) 106.407 + 26.1255i 0.434314 + 0.106635i
\(246\) −116.025 + 77.8766i −0.471646 + 0.316571i
\(247\) −85.3590 147.846i −0.345583 0.598567i
\(248\) 13.2690 + 7.66087i 0.0535041 + 0.0308906i
\(249\) 103.473 6.99914i 0.415554 0.0281090i
\(250\) −6.37218 11.0369i −0.0254887 0.0441478i
\(251\) 159.670i 0.636136i −0.948068 0.318068i \(-0.896966\pi\)
0.948068 0.318068i \(-0.103034\pi\)
\(252\) −122.063 118.527i −0.484377 0.470344i
\(253\) −493.904 −1.95219
\(254\) 97.0591 56.0371i 0.382123 0.220619i
\(255\) 2.89922 + 42.8611i 0.0113695 + 0.168083i
\(256\) 114.482 198.288i 0.447193 0.774562i
\(257\) −143.851 + 83.0525i −0.559732 + 0.323161i −0.753038 0.657977i \(-0.771412\pi\)
0.193306 + 0.981139i \(0.438079\pi\)
\(258\) −56.6144 84.3473i −0.219436 0.326928i
\(259\) 125.594 17.8807i 0.484919 0.0690374i
\(260\) 144.868i 0.557186i
\(261\) 39.5334 + 290.887i 0.151469 + 1.11451i
\(262\) 3.48231 6.03154i 0.0132913 0.0230211i
\(263\) 78.7862 + 45.4872i 0.299567 + 0.172955i 0.642249 0.766496i \(-0.278002\pi\)
−0.342681 + 0.939452i \(0.611335\pi\)
\(264\) 304.897 + 149.567i 1.15491 + 0.566543i
\(265\) 88.1568 0.332667
\(266\) −44.6831 + 35.0394i −0.167982 + 0.131727i
\(267\) 55.4163 + 82.5624i 0.207552 + 0.309222i
\(268\) 137.701 + 238.505i 0.513809 + 0.889944i
\(269\) 89.8384 + 51.8682i 0.333972 + 0.192819i 0.657603 0.753365i \(-0.271570\pi\)
−0.323631 + 0.946183i \(0.604904\pi\)
\(270\) 65.3047 + 21.7124i 0.241869 + 0.0804163i
\(271\) 120.306 + 208.376i 0.443933 + 0.768915i 0.997977 0.0635727i \(-0.0202495\pi\)
−0.554044 + 0.832487i \(0.686916\pi\)
\(272\) 13.4233i 0.0493505i
\(273\) 479.047 + 155.907i 1.75475 + 0.571087i
\(274\) 208.181 0.759784
\(275\) −64.1764 + 37.0523i −0.233369 + 0.134736i
\(276\) 269.381 18.2215i 0.976016 0.0660199i
\(277\) 58.5235 101.366i 0.211276 0.365941i −0.740838 0.671684i \(-0.765571\pi\)
0.952114 + 0.305743i \(0.0989047\pi\)
\(278\) 80.2229 46.3167i 0.288571 0.166607i
\(279\) 6.83916 16.7083i 0.0245131 0.0598865i
\(280\) 118.360 16.8508i 0.422715 0.0601814i
\(281\) 182.734i 0.650299i −0.945663 0.325150i \(-0.894585\pi\)
0.945663 0.325150i \(-0.105415\pi\)
\(282\) 22.0798 + 10.8312i 0.0782971 + 0.0384087i
\(283\) 90.4474 156.659i 0.319602 0.553567i −0.660803 0.750559i \(-0.729784\pi\)
0.980405 + 0.196992i \(0.0631174\pi\)
\(284\) −152.299 87.9299i −0.536264 0.309612i
\(285\) −21.0245 + 42.8590i −0.0737703 + 0.150383i
\(286\) −405.283 −1.41707
\(287\) 265.403 + 106.677i 0.924749 + 0.371697i
\(288\) −274.376 112.309i −0.952696 0.389963i
\(289\) −123.995 214.765i −0.429047 0.743132i
\(290\) −72.0005 41.5695i −0.248278 0.143343i
\(291\) 1.07746 + 15.9288i 0.00370260 + 0.0547381i
\(292\) 159.310 + 275.933i 0.545583 + 0.944977i
\(293\) 283.962i 0.969155i 0.874748 + 0.484578i \(0.161027\pi\)
−0.874748 + 0.484578i \(0.838973\pi\)
\(294\) 28.8809 165.056i 0.0982344 0.561416i
\(295\) 171.963 0.582926
\(296\) 119.878 69.2116i 0.404993 0.233823i
\(297\) 126.251 379.727i 0.425087 1.27854i
\(298\) −71.1264 + 123.195i −0.238679 + 0.413404i
\(299\) −692.339 + 399.722i −2.31552 + 1.33686i
\(300\) 33.6355 22.5763i 0.112118 0.0752544i
\(301\) −77.5515 + 192.942i −0.257646 + 0.641002i
\(302\) 79.4971i 0.263236i
\(303\) −83.0392 + 169.278i −0.274057 + 0.558672i
\(304\) 7.45832 12.9182i 0.0245339 0.0424940i
\(305\) −54.0373 31.1984i −0.177171 0.102290i
\(306\) 65.0999 8.84748i 0.212745 0.0289133i
\(307\) 166.816 0.543375 0.271688 0.962385i \(-0.412418\pi\)
0.271688 + 0.962385i \(0.412418\pi\)
\(308\) −39.4910 277.385i −0.128218 0.900602i
\(309\) −268.845 + 180.450i −0.870049 + 0.583981i
\(310\) 2.55650 + 4.42799i 0.00824678 + 0.0142838i
\(311\) 433.784 + 250.445i 1.39480 + 0.805290i 0.993842 0.110804i \(-0.0353427\pi\)
0.400962 + 0.916095i \(0.368676\pi\)
\(312\) 548.441 37.0978i 1.75783 0.118903i
\(313\) −200.841 347.866i −0.641664 1.11139i −0.985061 0.172204i \(-0.944911\pi\)
0.343398 0.939190i \(-0.388422\pi\)
\(314\) 172.888i 0.550599i
\(315\) −38.4564 135.522i −0.122084 0.430227i
\(316\) −91.9862 −0.291095
\(317\) −137.569 + 79.4256i −0.433972 + 0.250554i −0.701037 0.713125i \(-0.747279\pi\)
0.267065 + 0.963678i \(0.413946\pi\)
\(318\) −9.09875 134.513i −0.0286124 0.422997i
\(319\) −241.714 + 418.660i −0.757723 + 1.31242i
\(320\) 56.4781 32.6076i 0.176494 0.101899i
\(321\) −136.472 203.325i −0.425148 0.633410i
\(322\) 164.084 + 209.244i 0.509577 + 0.649825i
\(323\) 45.5730i 0.141093i
\(324\) −54.8494 + 211.765i −0.169288 + 0.653594i
\(325\) −59.9736 + 103.877i −0.184534 + 0.319623i
\(326\) −40.7889 23.5495i −0.125119 0.0722376i
\(327\) −164.814 80.8497i −0.504019 0.247247i
\(328\) 312.111 0.951557
\(329\) −7.09559 49.8395i −0.0215671 0.151488i
\(330\) 63.1594 + 94.0986i 0.191392 + 0.285147i
\(331\) −205.917 356.658i −0.622105 1.07752i −0.989093 0.147292i \(-0.952944\pi\)
0.366988 0.930226i \(-0.380389\pi\)
\(332\) −80.8530 46.6805i −0.243533 0.140604i
\(333\) −99.8328 128.985i −0.299798 0.387342i
\(334\) 37.4855 + 64.9267i 0.112232 + 0.194391i
\(335\) 228.026i 0.680673i
\(336\) 9.13113 + 43.0606i 0.0271760 + 0.128157i
\(337\) 363.035 1.07725 0.538627 0.842544i \(-0.318943\pi\)
0.538627 + 0.842544i \(0.318943\pi\)
\(338\) −401.280 + 231.679i −1.18722 + 0.685441i
\(339\) −618.288 + 41.8224i −1.82386 + 0.123370i
\(340\) 19.3362 33.4913i 0.0568713 0.0985039i
\(341\) 25.7474 14.8653i 0.0755056 0.0435932i
\(342\) 67.5659 + 27.6565i 0.197561 + 0.0808669i
\(343\) −312.592 + 141.193i −0.911346 + 0.411642i
\(344\) 226.897i 0.659584i
\(345\) 200.702 + 98.4544i 0.581745 + 0.285375i
\(346\) 134.532 233.017i 0.388822 0.673459i
\(347\) −304.373 175.730i −0.877155 0.506426i −0.00743572 0.999972i \(-0.502367\pi\)
−0.869719 + 0.493547i \(0.835700\pi\)
\(348\) 116.388 237.259i 0.334447 0.681779i
\(349\) −466.577 −1.33690 −0.668448 0.743758i \(-0.733041\pi\)
−0.668448 + 0.743758i \(0.733041\pi\)
\(350\) 37.0178 + 14.8791i 0.105765 + 0.0425116i
\(351\) −130.343 634.465i −0.371346 1.80759i
\(352\) −244.110 422.812i −0.693495 1.20117i
\(353\) −263.206 151.962i −0.745625 0.430487i 0.0784861 0.996915i \(-0.474991\pi\)
−0.824111 + 0.566429i \(0.808325\pi\)
\(354\) −17.7485 262.388i −0.0501370 0.741209i
\(355\) −72.8037 126.100i −0.205081 0.355210i
\(356\) 89.5139i 0.251444i
\(357\) −89.9387 99.9838i −0.251929 0.280067i
\(358\) −129.442 −0.361570
\(359\) 358.252 206.837i 0.997917 0.576148i 0.0902857 0.995916i \(-0.471222\pi\)
0.907631 + 0.419768i \(0.137889\pi\)
\(360\) −94.0827 121.556i −0.261341 0.337655i
\(361\) 155.179 268.777i 0.429858 0.744535i
\(362\) −93.1525 + 53.7816i −0.257327 + 0.148568i
\(363\) 245.752 164.950i 0.677004 0.454409i
\(364\) −279.848 356.869i −0.768814 0.980410i
\(365\) 263.810i 0.722766i
\(366\) −42.0265 + 85.6721i −0.114826 + 0.234077i
\(367\) 14.7313 25.5153i 0.0401397 0.0695240i −0.845258 0.534359i \(-0.820553\pi\)
0.885397 + 0.464835i \(0.153886\pi\)
\(368\) −60.4938 34.9261i −0.164385 0.0949079i
\(369\) −49.5263 364.415i −0.134218 0.987575i
\(370\) 46.1931 0.124846
\(371\) −217.166 + 170.296i −0.585353 + 0.459020i
\(372\) −13.4945 + 9.05756i −0.0362755 + 0.0243483i
\(373\) 160.449 + 277.905i 0.430157 + 0.745054i 0.996886 0.0788499i \(-0.0251248\pi\)
−0.566729 + 0.823904i \(0.691791\pi\)
\(374\) 93.6952 + 54.0950i 0.250522 + 0.144639i
\(375\) 33.4645 2.26362i 0.0892388 0.00603631i
\(376\) −27.4652 47.5712i −0.0730458 0.126519i
\(377\) 782.486i 2.07556i
\(378\) −202.815 + 72.6655i −0.536547 + 0.192237i
\(379\) 635.564 1.67695 0.838475 0.544941i \(-0.183448\pi\)
0.838475 + 0.544941i \(0.183448\pi\)
\(380\) 37.2171 21.4873i 0.0979398 0.0565456i
\(381\) 19.9063 + 294.288i 0.0522475 + 0.772409i
\(382\) 63.4470 109.893i 0.166092 0.287679i
\(383\) 605.811 349.765i 1.58175 0.913225i 0.587147 0.809480i \(-0.300251\pi\)
0.994604 0.103744i \(-0.0330824\pi\)
\(384\) 164.718 + 245.406i 0.428953 + 0.639079i
\(385\) 86.5171 215.247i 0.224720 0.559083i
\(386\) 176.765i 0.457940i
\(387\) 264.921 36.0044i 0.684550 0.0930347i
\(388\) 7.18606 12.4466i 0.0185208 0.0320789i
\(389\) −345.371 199.400i −0.887843 0.512596i −0.0146067 0.999893i \(-0.504650\pi\)
−0.873236 + 0.487297i \(0.837983\pi\)
\(390\) 164.690 + 80.7887i 0.422282 + 0.207150i
\(391\) 213.411 0.545808
\(392\) −259.018 + 270.152i −0.660760 + 0.689163i
\(393\) 10.2153 + 15.2193i 0.0259930 + 0.0387259i
\(394\) 38.6062 + 66.8680i 0.0979854 + 0.169716i
\(395\) −65.9584 38.0811i −0.166983 0.0964078i
\(396\) −284.874 + 220.489i −0.719380 + 0.556791i
\(397\) −44.1635 76.4934i −0.111243 0.192678i 0.805029 0.593236i \(-0.202150\pi\)
−0.916272 + 0.400557i \(0.868817\pi\)
\(398\) 46.1402i 0.115930i
\(399\) −31.0007 146.193i −0.0776960 0.366399i
\(400\) −10.4805 −0.0262012
\(401\) −344.542 + 198.921i −0.859206 + 0.496063i −0.863746 0.503927i \(-0.831888\pi\)
0.00454048 + 0.999990i \(0.498555\pi\)
\(402\) 347.930 23.5347i 0.865497 0.0585441i
\(403\) 24.0612 41.6753i 0.0597053 0.103413i
\(404\) 146.994 84.8671i 0.363847 0.210067i
\(405\) −126.997 + 129.138i −0.313574 + 0.318860i
\(406\) 257.668 36.6839i 0.634650 0.0903544i
\(407\) 268.598i 0.659947i
\(408\) −131.743 64.6266i −0.322899 0.158398i
\(409\) −333.799 + 578.156i −0.816134 + 1.41358i 0.0923773 + 0.995724i \(0.470553\pi\)
−0.908511 + 0.417861i \(0.862780\pi\)
\(410\) 90.2001 + 52.0771i 0.220000 + 0.127017i
\(411\) −241.301 + 491.899i −0.587107 + 1.19683i
\(412\) 291.481 0.707478
\(413\) −423.615 + 332.189i −1.02570 + 0.804331i
\(414\) 129.511 316.400i 0.312828 0.764251i
\(415\) −38.6502 66.9442i −0.0931331 0.161311i
\(416\) −684.372 395.122i −1.64513 0.949813i
\(417\) 16.4533 + 243.240i 0.0394563 + 0.583308i
\(418\) 60.1128 + 104.118i 0.143811 + 0.249087i
\(419\) 416.317i 0.993596i −0.867866 0.496798i \(-0.834509\pi\)
0.867866 0.496798i \(-0.165491\pi\)
\(420\) −39.2463 + 120.590i −0.0934435 + 0.287119i
\(421\) 207.519 0.492920 0.246460 0.969153i \(-0.420733\pi\)
0.246460 + 0.969153i \(0.420733\pi\)
\(422\) 222.349 128.373i 0.526893 0.304202i
\(423\) −51.1851 + 39.6166i −0.121005 + 0.0936564i
\(424\) −150.564 + 260.784i −0.355104 + 0.615058i
\(425\) 27.7300 16.0099i 0.0652470 0.0376704i
\(426\) −184.893 + 124.101i −0.434022 + 0.291318i
\(427\) 193.383 27.5317i 0.452888 0.0644771i
\(428\) 220.444i 0.515056i
\(429\) 469.761 957.620i 1.09501 2.23221i
\(430\) −37.8588 + 65.5733i −0.0880436 + 0.152496i
\(431\) 572.655 + 330.623i 1.32867 + 0.767106i 0.985093 0.172020i \(-0.0550294\pi\)
0.343573 + 0.939126i \(0.388363\pi\)
\(432\) 42.3154 37.5815i 0.0979523 0.0869941i
\(433\) −505.711 −1.16792 −0.583962 0.811781i \(-0.698498\pi\)
−0.583962 + 0.811781i \(0.698498\pi\)
\(434\) −14.8514 5.96944i −0.0342199 0.0137545i
\(435\) 181.678 121.943i 0.417650 0.280329i
\(436\) 82.6294 + 143.118i 0.189517 + 0.328253i
\(437\) 205.380 + 118.576i 0.469977 + 0.271341i
\(438\) 402.530 27.2280i 0.919019 0.0621645i
\(439\) 214.372 + 371.303i 0.488319 + 0.845793i 0.999910 0.0134360i \(-0.00427695\pi\)
−0.511591 + 0.859229i \(0.670944\pi\)
\(440\) 253.128i 0.575291i
\(441\) 356.527 + 259.557i 0.808450 + 0.588564i
\(442\) 175.119 0.396196
\(443\) 4.51372 2.60600i 0.0101890 0.00588261i −0.494897 0.868952i \(-0.664794\pi\)
0.505086 + 0.863069i \(0.331461\pi\)
\(444\) 9.90933 + 146.496i 0.0223183 + 0.329947i
\(445\) 37.0576 64.1856i 0.0832755 0.144237i
\(446\) −187.597 + 108.309i −0.420622 + 0.242846i
\(447\) −208.647 310.855i −0.466772 0.695424i
\(448\) −76.1389 + 189.427i −0.169953 + 0.422828i
\(449\) 249.987i 0.556765i 0.960470 + 0.278383i \(0.0897983\pi\)
−0.960470 + 0.278383i \(0.910202\pi\)
\(450\) −6.90782 50.8278i −0.0153507 0.112951i
\(451\) 302.812 524.486i 0.671423 1.16294i
\(452\) 483.125 + 278.932i 1.06886 + 0.617107i
\(453\) 187.839 + 92.1447i 0.414656 + 0.203410i
\(454\) −442.270 −0.974162
\(455\) −52.9250 371.746i −0.116319 0.817023i
\(456\) −90.8771 135.394i −0.199292 0.296916i
\(457\) 295.560 + 511.926i 0.646741 + 1.12019i 0.983897 + 0.178739i \(0.0572017\pi\)
−0.337156 + 0.941449i \(0.609465\pi\)
\(458\) −49.8195 28.7633i −0.108776 0.0628019i
\(459\) −54.5517 + 164.076i −0.118849 + 0.357464i
\(460\) −100.622 174.282i −0.218743 0.378873i
\(461\) 470.217i 1.01999i 0.860176 + 0.509997i \(0.170354\pi\)
−0.860176 + 0.509997i \(0.829646\pi\)
\(462\) −337.362 109.795i −0.730220 0.237652i
\(463\) 371.655 0.802710 0.401355 0.915923i \(-0.368539\pi\)
0.401355 + 0.915923i \(0.368539\pi\)
\(464\) −59.2105 + 34.1852i −0.127609 + 0.0736750i
\(465\) −13.4259 + 0.908156i −0.0288729 + 0.00195302i
\(466\) −115.620 + 200.261i −0.248113 + 0.429744i
\(467\) 211.724 122.239i 0.453370 0.261753i −0.255882 0.966708i \(-0.582366\pi\)
0.709252 + 0.704955i \(0.249033\pi\)
\(468\) −220.883 + 539.627i −0.471973 + 1.15305i
\(469\) −440.487 561.720i −0.939204 1.19770i
\(470\) 18.3308i 0.0390017i
\(471\) 408.508 + 200.394i 0.867320 + 0.425464i
\(472\) −293.698 + 508.699i −0.622241 + 1.07775i
\(473\) 381.288 + 220.137i 0.806107 + 0.465406i
\(474\) −51.2979 + 104.572i −0.108223 + 0.220616i
\(475\) 35.5819 0.0749093
\(476\) 17.0637 + 119.855i 0.0358480 + 0.251797i
\(477\) 328.379 + 134.414i 0.688427 + 0.281791i
\(478\) −31.0487 53.7779i −0.0649554 0.112506i
\(479\) −83.3647 48.1306i −0.174039 0.100481i 0.410450 0.911883i \(-0.365372\pi\)
−0.584489 + 0.811402i \(0.698705\pi\)
\(480\) 14.9133 + 220.474i 0.0310694 + 0.459320i
\(481\) −217.380 376.512i −0.451932 0.782770i
\(482\) 273.660i 0.567759i
\(483\) −684.599 + 145.171i −1.41739 + 0.300562i
\(484\) −266.444 −0.550504
\(485\) 10.3055 5.94987i 0.0212484 0.0122678i
\(486\) 210.151 + 180.449i 0.432410 + 0.371294i
\(487\) −323.308 + 559.986i −0.663877 + 1.14987i 0.315711 + 0.948855i \(0.397757\pi\)
−0.979588 + 0.201014i \(0.935576\pi\)
\(488\) 184.582 106.568i 0.378241 0.218378i
\(489\) 102.922 69.0817i 0.210474 0.141271i
\(490\) −119.932 + 34.8558i −0.244760 + 0.0711342i
\(491\) 562.098i 1.14480i −0.819973 0.572402i \(-0.806012\pi\)
0.819973 0.572402i \(-0.193988\pi\)
\(492\) −145.807 + 297.231i −0.296356 + 0.604129i
\(493\) 104.442 180.899i 0.211850 0.366935i
\(494\) 168.528 + 97.2999i 0.341151 + 0.196963i
\(495\) −295.548 + 40.1668i −0.597067 + 0.0811451i
\(496\) 4.20475 0.00847731
\(497\) 422.937 + 169.997i 0.850980 + 0.342046i
\(498\) −98.1568 + 65.8834i −0.197102 + 0.132296i
\(499\) 407.282 + 705.433i 0.816197 + 1.41369i 0.908465 + 0.417960i \(0.137255\pi\)
−0.0922688 + 0.995734i \(0.529412\pi\)
\(500\) −26.1489 15.0971i −0.0522978 0.0301942i
\(501\) −196.861 + 13.3161i −0.392936 + 0.0265791i
\(502\) 91.0033 + 157.622i 0.181281 + 0.313989i
\(503\) 146.815i 0.291879i −0.989294 0.145939i \(-0.953380\pi\)
0.989294 0.145939i \(-0.0466205\pi\)
\(504\) 466.578 + 117.698i 0.925751 + 0.233527i
\(505\) 140.535 0.278288
\(506\) 487.570 281.499i 0.963577 0.556321i
\(507\) −82.3002 1216.70i −0.162328 2.39980i
\(508\) 132.764 229.954i 0.261347 0.452666i
\(509\) 543.481 313.779i 1.06774 0.616462i 0.140179 0.990126i \(-0.455232\pi\)
0.927564 + 0.373664i \(0.121899\pi\)
\(510\) −27.2905 40.6590i −0.0535109 0.0797236i
\(511\) −509.612 649.870i −0.997284 1.27176i
\(512\) 133.088i 0.259938i
\(513\) −143.663 + 127.591i −0.280045 + 0.248716i
\(514\) 94.6708 163.975i 0.184184 0.319017i
\(515\) 209.006 + 120.669i 0.405836 + 0.234310i
\(516\) −216.080 105.998i −0.418760 0.205423i
\(517\) −106.588 −0.206166
\(518\) −113.792 + 89.2331i −0.219676 + 0.172265i
\(519\) 394.647 + 587.968i 0.760399 + 1.13289i
\(520\) −204.859 354.826i −0.393960 0.682358i
\(521\) −328.220 189.498i −0.629980 0.363719i 0.150764 0.988570i \(-0.451827\pi\)
−0.780744 + 0.624850i \(0.785160\pi\)
\(522\) −204.816 264.625i −0.392368 0.506944i
\(523\) 19.9172 + 34.4977i 0.0380827 + 0.0659611i 0.884439 0.466657i \(-0.154542\pi\)
−0.846356 + 0.532618i \(0.821208\pi\)
\(524\) 16.5007i 0.0314899i
\(525\) −78.0640 + 70.2211i −0.148693 + 0.133755i
\(526\) −103.701 −0.197150
\(527\) −11.1252 + 6.42313i −0.0211104 + 0.0121881i
\(528\) 92.9858 6.28976i 0.176109 0.0119124i
\(529\) 290.772 503.633i 0.549664 0.952047i
\(530\) −87.0261 + 50.2446i −0.164200 + 0.0948011i
\(531\) 640.554 + 262.195i 1.20632 + 0.493777i
\(532\) −50.1729 + 124.826i −0.0943100 + 0.234635i
\(533\) 980.276i 1.83917i
\(534\) −101.762 49.9192i −0.190565 0.0934817i
\(535\) −91.2609 + 158.069i −0.170581 + 0.295455i
\(536\) −674.542 389.447i −1.25847 0.726581i
\(537\) 150.035 305.851i 0.279396 0.569555i
\(538\) −118.248 −0.219792
\(539\) 202.675 + 697.370i 0.376021 + 1.29382i
\(540\) 159.713 32.8110i 0.295765 0.0607611i
\(541\) −55.8982 96.8186i −0.103324 0.178962i 0.809728 0.586805i \(-0.199614\pi\)
−0.913052 + 0.407843i \(0.866281\pi\)
\(542\) −237.526 137.136i −0.438239 0.253018i
\(543\) −19.1051 282.443i −0.0351843 0.520153i
\(544\) 105.478 + 182.693i 0.193893 + 0.335832i
\(545\) 136.830i 0.251064i
\(546\) −561.761 + 119.123i −1.02887 + 0.218174i
\(547\) −1064.02 −1.94519 −0.972595 0.232508i \(-0.925307\pi\)
−0.972595 + 0.232508i \(0.925307\pi\)
\(548\) 427.146 246.613i 0.779463 0.450023i
\(549\) −153.717 198.604i −0.279995 0.361756i
\(550\) 42.2355 73.1541i 0.0767919 0.133007i
\(551\) 201.023 116.061i 0.364833 0.210637i
\(552\) −634.028 + 425.563i −1.14860 + 0.770947i
\(553\) 236.045 33.6055i 0.426845 0.0607694i
\(554\) 133.421i 0.240832i
\(555\) −53.5421 + 109.147i −0.0964723 + 0.196661i
\(556\) 109.734 190.065i 0.197364 0.341844i
\(557\) −179.164 103.440i −0.321659 0.185710i 0.330473 0.943815i \(-0.392792\pi\)
−0.652132 + 0.758106i \(0.726125\pi\)
\(558\) 2.77140 + 20.3920i 0.00496666 + 0.0365448i
\(559\) 712.637 1.27484
\(560\) 25.8177 20.2456i 0.0461031 0.0361529i
\(561\) −236.420 + 158.686i −0.421425 + 0.282863i
\(562\) 104.148 + 180.390i 0.185318 + 0.320979i
\(563\) 14.1856 + 8.19005i 0.0251964 + 0.0145472i 0.512545 0.858660i \(-0.328703\pi\)
−0.487349 + 0.873207i \(0.662036\pi\)
\(564\) 58.1341 3.93232i 0.103075 0.00697220i
\(565\) 230.949 + 400.015i 0.408759 + 0.707992i
\(566\) 206.200i 0.364312i
\(567\) 63.3843 563.446i 0.111789 0.993732i
\(568\) 497.369 0.875649
\(569\) −358.446 + 206.949i −0.629957 + 0.363706i −0.780735 0.624862i \(-0.785155\pi\)
0.150778 + 0.988568i \(0.451822\pi\)
\(570\) −3.67244 54.2922i −0.00644288 0.0952494i
\(571\) 174.912 302.957i 0.306326 0.530573i −0.671229 0.741250i \(-0.734233\pi\)
0.977556 + 0.210677i \(0.0675668\pi\)
\(572\) −831.560 + 480.101i −1.45378 + 0.839338i
\(573\) 186.120 + 277.292i 0.324817 + 0.483931i
\(574\) −322.799 + 45.9565i −0.562368 + 0.0800636i
\(575\) 166.624i 0.289781i
\(576\) 260.095 35.3486i 0.451554 0.0613690i
\(577\) −390.984 + 677.204i −0.677616 + 1.17366i 0.298081 + 0.954540i \(0.403653\pi\)
−0.975697 + 0.219124i \(0.929680\pi\)
\(578\) 244.809 + 141.340i 0.423544 + 0.244533i
\(579\) −417.668 204.887i −0.721360 0.353864i
\(580\) −196.974 −0.339611
\(581\) 224.530 + 90.2484i 0.386455 + 0.155333i
\(582\) −10.1422 15.1104i −0.0174264 0.0259629i
\(583\) 292.157 + 506.030i 0.501126 + 0.867976i
\(584\) −780.398 450.563i −1.33630 0.771512i
\(585\) −381.782 + 295.495i −0.652619 + 0.505119i
\(586\) −161.843 280.320i −0.276183 0.478363i
\(587\) 720.660i 1.22770i −0.789422 0.613850i \(-0.789620\pi\)
0.789422 0.613850i \(-0.210380\pi\)
\(588\) −136.269 372.875i −0.231750 0.634142i
\(589\) −14.2754 −0.0242366
\(590\) −169.758 + 98.0096i −0.287725 + 0.166118i
\(591\) −202.747 + 13.7142i −0.343057 + 0.0232052i
\(592\) 18.9937 32.8981i 0.0320840 0.0555711i
\(593\) −141.904 + 81.9281i −0.239298 + 0.138159i −0.614854 0.788641i \(-0.710785\pi\)
0.375556 + 0.926800i \(0.377452\pi\)
\(594\) 91.7918 + 446.813i 0.154532 + 0.752210i
\(595\) −37.3831 + 93.0061i −0.0628288 + 0.156313i
\(596\) 337.028i 0.565483i
\(597\) 109.022 + 53.4809i 0.182617 + 0.0895827i
\(598\) 455.640 789.191i 0.761939 1.31972i
\(599\) 79.5260 + 45.9144i 0.132765 + 0.0766517i 0.564911 0.825152i \(-0.308910\pi\)
−0.432147 + 0.901803i \(0.642244\pi\)
\(600\) −50.4583 + 102.860i −0.0840971 + 0.171434i
\(601\) −45.5540 −0.0757970 −0.0378985 0.999282i \(-0.512066\pi\)
−0.0378985 + 0.999282i \(0.512066\pi\)
\(602\) −33.4093 234.667i −0.0554971 0.389812i
\(603\) −347.675 + 849.383i −0.576575 + 1.40860i
\(604\) −94.1730 163.112i −0.155916 0.270054i
\(605\) −191.053 110.304i −0.315790 0.182321i
\(606\) −14.5048 214.434i −0.0239353 0.353852i
\(607\) −410.405 710.843i −0.676121 1.17108i −0.976140 0.217142i \(-0.930326\pi\)
0.300019 0.953933i \(-0.403007\pi\)
\(608\) 234.423i 0.385564i
\(609\) −211.983 + 651.349i −0.348084 + 1.06954i
\(610\) 71.1256 0.116599
\(611\) −149.411 + 86.2627i −0.244536 + 0.141183i
\(612\) 123.091 95.2712i 0.201130 0.155672i
\(613\) −217.446 + 376.628i −0.354725 + 0.614401i −0.987071 0.160285i \(-0.948759\pi\)
0.632346 + 0.774686i \(0.282092\pi\)
\(614\) −164.677 + 95.0762i −0.268203 + 0.154847i
\(615\) −227.601 + 152.767i −0.370082 + 0.248401i
\(616\) 488.978 + 623.557i 0.793795 + 1.01227i
\(617\) 880.290i 1.42673i −0.700795 0.713363i \(-0.747171\pi\)
0.700795 0.713363i \(-0.252829\pi\)
\(618\) 162.550 331.363i 0.263026 0.536186i
\(619\) 535.898 928.202i 0.865748 1.49952i −0.000554937 1.00000i \(-0.500177\pi\)
0.866303 0.499519i \(-0.166490\pi\)
\(620\) 10.4909 + 6.05691i 0.0169208 + 0.00976921i
\(621\) 597.489 + 672.751i 0.962140 + 1.08334i
\(622\) −570.961 −0.917943
\(623\) 32.7023 + 229.701i 0.0524916 + 0.368702i
\(624\) 125.254 84.0712i 0.200728 0.134730i
\(625\) −12.5000 21.6506i −0.0200000 0.0346410i
\(626\) 396.530 + 228.937i 0.633434 + 0.365713i
\(627\) −315.692 + 21.3541i −0.503496 + 0.0340576i
\(628\) −204.805 354.732i −0.326122 0.564860i
\(629\) 116.059i 0.184513i
\(630\) 115.203 + 111.865i 0.182862 + 0.177564i
\(631\) −561.284 −0.889516 −0.444758 0.895651i \(-0.646710\pi\)
−0.444758 + 0.895651i \(0.646710\pi\)
\(632\) 225.302 130.078i 0.356491 0.205820i
\(633\) 45.6025 + 674.172i 0.0720418 + 1.06504i
\(634\) 90.5365 156.814i 0.142802 0.247340i
\(635\) 190.396 109.925i 0.299836 0.173111i
\(636\) −178.014 265.215i −0.279896 0.417005i
\(637\) 848.493 + 813.523i 1.33201 + 1.27712i
\(638\) 551.054i 0.863722i
\(639\) −78.9234 580.720i −0.123511 0.908795i
\(640\) 110.149 190.784i 0.172108 0.298100i
\(641\) 755.593 + 436.242i 1.17877 + 0.680564i 0.955730 0.294245i \(-0.0950681\pi\)
0.223042 + 0.974809i \(0.428401\pi\)
\(642\) 250.606 + 122.935i 0.390352 + 0.191487i
\(643\) −15.3320 −0.0238445 −0.0119223 0.999929i \(-0.503795\pi\)
−0.0119223 + 0.999929i \(0.503795\pi\)
\(644\) 584.539 + 234.952i 0.907670 + 0.364832i
\(645\) −111.058 165.460i −0.172182 0.256527i
\(646\) −25.9741 44.9885i −0.0402076 0.0696417i
\(647\) −608.626 351.390i −0.940689 0.543107i −0.0505128 0.998723i \(-0.516086\pi\)
−0.890176 + 0.455616i \(0.849419\pi\)
\(648\) −165.115 596.239i −0.254807 0.920121i
\(649\) 569.896 + 987.088i 0.878113 + 1.52094i
\(650\) 136.727i 0.210349i
\(651\) 31.3191 28.1725i 0.0481092 0.0432758i
\(652\) −111.588 −0.171147
\(653\) −24.5206 + 14.1570i −0.0375506 + 0.0216799i −0.518658 0.854982i \(-0.673568\pi\)
0.481107 + 0.876662i \(0.340235\pi\)
\(654\) 208.780 14.1224i 0.319236 0.0215938i
\(655\) 6.83107 11.8318i 0.0104291 0.0180638i
\(656\) 74.1773 42.8263i 0.113075 0.0652839i
\(657\) −402.235 + 982.677i −0.612230 + 1.49570i
\(658\) 35.4104 + 45.1562i 0.0538152 + 0.0686264i
\(659\) 99.8613i 0.151535i −0.997126 0.0757673i \(-0.975859\pi\)
0.997126 0.0757673i \(-0.0241406\pi\)
\(660\) 241.061 + 118.252i 0.365243 + 0.179170i
\(661\) 569.474 986.358i 0.861534 1.49222i −0.00891369 0.999960i \(-0.502837\pi\)
0.870448 0.492261i \(-0.163829\pi\)
\(662\) 406.551 + 234.723i 0.614126 + 0.354566i
\(663\) −202.979 + 413.778i −0.306152 + 0.624099i
\(664\) 264.045 0.397658
\(665\) −87.6526 + 68.7351i −0.131808 + 0.103361i
\(666\) 172.067 + 70.4314i 0.258358 + 0.105753i
\(667\) −543.494 941.359i −0.814833 1.41133i
\(668\) 153.826 + 88.8112i 0.230278 + 0.132951i
\(669\) −38.4752 568.805i −0.0575115 0.850231i
\(670\) −129.962 225.101i −0.193973 0.335972i
\(671\) 413.573i 0.616354i
\(672\) −462.636 514.307i −0.688446 0.765338i
\(673\) −974.867 −1.44854 −0.724270 0.689517i \(-0.757823\pi\)
−0.724270 + 0.689517i \(0.757823\pi\)
\(674\) −358.379 + 206.910i −0.531719 + 0.306988i
\(675\) 128.105 + 42.5922i 0.189785 + 0.0630995i
\(676\) −548.898 + 950.719i −0.811979 + 1.40639i
\(677\) −271.115 + 156.528i −0.400465 + 0.231209i −0.686685 0.726955i \(-0.740935\pi\)
0.286220 + 0.958164i \(0.407601\pi\)
\(678\) 586.522 393.676i 0.865076 0.580644i
\(679\) −13.8930 + 34.5645i −0.0204609 + 0.0509050i
\(680\) 109.374i 0.160844i
\(681\) 512.632 1045.01i 0.752764 1.53453i
\(682\) −16.9448 + 29.3492i −0.0248457 + 0.0430341i
\(683\) −755.669 436.286i −1.10640 0.638779i −0.168503 0.985701i \(-0.553893\pi\)
−0.937894 + 0.346922i \(0.887227\pi\)
\(684\) 171.394 23.2935i 0.250576 0.0340548i
\(685\) 408.378 0.596172
\(686\) 228.110 317.543i 0.332522 0.462890i
\(687\) 125.709 84.3763i 0.182982 0.122818i
\(688\) 31.1337 + 53.9251i 0.0452524 + 0.0783795i
\(689\) 819.071 + 472.891i 1.18878 + 0.686344i
\(690\) −254.241 + 17.1974i −0.368466 + 0.0249238i
\(691\) 136.246 + 235.985i 0.197172 + 0.341512i 0.947610 0.319429i \(-0.103491\pi\)
−0.750438 + 0.660940i \(0.770158\pi\)
\(692\) 637.473i 0.921204i
\(693\) 650.463 669.870i 0.938619 0.966623i
\(694\) 400.625 0.577270
\(695\) 157.369 90.8572i 0.226431 0.130730i
\(696\) 50.4411 + 745.704i 0.0724728 + 1.07141i
\(697\) −130.842 + 226.625i −0.187722 + 0.325143i
\(698\) 460.593 265.923i 0.659875 0.380979i
\(699\) −339.169 505.314i −0.485221 0.722910i
\(700\) 93.5791 13.3227i 0.133684 0.0190325i
\(701\) 916.260i 1.30707i 0.756894 + 0.653537i \(0.226716\pi\)
−0.756894 + 0.653537i \(0.773284\pi\)
\(702\) 490.281 + 552.039i 0.698406 + 0.786381i
\(703\) −64.4848 + 111.691i −0.0917281 + 0.158878i
\(704\) 374.343 + 216.127i 0.531737 + 0.306999i
\(705\) 43.3128 + 21.2471i 0.0614366 + 0.0301378i
\(706\) 346.440 0.490708
\(707\) −346.196 + 271.478i −0.489669 + 0.383987i
\(708\) −347.243 517.343i −0.490457 0.730710i
\(709\) 279.280 + 483.727i 0.393907 + 0.682267i 0.992961 0.118442i \(-0.0377899\pi\)
−0.599054 + 0.800709i \(0.704457\pi\)
\(710\) 143.740 + 82.9882i 0.202450 + 0.116885i
\(711\) −187.629 242.418i −0.263894 0.340954i
\(712\) 126.582 + 219.247i 0.177784 + 0.307931i
\(713\) 66.8492i 0.0937576i
\(714\) 145.770 + 47.4414i 0.204160 + 0.0664445i
\(715\) −795.023 −1.11192
\(716\) −265.589 + 153.338i −0.370935 + 0.214159i
\(717\) 163.057 11.0295i 0.227416 0.0153829i
\(718\) −235.772 + 408.368i −0.328373 + 0.568758i
\(719\) 454.362 262.326i 0.631937 0.364849i −0.149565 0.988752i \(-0.547787\pi\)
0.781502 + 0.623903i \(0.214454\pi\)
\(720\) −39.0393 15.9798i −0.0542213 0.0221942i
\(721\) −747.968 + 106.487i −1.03740 + 0.147694i
\(722\) 353.773i 0.489991i
\(723\) 646.615 + 317.197i 0.894350 + 0.438724i
\(724\) −127.420 + 220.698i −0.175995 + 0.304832i
\(725\) −141.240 81.5448i −0.194814 0.112476i
\(726\) −148.588 + 302.900i −0.204666 + 0.417218i
\(727\) 626.396 0.861618 0.430809 0.902443i \(-0.358228\pi\)
0.430809 + 0.902443i \(0.358228\pi\)
\(728\) 1190.08 + 478.346i 1.63473 + 0.657069i
\(729\) −669.958 + 287.398i −0.919009 + 0.394236i
\(730\) −150.357 260.426i −0.205969 0.356748i
\(731\) −164.751 95.1189i −0.225377 0.130122i
\(732\) 15.2579 + 225.567i 0.0208441 + 0.308152i
\(733\) 222.455 + 385.303i 0.303485 + 0.525652i 0.976923 0.213592i \(-0.0685163\pi\)
−0.673437 + 0.739244i \(0.735183\pi\)
\(734\) 33.5841i 0.0457548i
\(735\) 56.6543 323.783i 0.0770807 0.440521i
\(736\) 1097.77 1.49153
\(737\) −1308.89 + 755.689i −1.77597 + 1.02536i
\(738\) 256.588 + 331.514i 0.347680 + 0.449206i
\(739\) 180.910 313.346i 0.244804 0.424013i −0.717272 0.696793i \(-0.754610\pi\)
0.962077 + 0.272780i \(0.0879430\pi\)
\(740\) 94.7790 54.7207i 0.128080 0.0739469i
\(741\) −425.245 + 285.427i −0.573880 + 0.385191i
\(742\) 117.321 291.885i 0.158115 0.393376i
\(743\) 1133.77i 1.52593i 0.646438 + 0.762967i \(0.276258\pi\)
−0.646438 + 0.762967i \(0.723742\pi\)
\(744\) 20.2437 41.2673i 0.0272093 0.0554669i
\(745\) −139.525 + 241.665i −0.187282 + 0.324382i
\(746\) −316.782 182.894i −0.424640 0.245166i
\(747\) −41.8991 308.294i −0.0560898 0.412710i
\(748\) 256.325 0.342681
\(749\) −80.5351 565.680i −0.107524 0.755246i
\(750\) −31.7452 + 21.3075i −0.0423269 + 0.0284101i
\(751\) 64.7013 + 112.066i 0.0861536 + 0.149222i 0.905882 0.423530i \(-0.139209\pi\)
−0.819729 + 0.572752i \(0.805876\pi\)
\(752\) −13.0550 7.53728i −0.0173603 0.0100230i
\(753\) −477.918 + 32.3274i −0.634686 + 0.0429315i
\(754\) −445.974 772.450i −0.591478 1.02447i
\(755\) 155.946i 0.206550i
\(756\) −330.056 + 389.351i −0.436582 + 0.515015i
\(757\) 271.769 0.359008 0.179504 0.983757i \(-0.442551\pi\)
0.179504 + 0.983757i \(0.442551\pi\)
\(758\) −627.412 + 362.237i −0.827721 + 0.477885i
\(759\) 99.9978 + 1478.33i 0.131749 + 1.94774i
\(760\) −60.7707 + 105.258i −0.0799614 + 0.138497i
\(761\) 853.490 492.763i 1.12154 0.647520i 0.179745 0.983713i \(-0.442473\pi\)
0.941793 + 0.336193i \(0.109140\pi\)
\(762\) −187.379 279.168i −0.245904 0.366362i
\(763\) −264.320 337.068i −0.346422 0.441766i
\(764\) 300.639i 0.393507i
\(765\) 127.703