Properties

Label 105.3.t.b.11.18
Level 105
Weight 3
Character 105.11
Analytic conductor 2.861
Analytic rank 0
Dimension 36
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.t (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 11.18
Character \(\chi\) \(=\) 105.11
Dual form 105.3.t.b.86.18

$q$-expansion

\(f(q)\) \(=\) \(q+(3.31814 - 1.91573i) q^{2} +(-2.97174 - 0.410813i) q^{3} +(5.34002 - 9.24919i) q^{4} +(1.93649 - 1.11803i) q^{5} +(-10.6476 + 4.32991i) q^{6} +(-5.86414 + 3.82255i) q^{7} -25.5943i q^{8} +(8.66247 + 2.44166i) q^{9} +O(q^{10})\) \(q+(3.31814 - 1.91573i) q^{2} +(-2.97174 - 0.410813i) q^{3} +(5.34002 - 9.24919i) q^{4} +(1.93649 - 1.11803i) q^{5} +(-10.6476 + 4.32991i) q^{6} +(-5.86414 + 3.82255i) q^{7} -25.5943i q^{8} +(8.66247 + 2.44166i) q^{9} +(4.28370 - 7.41958i) q^{10} +(9.48205 + 5.47446i) q^{11} +(-19.6688 + 25.2924i) q^{12} -3.75260 q^{13} +(-12.1351 + 23.9178i) q^{14} +(-6.21405 + 2.52697i) q^{15} +(-27.6716 - 47.9286i) q^{16} +(12.6515 + 7.30435i) q^{17} +(33.4208 - 8.49316i) q^{18} +(5.54612 + 9.60616i) q^{19} -23.8813i q^{20} +(18.9970 - 8.95054i) q^{21} +41.9503 q^{22} +(-8.53608 + 4.92831i) q^{23} +(-10.5145 + 76.0595i) q^{24} +(2.50000 - 4.33013i) q^{25} +(-12.4516 + 7.18896i) q^{26} +(-24.7395 - 10.8146i) q^{27} +(4.04080 + 74.6510i) q^{28} +10.0771i q^{29} +(-15.7781 + 20.2893i) q^{30} +(-12.0674 + 20.9013i) q^{31} +(-94.9750 - 54.8338i) q^{32} +(-25.9292 - 20.1640i) q^{33} +55.9726 q^{34} +(-7.08212 + 13.9586i) q^{35} +(68.8411 - 67.0823i) q^{36} +(19.1895 + 33.2372i) q^{37} +(36.8056 + 21.2497i) q^{38} +(11.1518 + 1.54162i) q^{39} +(-28.6153 - 49.5631i) q^{40} -67.5044i q^{41} +(45.8880 - 66.0923i) q^{42} -77.4222 q^{43} +(101.269 - 58.4675i) q^{44} +(19.5046 - 4.95668i) q^{45} +(-18.8826 + 32.7056i) q^{46} +(4.91770 - 2.83924i) q^{47} +(62.5430 + 153.799i) q^{48} +(19.7763 - 44.8319i) q^{49} -19.1573i q^{50} +(-34.5963 - 26.9040i) q^{51} +(-20.0390 + 34.7085i) q^{52} +(-59.9505 - 34.6124i) q^{53} +(-102.807 + 11.5098i) q^{54} +24.4825 q^{55} +(97.8353 + 150.088i) q^{56} +(-12.5353 - 30.8254i) q^{57} +(19.3049 + 33.4371i) q^{58} +(-45.4375 - 26.2334i) q^{59} +(-9.81075 + 70.9690i) q^{60} +(6.77556 + 11.7356i) q^{61} +92.4712i q^{62} +(-60.1313 + 18.7944i) q^{63} -198.814 q^{64} +(-7.26688 + 4.19554i) q^{65} +(-124.665 - 17.2337i) q^{66} +(-10.6264 + 18.4054i) q^{67} +(135.119 - 78.0108i) q^{68} +(27.3916 - 11.1389i) q^{69} +(3.24148 + 59.8841i) q^{70} +25.6835i q^{71} +(62.4925 - 221.710i) q^{72} +(12.4056 - 21.4871i) q^{73} +(127.347 + 73.5238i) q^{74} +(-9.20822 + 11.8410i) q^{75} +118.466 q^{76} +(-76.5305 + 4.14254i) q^{77} +(39.9564 - 16.2484i) q^{78} +(55.3563 + 95.8799i) q^{79} +(-107.172 - 61.8755i) q^{80} +(69.0766 + 42.3016i) q^{81} +(-129.320 - 223.989i) q^{82} -102.155i q^{83} +(18.6594 - 223.503i) q^{84} +32.6661 q^{85} +(-256.898 + 148.320i) q^{86} +(4.13979 - 29.9464i) q^{87} +(140.115 - 242.686i) q^{88} +(-62.5361 + 36.1052i) q^{89} +(55.2234 - 53.8125i) q^{90} +(22.0058 - 14.3445i) q^{91} +105.269i q^{92} +(44.4476 - 57.1558i) q^{93} +(10.8784 - 18.8420i) q^{94} +(21.4800 + 12.4015i) q^{95} +(259.714 + 201.969i) q^{96} -6.23399 q^{97} +(-20.2652 - 186.644i) q^{98} +(68.7712 + 70.5743i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36q + 4q^{3} + 36q^{4} - 24q^{6} - 58q^{7} - 2q^{9} + O(q^{10}) \) \( 36q + 4q^{3} + 36q^{4} - 24q^{6} - 58q^{7} - 2q^{9} + 20q^{10} - 42q^{12} - 100q^{13} + 20q^{15} - 12q^{16} - 14q^{18} + 50q^{19} - 12q^{21} + 256q^{22} - 140q^{24} + 90q^{25} + 4q^{27} - 48q^{28} + 60q^{30} - 82q^{31} - 76q^{33} - 64q^{34} + 296q^{36} - 26q^{37} - 130q^{39} - 60q^{40} - 98q^{42} - 204q^{43} + 40q^{45} + 28q^{46} + 532q^{48} - 382q^{49} + 208q^{51} + 200q^{52} - 44q^{54} - 160q^{55} + 252q^{57} + 264q^{58} - 130q^{60} - 324q^{61} - 258q^{63} - 24q^{64} - 164q^{66} - 142q^{67} - 112q^{69} + 200q^{70} - 322q^{72} + 386q^{73} - 20q^{75} - 424q^{76} - 440q^{78} + 334q^{79} + 186q^{81} - 68q^{82} + 80q^{84} - 200q^{85} + 342q^{87} + 180q^{88} + 100q^{90} + 46q^{91} - 2q^{93} + 324q^{94} + 732q^{96} + 1616q^{97} + 384q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.31814 1.91573i 1.65907 0.957864i 0.685923 0.727675i \(-0.259399\pi\)
0.973146 0.230189i \(-0.0739345\pi\)
\(3\) −2.97174 0.410813i −0.990580 0.136938i
\(4\) 5.34002 9.24919i 1.33501 2.31230i
\(5\) 1.93649 1.11803i 0.387298 0.223607i
\(6\) −10.6476 + 4.32991i −1.77461 + 0.721651i
\(7\) −5.86414 + 3.82255i −0.837734 + 0.546078i
\(8\) 25.5943i 3.19929i
\(9\) 8.66247 + 2.44166i 0.962496 + 0.271295i
\(10\) 4.28370 7.41958i 0.428370 0.741958i
\(11\) 9.48205 + 5.47446i 0.862004 + 0.497679i 0.864683 0.502318i \(-0.167519\pi\)
−0.00267854 + 0.999996i \(0.500853\pi\)
\(12\) −19.6688 + 25.2924i −1.63907 + 2.10770i
\(13\) −3.75260 −0.288662 −0.144331 0.989529i \(-0.546103\pi\)
−0.144331 + 0.989529i \(0.546103\pi\)
\(14\) −12.1351 + 23.9178i −0.866791 + 1.70842i
\(15\) −6.21405 + 2.52697i −0.414270 + 0.168465i
\(16\) −27.6716 47.9286i −1.72947 2.99554i
\(17\) 12.6515 + 7.30435i 0.744206 + 0.429668i 0.823597 0.567176i \(-0.191964\pi\)
−0.0793904 + 0.996844i \(0.525297\pi\)
\(18\) 33.4208 8.49316i 1.85671 0.471842i
\(19\) 5.54612 + 9.60616i 0.291901 + 0.505587i 0.974259 0.225431i \(-0.0723789\pi\)
−0.682358 + 0.731018i \(0.739046\pi\)
\(20\) 23.8813i 1.19407i
\(21\) 18.9970 8.95054i 0.904621 0.426216i
\(22\) 41.9503 1.90683
\(23\) −8.53608 + 4.92831i −0.371134 + 0.214274i −0.673954 0.738774i \(-0.735405\pi\)
0.302820 + 0.953048i \(0.402072\pi\)
\(24\) −10.5145 + 76.0595i −0.438103 + 3.16915i
\(25\) 2.50000 4.33013i 0.100000 0.173205i
\(26\) −12.4516 + 7.18896i −0.478909 + 0.276499i
\(27\) −24.7395 10.8146i −0.916279 0.400542i
\(28\) 4.04080 + 74.6510i 0.144314 + 2.66611i
\(29\) 10.0771i 0.347485i 0.984791 + 0.173743i \(0.0555861\pi\)
−0.984791 + 0.173743i \(0.944414\pi\)
\(30\) −15.7781 + 20.2893i −0.525936 + 0.676309i
\(31\) −12.0674 + 20.9013i −0.389270 + 0.674236i −0.992352 0.123444i \(-0.960606\pi\)
0.603081 + 0.797680i \(0.293939\pi\)
\(32\) −94.9750 54.8338i −2.96797 1.71356i
\(33\) −25.9292 20.1640i −0.785733 0.611031i
\(34\) 55.9726 1.64625
\(35\) −7.08212 + 13.9586i −0.202346 + 0.398818i
\(36\) 68.8411 67.0823i 1.91225 1.86340i
\(37\) 19.1895 + 33.2372i 0.518636 + 0.898303i 0.999766 + 0.0216538i \(0.00689317\pi\)
−0.481130 + 0.876649i \(0.659773\pi\)
\(38\) 36.8056 + 21.2497i 0.968568 + 0.559203i
\(39\) 11.1518 + 1.54162i 0.285942 + 0.0395287i
\(40\) −28.6153 49.5631i −0.715382 1.23908i
\(41\) 67.5044i 1.64645i −0.567716 0.823224i \(-0.692173\pi\)
0.567716 0.823224i \(-0.307827\pi\)
\(42\) 45.8880 66.0923i 1.09257 1.57363i
\(43\) −77.4222 −1.80052 −0.900258 0.435356i \(-0.856623\pi\)
−0.900258 + 0.435356i \(0.856623\pi\)
\(44\) 101.269 58.4675i 2.30156 1.32881i
\(45\) 19.5046 4.95668i 0.433437 0.110148i
\(46\) −18.8826 + 32.7056i −0.410491 + 0.710991i
\(47\) 4.91770 2.83924i 0.104632 0.0604093i −0.446771 0.894648i \(-0.647426\pi\)
0.551403 + 0.834239i \(0.314093\pi\)
\(48\) 62.5430 + 153.799i 1.30298 + 3.20415i
\(49\) 19.7763 44.8319i 0.403598 0.914936i
\(50\) 19.1573i 0.383145i
\(51\) −34.5963 26.9040i −0.678358 0.527530i
\(52\) −20.0390 + 34.7085i −0.385365 + 0.667472i
\(53\) −59.9505 34.6124i −1.13114 0.653065i −0.186920 0.982375i \(-0.559850\pi\)
−0.944222 + 0.329310i \(0.893184\pi\)
\(54\) −102.807 + 11.5098i −1.90383 + 0.213144i
\(55\) 24.4825 0.445137
\(56\) 97.8353 + 150.088i 1.74706 + 2.68015i
\(57\) −12.5353 30.8254i −0.219917 0.540797i
\(58\) 19.3049 + 33.4371i 0.332844 + 0.576502i
\(59\) −45.4375 26.2334i −0.770128 0.444634i 0.0627923 0.998027i \(-0.479999\pi\)
−0.832920 + 0.553393i \(0.813333\pi\)
\(60\) −9.81075 + 70.9690i −0.163513 + 1.18282i
\(61\) 6.77556 + 11.7356i 0.111075 + 0.192387i 0.916204 0.400712i \(-0.131237\pi\)
−0.805129 + 0.593100i \(0.797904\pi\)
\(62\) 92.4712i 1.49147i
\(63\) −60.1313 + 18.7944i −0.954465 + 0.298324i
\(64\) −198.814 −3.10647
\(65\) −7.26688 + 4.19554i −0.111798 + 0.0645467i
\(66\) −124.665 17.2337i −1.88887 0.261117i
\(67\) −10.6264 + 18.4054i −0.158603 + 0.274708i −0.934365 0.356317i \(-0.884032\pi\)
0.775762 + 0.631025i \(0.217366\pi\)
\(68\) 135.119 78.0108i 1.98704 1.14722i
\(69\) 27.3916 11.1389i 0.396980 0.161433i
\(70\) 3.24148 + 59.8841i 0.0463069 + 0.855487i
\(71\) 25.6835i 0.361740i 0.983507 + 0.180870i \(0.0578913\pi\)
−0.983507 + 0.180870i \(0.942109\pi\)
\(72\) 62.4925 221.710i 0.867951 3.07930i
\(73\) 12.4056 21.4871i 0.169939 0.294344i −0.768459 0.639899i \(-0.778976\pi\)
0.938398 + 0.345555i \(0.112309\pi\)
\(74\) 127.347 + 73.5238i 1.72090 + 0.993564i
\(75\) −9.20822 + 11.8410i −0.122776 + 0.157880i
\(76\) 118.466 1.55876
\(77\) −76.5305 + 4.14254i −0.993902 + 0.0537992i
\(78\) 39.9564 16.2484i 0.512261 0.208313i
\(79\) 55.3563 + 95.8799i 0.700713 + 1.21367i 0.968217 + 0.250113i \(0.0804679\pi\)
−0.267504 + 0.963557i \(0.586199\pi\)
\(80\) −107.172 61.8755i −1.33964 0.773444i
\(81\) 69.0766 + 42.3016i 0.852798 + 0.522241i
\(82\) −129.320 223.989i −1.57707 2.73157i
\(83\) 102.155i 1.23078i −0.788222 0.615392i \(-0.788998\pi\)
0.788222 0.615392i \(-0.211002\pi\)
\(84\) 18.6594 223.503i 0.222136 2.66075i
\(85\) 32.6661 0.384307
\(86\) −256.898 + 148.320i −2.98718 + 1.72465i
\(87\) 4.13979 29.9464i 0.0475838 0.344212i
\(88\) 140.115 242.686i 1.59222 2.75780i
\(89\) −62.5361 + 36.1052i −0.702652 + 0.405677i −0.808335 0.588723i \(-0.799631\pi\)
0.105682 + 0.994400i \(0.466297\pi\)
\(90\) 55.2234 53.8125i 0.613594 0.597917i
\(91\) 22.0058 14.3445i 0.241822 0.157632i
\(92\) 105.269i 1.14423i
\(93\) 44.4476 57.1558i 0.477932 0.614579i
\(94\) 10.8784 18.8420i 0.115728 0.200446i
\(95\) 21.4800 + 12.4015i 0.226106 + 0.130542i
\(96\) 259.714 + 201.969i 2.70536 + 2.10384i
\(97\) −6.23399 −0.0642680 −0.0321340 0.999484i \(-0.510230\pi\)
−0.0321340 + 0.999484i \(0.510230\pi\)
\(98\) −20.2652 186.644i −0.206788 1.90453i
\(99\) 68.7712 + 70.5743i 0.694658 + 0.712871i
\(100\) −26.7001 46.2459i −0.267001 0.462459i
\(101\) 44.7681 + 25.8469i 0.443249 + 0.255910i 0.704975 0.709232i \(-0.250958\pi\)
−0.261726 + 0.965142i \(0.584292\pi\)
\(102\) −166.336 22.9943i −1.63074 0.225434i
\(103\) 58.1765 + 100.765i 0.564821 + 0.978298i 0.997066 + 0.0765423i \(0.0243880\pi\)
−0.432246 + 0.901756i \(0.642279\pi\)
\(104\) 96.0451i 0.923511i
\(105\) 26.7806 38.5720i 0.255053 0.367352i
\(106\) −265.232 −2.50219
\(107\) 123.457 71.2779i 1.15380 0.666148i 0.203992 0.978973i \(-0.434608\pi\)
0.949811 + 0.312824i \(0.101275\pi\)
\(108\) −232.136 + 171.070i −2.14941 + 1.58398i
\(109\) 40.3534 69.8941i 0.370214 0.641230i −0.619384 0.785088i \(-0.712618\pi\)
0.989598 + 0.143858i \(0.0459509\pi\)
\(110\) 81.2364 46.9019i 0.738513 0.426381i
\(111\) −43.3720 106.656i −0.390738 0.960862i
\(112\) 345.479 + 175.284i 3.08464 + 1.56504i
\(113\) 78.3508i 0.693370i 0.937982 + 0.346685i \(0.112693\pi\)
−0.937982 + 0.346685i \(0.887307\pi\)
\(114\) −100.647 78.2688i −0.882867 0.686568i
\(115\) −11.0200 + 19.0872i −0.0958263 + 0.165976i
\(116\) 93.2048 + 53.8118i 0.803490 + 0.463895i
\(117\) −32.5068 9.16257i −0.277836 0.0783126i
\(118\) −201.024 −1.70359
\(119\) −102.111 + 5.52722i −0.858079 + 0.0464472i
\(120\) 64.6760 + 159.044i 0.538966 + 1.32537i
\(121\) −0.560494 0.970804i −0.00463218 0.00802317i
\(122\) 44.9645 + 25.9603i 0.368561 + 0.212789i
\(123\) −27.7317 + 200.605i −0.225461 + 1.63094i
\(124\) 128.880 + 223.227i 1.03936 + 1.80022i
\(125\) 11.1803i 0.0894427i
\(126\) −163.519 + 177.558i −1.29777 + 1.40919i
\(127\) −68.5186 −0.539517 −0.269758 0.962928i \(-0.586944\pi\)
−0.269758 + 0.962928i \(0.586944\pi\)
\(128\) −279.792 + 161.538i −2.18588 + 1.26202i
\(129\) 230.079 + 31.8061i 1.78356 + 0.246559i
\(130\) −16.0750 + 27.8427i −0.123654 + 0.214175i
\(131\) −16.0698 + 9.27792i −0.122671 + 0.0708239i −0.560080 0.828439i \(-0.689229\pi\)
0.437409 + 0.899263i \(0.355896\pi\)
\(132\) −324.963 + 132.148i −2.46184 + 1.00112i
\(133\) −69.2432 35.1316i −0.520626 0.264147i
\(134\) 81.4290i 0.607679i
\(135\) −59.9990 + 6.71720i −0.444437 + 0.0497570i
\(136\) 186.950 323.806i 1.37463 2.38093i
\(137\) 116.043 + 66.9972i 0.847027 + 0.489031i 0.859646 0.510889i \(-0.170684\pi\)
−0.0126199 + 0.999920i \(0.504017\pi\)
\(138\) 69.5500 89.4353i 0.503985 0.648082i
\(139\) 89.7025 0.645342 0.322671 0.946511i \(-0.395419\pi\)
0.322671 + 0.946511i \(0.395419\pi\)
\(140\) 91.2874 + 140.043i 0.652053 + 1.00031i
\(141\) −15.7805 + 6.41721i −0.111919 + 0.0455122i
\(142\) 49.2026 + 85.2214i 0.346497 + 0.600151i
\(143\) −35.5824 20.5435i −0.248828 0.143661i
\(144\) −122.679 482.744i −0.851937 3.35239i
\(145\) 11.2665 + 19.5142i 0.0777001 + 0.134581i
\(146\) 95.0628i 0.651115i
\(147\) −77.1875 + 125.104i −0.525085 + 0.851050i
\(148\) 409.890 2.76953
\(149\) 100.678 58.1267i 0.675693 0.390112i −0.122537 0.992464i \(-0.539103\pi\)
0.798230 + 0.602352i \(0.205770\pi\)
\(150\) −7.87006 + 56.9304i −0.0524670 + 0.379536i
\(151\) −8.06785 + 13.9739i −0.0534295 + 0.0925425i −0.891503 0.453015i \(-0.850349\pi\)
0.838074 + 0.545557i \(0.183682\pi\)
\(152\) 245.863 141.949i 1.61752 0.933875i
\(153\) 91.7585 + 94.1643i 0.599729 + 0.615453i
\(154\) −246.003 + 160.357i −1.59742 + 1.04128i
\(155\) 53.9670i 0.348174i
\(156\) 73.8093 94.9124i 0.473137 0.608413i
\(157\) 96.1224 166.489i 0.612245 1.06044i −0.378617 0.925554i \(-0.623600\pi\)
0.990861 0.134885i \(-0.0430666\pi\)
\(158\) 367.360 + 212.095i 2.32506 + 1.34237i
\(159\) 163.938 + 127.488i 1.03106 + 0.801809i
\(160\) −245.224 −1.53265
\(161\) 31.2181 61.5298i 0.193901 0.382173i
\(162\) 310.244 + 8.03041i 1.91509 + 0.0495705i
\(163\) −138.563 239.999i −0.850081 1.47238i −0.881134 0.472866i \(-0.843219\pi\)
0.0310533 0.999518i \(-0.490114\pi\)
\(164\) −624.361 360.475i −3.80708 2.19802i
\(165\) −72.7557 10.0577i −0.440944 0.0609561i
\(166\) −195.701 338.964i −1.17892 2.04195i
\(167\) 34.5337i 0.206789i −0.994640 0.103394i \(-0.967030\pi\)
0.994640 0.103394i \(-0.0329704\pi\)
\(168\) −229.083 486.216i −1.36359 2.89414i
\(169\) −154.918 −0.916674
\(170\) 108.390 62.5792i 0.637591 0.368113i
\(171\) 24.5881 + 96.7548i 0.143790 + 0.565817i
\(172\) −413.436 + 716.093i −2.40370 + 4.16333i
\(173\) −280.241 + 161.797i −1.61989 + 0.935244i −0.632943 + 0.774198i \(0.718153\pi\)
−0.986947 + 0.161046i \(0.948513\pi\)
\(174\) −43.6328 107.297i −0.250763 0.616650i
\(175\) 1.89175 + 34.9488i 0.0108100 + 0.199708i
\(176\) 605.948i 3.44289i
\(177\) 124.252 + 96.6251i 0.701986 + 0.545904i
\(178\) −138.335 + 239.604i −0.777166 + 1.34609i
\(179\) −5.71552 3.29986i −0.0319303 0.0184350i 0.483950 0.875096i \(-0.339202\pi\)
−0.515880 + 0.856661i \(0.672535\pi\)
\(180\) 58.3100 206.871i 0.323944 1.14928i
\(181\) 225.761 1.24730 0.623649 0.781704i \(-0.285649\pi\)
0.623649 + 0.781704i \(0.285649\pi\)
\(182\) 45.5381 89.7541i 0.250209 0.493154i
\(183\) −15.3141 37.6587i −0.0836834 0.205785i
\(184\) 126.136 + 218.475i 0.685524 + 1.18736i
\(185\) 74.3207 + 42.9091i 0.401733 + 0.231941i
\(186\) 37.9884 274.800i 0.204239 1.47742i
\(187\) 79.9748 + 138.520i 0.427673 + 0.740751i
\(188\) 60.6463i 0.322587i
\(189\) 186.415 31.1495i 0.986325 0.164812i
\(190\) 95.0316 0.500166
\(191\) 54.2635 31.3290i 0.284102 0.164026i −0.351177 0.936309i \(-0.614218\pi\)
0.635279 + 0.772283i \(0.280885\pi\)
\(192\) 590.823 + 81.6754i 3.07721 + 0.425393i
\(193\) 4.92768 8.53500i 0.0255320 0.0442228i −0.852977 0.521948i \(-0.825205\pi\)
0.878509 + 0.477726i \(0.158539\pi\)
\(194\) −20.6852 + 11.9426i −0.106625 + 0.0615600i
\(195\) 23.3189 9.48271i 0.119584 0.0486293i
\(196\) −309.053 422.318i −1.57680 2.15468i
\(197\) 89.3102i 0.453351i 0.973970 + 0.226676i \(0.0727858\pi\)
−0.973970 + 0.226676i \(0.927214\pi\)
\(198\) 363.393 + 102.428i 1.83532 + 0.517315i
\(199\) −51.3259 + 88.8991i −0.257919 + 0.446729i −0.965684 0.259719i \(-0.916370\pi\)
0.707765 + 0.706448i \(0.249704\pi\)
\(200\) −110.827 63.9857i −0.554133 0.319929i
\(201\) 39.1400 50.3307i 0.194727 0.250402i
\(202\) 198.062 0.980507
\(203\) −38.5201 59.0934i −0.189754 0.291101i
\(204\) −433.585 + 176.319i −2.12542 + 0.864310i
\(205\) −75.4722 130.722i −0.368157 0.637667i
\(206\) 386.075 + 222.901i 1.87415 + 1.08204i
\(207\) −85.9767 + 21.8491i −0.415346 + 0.105551i
\(208\) 103.840 + 179.857i 0.499233 + 0.864696i
\(209\) 121.448i 0.581091i
\(210\) 14.9683 179.292i 0.0712777 0.853769i
\(211\) −236.900 −1.12275 −0.561374 0.827562i \(-0.689727\pi\)
−0.561374 + 0.827562i \(0.689727\pi\)
\(212\) −640.274 + 369.662i −3.02016 + 1.74369i
\(213\) 10.5511 76.3247i 0.0495358 0.358332i
\(214\) 273.098 473.019i 1.27616 2.21037i
\(215\) −149.928 + 86.5607i −0.697337 + 0.402608i
\(216\) −276.793 + 633.190i −1.28145 + 2.93144i
\(217\) −9.13141 168.696i −0.0420802 0.777403i
\(218\) 309.224i 1.41846i
\(219\) −45.6933 + 58.7576i −0.208645 + 0.268300i
\(220\) 130.737 226.444i 0.594261 1.02929i
\(221\) −47.4761 27.4103i −0.214824 0.124029i
\(222\) −348.237 270.809i −1.56864 1.21986i
\(223\) 198.043 0.888084 0.444042 0.896006i \(-0.353544\pi\)
0.444042 + 0.896006i \(0.353544\pi\)
\(224\) 766.551 41.4929i 3.42210 0.185236i
\(225\) 32.2289 31.4054i 0.143239 0.139580i
\(226\) 150.099 + 259.979i 0.664154 + 1.15035i
\(227\) 20.9608 + 12.1017i 0.0923382 + 0.0533115i 0.545458 0.838138i \(-0.316356\pi\)
−0.453120 + 0.891450i \(0.649689\pi\)
\(228\) −352.049 48.6672i −1.54407 0.213453i
\(229\) −92.0744 159.477i −0.402071 0.696408i 0.591904 0.806008i \(-0.298376\pi\)
−0.993976 + 0.109600i \(0.965043\pi\)
\(230\) 84.4455i 0.367154i
\(231\) 229.130 + 19.1292i 0.991906 + 0.0828103i
\(232\) 257.916 1.11171
\(233\) −116.135 + 67.0507i −0.498434 + 0.287771i −0.728067 0.685506i \(-0.759581\pi\)
0.229633 + 0.973277i \(0.426248\pi\)
\(234\) −125.415 + 31.8715i −0.535961 + 0.136203i
\(235\) 6.34873 10.9963i 0.0270159 0.0467928i
\(236\) −485.275 + 280.174i −2.05625 + 1.18718i
\(237\) −125.116 307.671i −0.527915 1.29819i
\(238\) −328.231 + 213.958i −1.37912 + 0.898982i
\(239\) 442.916i 1.85321i −0.376041 0.926603i \(-0.622715\pi\)
0.376041 0.926603i \(-0.377285\pi\)
\(240\) 293.067 + 227.905i 1.22111 + 0.949606i
\(241\) −189.467 + 328.166i −0.786168 + 1.36168i 0.142130 + 0.989848i \(0.454605\pi\)
−0.928299 + 0.371836i \(0.878729\pi\)
\(242\) −3.71959 2.14751i −0.0153702 0.00887399i
\(243\) −187.900 154.087i −0.773250 0.634102i
\(244\) 144.727 0.593142
\(245\) −11.8269 108.927i −0.0482732 0.444601i
\(246\) 292.288 + 718.763i 1.18816 + 2.92180i
\(247\) −20.8124 36.0481i −0.0842606 0.145944i
\(248\) 534.954 + 308.856i 2.15707 + 1.24539i
\(249\) −41.9666 + 303.578i −0.168541 + 1.21919i
\(250\) −21.4185 37.0979i −0.0856739 0.148392i
\(251\) 272.894i 1.08723i −0.839336 0.543614i \(-0.817056\pi\)
0.839336 0.543614i \(-0.182944\pi\)
\(252\) −147.269 + 656.528i −0.584401 + 2.60527i
\(253\) −107.919 −0.426559
\(254\) −227.354 + 131.263i −0.895095 + 0.516783i
\(255\) −97.0750 13.4196i −0.380686 0.0526260i
\(256\) −221.298 + 383.299i −0.864445 + 1.49726i
\(257\) 152.437 88.0093i 0.593138 0.342448i −0.173199 0.984887i \(-0.555410\pi\)
0.766337 + 0.642438i \(0.222077\pi\)
\(258\) 824.364 335.231i 3.19521 1.29935i
\(259\) −239.581 121.555i −0.925022 0.469324i
\(260\) 89.6170i 0.344681i
\(261\) −24.6048 + 87.2923i −0.0942712 + 0.334453i
\(262\) −35.5479 + 61.5709i −0.135679 + 0.235003i
\(263\) −185.007 106.814i −0.703450 0.406137i 0.105181 0.994453i \(-0.466458\pi\)
−0.808631 + 0.588316i \(0.799791\pi\)
\(264\) −516.084 + 663.639i −1.95486 + 2.51378i
\(265\) −154.792 −0.584119
\(266\) −297.061 + 16.0797i −1.11677 + 0.0604500i
\(267\) 200.673 81.6046i 0.751586 0.305635i
\(268\) 113.490 + 196.571i 0.423471 + 0.733474i
\(269\) −121.886 70.3711i −0.453109 0.261602i 0.256034 0.966668i \(-0.417584\pi\)
−0.709142 + 0.705065i \(0.750918\pi\)
\(270\) −186.217 + 137.230i −0.689691 + 0.508260i
\(271\) 59.6978 + 103.400i 0.220287 + 0.381548i 0.954895 0.296943i \(-0.0959673\pi\)
−0.734608 + 0.678492i \(0.762634\pi\)
\(272\) 808.492i 2.97240i
\(273\) −71.2883 + 33.5878i −0.261129 + 0.123032i
\(274\) 513.394 1.87370
\(275\) 47.4102 27.3723i 0.172401 0.0995357i
\(276\) 43.2459 312.832i 0.156688 1.13345i
\(277\) 68.8872 119.316i 0.248690 0.430744i −0.714472 0.699664i \(-0.753333\pi\)
0.963163 + 0.268920i \(0.0866666\pi\)
\(278\) 297.645 171.846i 1.07067 0.618150i
\(279\) −155.567 + 151.593i −0.557588 + 0.543342i
\(280\) 357.261 + 181.262i 1.27593 + 0.647364i
\(281\) 131.474i 0.467880i −0.972251 0.233940i \(-0.924838\pi\)
0.972251 0.233940i \(-0.0751619\pi\)
\(282\) −40.0683 + 51.5244i −0.142086 + 0.182711i
\(283\) 259.772 449.938i 0.917922 1.58989i 0.115355 0.993324i \(-0.463199\pi\)
0.802566 0.596563i \(-0.203467\pi\)
\(284\) 237.552 + 137.151i 0.836450 + 0.482925i
\(285\) −58.7383 45.6783i −0.206099 0.160275i
\(286\) −157.423 −0.550429
\(287\) 258.039 + 395.855i 0.899089 + 1.37929i
\(288\) −688.832 706.893i −2.39178 2.45449i
\(289\) −37.7929 65.4592i −0.130771 0.226503i
\(290\) 74.7677 + 43.1671i 0.257820 + 0.148852i
\(291\) 18.5258 + 2.56101i 0.0636625 + 0.00880071i
\(292\) −132.492 229.483i −0.453740 0.785901i
\(293\) 351.830i 1.20078i 0.799706 + 0.600392i \(0.204989\pi\)
−0.799706 + 0.600392i \(0.795011\pi\)
\(294\) −16.4530 + 562.983i −0.0559625 + 1.91491i
\(295\) −117.319 −0.397692
\(296\) 850.683 491.142i 2.87393 1.65926i
\(297\) −175.377 237.980i −0.590495 0.801281i
\(298\) 222.710 385.744i 0.747348 1.29444i
\(299\) 32.0325 18.4940i 0.107132 0.0618527i
\(300\) 60.3473 + 148.400i 0.201158 + 0.494665i
\(301\) 454.015 295.950i 1.50835 0.983223i
\(302\) 61.8232i 0.204713i
\(303\) −122.421 95.2016i −0.404030 0.314197i
\(304\) 306.940 531.635i 1.00967 1.74880i
\(305\) 26.2416 + 15.1506i 0.0860381 + 0.0496741i
\(306\) 484.861 + 136.666i 1.58451 + 0.446621i
\(307\) −390.275 −1.27126 −0.635628 0.771996i \(-0.719259\pi\)
−0.635628 + 0.771996i \(0.719259\pi\)
\(308\) −370.359 + 729.966i −1.20246 + 2.37002i
\(309\) −131.490 323.346i −0.425534 1.04643i
\(310\) 103.386 + 179.070i 0.333503 + 0.577644i
\(311\) 62.8518 + 36.2875i 0.202096 + 0.116680i 0.597633 0.801770i \(-0.296108\pi\)
−0.395537 + 0.918450i \(0.629441\pi\)
\(312\) 39.4566 285.421i 0.126463 0.914811i
\(313\) 247.662 + 428.963i 0.791253 + 1.37049i 0.925192 + 0.379500i \(0.123904\pi\)
−0.133939 + 0.990990i \(0.542763\pi\)
\(314\) 736.577i 2.34579i
\(315\) −95.4309 + 103.624i −0.302955 + 0.328965i
\(316\) 1182.42 3.74182
\(317\) 310.675 179.369i 0.980048 0.565831i 0.0777637 0.996972i \(-0.475222\pi\)
0.902285 + 0.431141i \(0.141889\pi\)
\(318\) 788.200 + 108.961i 2.47862 + 0.342644i
\(319\) −55.1666 + 95.5513i −0.172936 + 0.299534i
\(320\) −385.002 + 222.281i −1.20313 + 0.694628i
\(321\) −396.163 + 161.102i −1.23415 + 0.501874i
\(322\) −14.2885 263.970i −0.0443742 0.819782i
\(323\) 162.043i 0.501682i
\(324\) 760.126 413.011i 2.34607 1.27473i
\(325\) −9.38150 + 16.2492i −0.0288662 + 0.0499977i
\(326\) −919.543 530.899i −2.82069 1.62852i
\(327\) −148.633 + 191.129i −0.454535 + 0.584493i
\(328\) −1727.73 −5.26746
\(329\) −17.9850 + 35.4478i −0.0546656 + 0.107744i
\(330\) −260.681 + 106.007i −0.789944 + 0.321234i
\(331\) 157.641 + 273.042i 0.476256 + 0.824899i 0.999630 0.0272038i \(-0.00866031\pi\)
−0.523374 + 0.852103i \(0.675327\pi\)
\(332\) −944.851 545.510i −2.84594 1.64310i
\(333\) 85.0746 + 334.770i 0.255479 + 1.00532i
\(334\) −66.1572 114.588i −0.198076 0.343077i
\(335\) 47.5227i 0.141859i
\(336\) −954.665 662.826i −2.84127 1.97270i
\(337\) 104.826 0.311058 0.155529 0.987831i \(-0.450292\pi\)
0.155529 + 0.987831i \(0.450292\pi\)
\(338\) −514.039 + 296.781i −1.52083 + 0.878049i
\(339\) 32.1875 232.838i 0.0949485 0.686838i
\(340\) 174.437 302.135i 0.513051 0.888631i
\(341\) −228.847 + 132.125i −0.671106 + 0.387463i
\(342\) 266.942 + 273.941i 0.780533 + 0.800998i
\(343\) 55.4009 + 338.496i 0.161519 + 0.986870i
\(344\) 1981.57i 5.76037i
\(345\) 40.5899 52.1951i 0.117652 0.151290i
\(346\) −619.919 + 1073.73i −1.79167 + 3.10327i
\(347\) 377.205 + 217.779i 1.08705 + 0.627606i 0.932788 0.360424i \(-0.117368\pi\)
0.154258 + 0.988031i \(0.450701\pi\)
\(348\) −254.874 198.204i −0.732396 0.569553i
\(349\) −372.478 −1.06727 −0.533636 0.845715i \(-0.679175\pi\)
−0.533636 + 0.845715i \(0.679175\pi\)
\(350\) 73.2295 + 112.341i 0.209227 + 0.320974i
\(351\) 92.8376 + 40.5830i 0.264494 + 0.115621i
\(352\) −600.372 1039.87i −1.70560 2.95419i
\(353\) −44.5982 25.7488i −0.126341 0.0729428i 0.435498 0.900190i \(-0.356572\pi\)
−0.561838 + 0.827247i \(0.689906\pi\)
\(354\) 597.391 + 82.5833i 1.68754 + 0.233286i
\(355\) 28.7151 + 49.7359i 0.0808875 + 0.140101i
\(356\) 771.211i 2.16632i
\(357\) 305.719 + 25.5233i 0.856356 + 0.0714937i
\(358\) −25.2865 −0.0706327
\(359\) −321.578 + 185.663i −0.895759 + 0.517167i −0.875822 0.482634i \(-0.839680\pi\)
−0.0199374 + 0.999801i \(0.506347\pi\)
\(360\) −126.863 499.208i −0.352396 1.38669i
\(361\) 118.981 206.081i 0.329588 0.570862i
\(362\) 749.106 432.497i 2.06935 1.19474i
\(363\) 1.26682 + 3.11523i 0.00348987 + 0.00858191i
\(364\) −15.1635 280.136i −0.0416580 0.769603i
\(365\) 55.4794i 0.151998i
\(366\) −122.958 95.6191i −0.335951 0.261254i
\(367\) −166.498 + 288.383i −0.453672 + 0.785784i −0.998611 0.0526924i \(-0.983220\pi\)
0.544938 + 0.838476i \(0.316553\pi\)
\(368\) 472.413 + 272.748i 1.28373 + 0.741163i
\(369\) 164.823 584.754i 0.446674 1.58470i
\(370\) 328.808 0.888671
\(371\) 483.866 26.1913i 1.30422 0.0705965i
\(372\) −291.294 716.318i −0.783047 1.92559i
\(373\) 21.0920 + 36.5325i 0.0565470 + 0.0979423i 0.892913 0.450229i \(-0.148658\pi\)
−0.836366 + 0.548171i \(0.815324\pi\)
\(374\) 530.735 + 306.420i 1.41908 + 0.819304i
\(375\) −4.59303 + 33.2251i −0.0122481 + 0.0886001i
\(376\) −72.6682 125.865i −0.193267 0.334748i
\(377\) 37.8153i 0.100306i
\(378\) 558.878 460.479i 1.47851 1.21820i
\(379\) −404.220 −1.06654 −0.533272 0.845944i \(-0.679038\pi\)
−0.533272 + 0.845944i \(0.679038\pi\)
\(380\) 229.408 132.449i 0.603704 0.348549i
\(381\) 203.619 + 28.1483i 0.534434 + 0.0738802i
\(382\) 120.036 207.908i 0.314230 0.544262i
\(383\) 338.568 195.472i 0.883989 0.510371i 0.0120171 0.999928i \(-0.496175\pi\)
0.871971 + 0.489557i \(0.162841\pi\)
\(384\) 897.831 365.107i 2.33810 0.950799i
\(385\) −143.569 + 93.5856i −0.372907 + 0.243080i
\(386\) 37.7604i 0.0978249i
\(387\) −670.667 189.039i −1.73299 0.488472i
\(388\) −33.2897 + 57.6594i −0.0857981 + 0.148607i
\(389\) −327.986 189.363i −0.843152 0.486794i 0.0151826 0.999885i \(-0.495167\pi\)
−0.858334 + 0.513091i \(0.828500\pi\)
\(390\) 59.2089 76.1375i 0.151818 0.195224i
\(391\) −143.992 −0.368267
\(392\) −1147.44 506.160i −2.92714 1.29122i
\(393\) 51.5669 20.9699i 0.131213 0.0533585i
\(394\) 171.094 + 296.344i 0.434249 + 0.752141i
\(395\) 214.394 + 123.780i 0.542770 + 0.313368i
\(396\) 1019.99 259.209i 2.57574 0.654569i
\(397\) 127.529 + 220.886i 0.321231 + 0.556388i 0.980742 0.195306i \(-0.0625701\pi\)
−0.659511 + 0.751695i \(0.729237\pi\)
\(398\) 393.306i 0.988206i
\(399\) 191.340 + 132.848i 0.479549 + 0.332952i
\(400\) −276.716 −0.691789
\(401\) −185.343 + 107.008i −0.462203 + 0.266853i −0.712970 0.701194i \(-0.752651\pi\)
0.250767 + 0.968047i \(0.419317\pi\)
\(402\) 33.4521 241.986i 0.0832142 0.601955i
\(403\) 45.2841 78.4343i 0.112367 0.194626i
\(404\) 478.126 276.046i 1.18348 0.683282i
\(405\) 181.061 + 4.68661i 0.447064 + 0.0115719i
\(406\) −241.022 122.286i −0.593650 0.301197i
\(407\) 420.209i 1.03246i
\(408\) −688.589 + 885.466i −1.68772 + 2.17026i
\(409\) −170.178 + 294.757i −0.416083 + 0.720678i −0.995542 0.0943244i \(-0.969931\pi\)
0.579458 + 0.815002i \(0.303264\pi\)
\(410\) −500.854 289.168i −1.22160 0.705288i
\(411\) −317.325 246.770i −0.772080 0.600414i
\(412\) 1242.66 3.01616
\(413\) 366.730 19.8508i 0.887967 0.0480650i
\(414\) −243.426 + 237.206i −0.587984 + 0.572962i
\(415\) −114.213 197.822i −0.275211 0.476680i
\(416\) 356.403 + 205.770i 0.856739 + 0.494638i
\(417\) −266.573 36.8510i −0.639263 0.0883716i
\(418\) 232.661 + 402.981i 0.556606 + 0.964071i
\(419\) 586.646i 1.40011i −0.714088 0.700055i \(-0.753159\pi\)
0.714088 0.700055i \(-0.246841\pi\)
\(420\) −213.751 453.674i −0.508930 1.08018i
\(421\) −216.123 −0.513357 −0.256678 0.966497i \(-0.582628\pi\)
−0.256678 + 0.966497i \(0.582628\pi\)
\(422\) −786.066 + 453.835i −1.86271 + 1.07544i
\(423\) 49.5319 12.5874i 0.117097 0.0297575i
\(424\) −885.881 + 1534.39i −2.08934 + 3.61884i
\(425\) 63.2575 36.5218i 0.148841 0.0859335i
\(426\) −111.207 273.469i −0.261050 0.641946i
\(427\) −84.5928 42.9194i −0.198110 0.100514i
\(428\) 1522.50i 3.55725i
\(429\) 97.3019 + 75.6676i 0.226811 + 0.176381i
\(430\) −331.653 + 574.440i −0.771287 + 1.33591i
\(431\) 286.275 + 165.281i 0.664211 + 0.383483i 0.793880 0.608075i \(-0.208058\pi\)
−0.129668 + 0.991557i \(0.541391\pi\)
\(432\) 166.252 + 1484.99i 0.384843 + 3.43747i
\(433\) 825.106 1.90556 0.952778 0.303668i \(-0.0982112\pi\)
0.952778 + 0.303668i \(0.0982112\pi\)
\(434\) −353.475 542.264i −0.814460 1.24946i
\(435\) −25.4645 62.6195i −0.0585390 0.143953i
\(436\) −430.976 746.472i −0.988477 1.71209i
\(437\) −94.6842 54.6659i −0.216669 0.125094i
\(438\) −39.0530 + 282.502i −0.0891622 + 0.644981i
\(439\) 363.096 + 628.901i 0.827099 + 1.43258i 0.900305 + 0.435260i \(0.143344\pi\)
−0.0732063 + 0.997317i \(0.523323\pi\)
\(440\) 626.613i 1.42412i
\(441\) 280.776 340.068i 0.636679 0.771129i
\(442\) −210.043 −0.475210
\(443\) 620.467 358.227i 1.40060 0.808638i 0.406148 0.913807i \(-0.366872\pi\)
0.994454 + 0.105169i \(0.0335383\pi\)
\(444\) −1218.09 168.388i −2.74344 0.379252i
\(445\) −80.7337 + 139.835i −0.181424 + 0.314236i
\(446\) 657.133 379.396i 1.47339 0.850664i
\(447\) −323.069 + 131.377i −0.722749 + 0.293909i
\(448\) 1165.87 759.976i 2.60240 1.69637i
\(449\) 564.847i 1.25801i 0.777401 + 0.629006i \(0.216538\pi\)
−0.777401 + 0.629006i \(0.783462\pi\)
\(450\) 46.7755 165.949i 0.103946 0.368776i
\(451\) 369.550 640.080i 0.819402 1.41925i
\(452\) 724.681 + 418.395i 1.60328 + 0.925653i
\(453\) 29.7162 38.2125i 0.0655987 0.0843542i
\(454\) 92.7343 0.204261
\(455\) 26.5764 52.3812i 0.0584096 0.115124i
\(456\) −788.955 + 320.832i −1.73016 + 0.703578i
\(457\) 426.738 + 739.133i 0.933782 + 1.61736i 0.776792 + 0.629758i \(0.216846\pi\)
0.156990 + 0.987600i \(0.449821\pi\)
\(458\) −611.031 352.779i −1.33413 0.770259i
\(459\) −233.998 317.527i −0.509800 0.691781i
\(460\) 117.694 + 203.853i 0.255857 + 0.443158i
\(461\) 891.718i 1.93431i 0.254185 + 0.967156i \(0.418193\pi\)
−0.254185 + 0.967156i \(0.581807\pi\)
\(462\) 796.932 375.478i 1.72496 0.812723i
\(463\) 750.155 1.62021 0.810103 0.586287i \(-0.199411\pi\)
0.810103 + 0.586287i \(0.199411\pi\)
\(464\) 482.980 278.849i 1.04091 0.600967i
\(465\) 22.1703 160.376i 0.0476781 0.344894i
\(466\) −256.902 + 444.967i −0.551291 + 0.954864i
\(467\) 84.6817 48.8910i 0.181331 0.104692i −0.406587 0.913612i \(-0.633281\pi\)
0.587918 + 0.808921i \(0.299948\pi\)
\(468\) −258.333 + 251.733i −0.551994 + 0.537891i
\(469\) −8.04101 148.552i −0.0171450 0.316742i
\(470\) 48.6497i 0.103510i
\(471\) −354.046 + 455.273i −0.751691 + 0.966610i
\(472\) −671.425 + 1162.94i −1.42251 + 2.46386i
\(473\) −734.121 423.845i −1.55205 0.896079i
\(474\) −1004.57 781.208i −2.11934 1.64812i
\(475\) 55.4612 0.116760
\(476\) −494.155 + 973.963i −1.03814 + 2.04614i
\(477\) −434.807 446.208i −0.911546 0.935446i
\(478\) −848.507 1469.66i −1.77512 3.07460i
\(479\) 0.948693 + 0.547728i 0.00198057 + 0.00114348i 0.500990 0.865453i \(-0.332969\pi\)
−0.499009 + 0.866597i \(0.666303\pi\)
\(480\) 728.743 + 100.741i 1.51821 + 0.209878i
\(481\) −72.0106 124.726i −0.149710 0.259306i
\(482\) 1451.87i 3.01217i
\(483\) −118.049 + 170.026i −0.244408 + 0.352020i
\(484\) −11.9722 −0.0247359
\(485\) −12.0721 + 6.96982i −0.0248909 + 0.0143708i
\(486\) −918.665 151.317i −1.89026 0.311351i
\(487\) 393.745 681.987i 0.808512 1.40038i −0.105383 0.994432i \(-0.533607\pi\)
0.913895 0.405952i \(-0.133060\pi\)
\(488\) 300.365 173.416i 0.615501 0.355360i
\(489\) 313.179 + 770.137i 0.640448 + 1.57492i
\(490\) −247.918 338.778i −0.505955 0.691384i
\(491\) 294.128i 0.599039i −0.954090 0.299520i \(-0.903174\pi\)
0.954090 0.299520i \(-0.0968264\pi\)
\(492\) 1707.35 + 1327.73i 3.47022 + 2.69864i
\(493\) −73.6065 + 127.490i −0.149303 + 0.258601i
\(494\) −138.117 79.7417i −0.279588 0.161420i
\(495\) 212.079 + 59.7780i 0.428443 + 0.120764i
\(496\) 1335.69 2.69293
\(497\) −98.1764 150.612i −0.197538 0.303042i
\(498\) 442.322 + 1087.71i 0.888196 + 2.18416i
\(499\) −248.981 431.248i −0.498960 0.864225i 0.501039 0.865425i \(-0.332951\pi\)
−0.999999 + 0.00119993i \(0.999618\pi\)
\(500\) −103.409 59.7033i −0.206818 0.119407i
\(501\) −14.1869 + 102.625i −0.0283172 + 0.204841i
\(502\) −522.791 905.500i −1.04142 1.80378i
\(503\) 524.122i 1.04199i 0.853559 + 0.520996i \(0.174439\pi\)
−0.853559 + 0.520996i \(0.825561\pi\)
\(504\) 481.030 + 1539.02i 0.954425 + 3.05360i
\(505\) 115.591 0.228893
\(506\) −358.091 + 206.744i −0.707690 + 0.408585i
\(507\) 460.376 + 63.6423i 0.908039 + 0.125527i
\(508\) −365.891 + 633.742i −0.720258 + 1.24752i
\(509\) 19.3736 11.1854i 0.0380621 0.0219752i −0.480848 0.876804i \(-0.659671\pi\)
0.518910 + 0.854829i \(0.326338\pi\)
\(510\) −347.816 + 141.441i −0.681993 + 0.277335i
\(511\) 9.38732 + 173.424i 0.0183705 + 0.339382i
\(512\) 403.481i 0.788049i
\(513\) −33.3213 297.631i −0.0649538 0.580177i
\(514\) 337.203 584.054i 0.656038 1.13629i
\(515\) 225.317 + 130.087i 0.437508 + 0.252596i
\(516\) 1522.81 1958.20i 2.95117 3.79495i
\(517\) 62.1732 0.120258
\(518\) −1027.83 + 55.6356i −1.98422 + 0.107405i
\(519\) 899.272 365.692i 1.73270 0.704610i
\(520\) 107.382 + 185.991i 0.206503 + 0.357674i
\(521\) −692.733 399.950i −1.32962 0.767658i −0.344382 0.938830i \(-0.611911\pi\)
−0.985241 + 0.171172i \(0.945245\pi\)
\(522\) 85.5863 + 336.784i 0.163958 + 0.645180i
\(523\) 205.763 + 356.392i 0.393429 + 0.681439i 0.992899 0.118958i \(-0.0379554\pi\)
−0.599470 + 0.800397i \(0.704622\pi\)
\(524\) 198.177i 0.378201i
\(525\) 8.73564 104.636i 0.0166393 0.199307i
\(526\) −818.506 −1.55610
\(527\) −305.341 + 176.289i −0.579395 + 0.334514i
\(528\) −248.931 + 1800.72i −0.471461 + 3.41045i
\(529\) −215.924 + 373.991i −0.408173 + 0.706977i
\(530\) −513.619 + 296.538i −0.969093 + 0.559506i
\(531\) −329.548 338.189i −0.620618 0.636890i
\(532\) −694.699 + 452.840i −1.30583 + 0.851203i
\(533\) 253.317i 0.475267i
\(534\) 509.529 655.211i 0.954175 1.22699i
\(535\) 159.382 276.058i 0.297911 0.515996i
\(536\) 471.074 + 271.975i 0.878870 + 0.507416i
\(537\) 15.6294 + 12.1543i 0.0291051 + 0.0226338i
\(538\) −539.247 −1.00232
\(539\) 432.950 316.834i 0.803247 0.587817i
\(540\) −258.267 + 590.812i −0.478273 + 1.09410i
\(541\) 325.969 + 564.595i 0.602530 + 1.04361i 0.992437 + 0.122759i \(0.0391741\pi\)
−0.389906 + 0.920855i \(0.627493\pi\)
\(542\) 396.171 + 228.729i 0.730943 + 0.422010i
\(543\) −670.903 92.7456i −1.23555 0.170802i
\(544\) −801.051 1387.46i −1.47252 2.55048i
\(545\) 180.466i 0.331130i
\(546\) −172.199 + 248.018i −0.315384 + 0.454245i
\(547\) −85.9480 −0.157126 −0.0785631 0.996909i \(-0.525033\pi\)
−0.0785631 + 0.996909i \(0.525033\pi\)
\(548\) 1239.34 715.534i 2.26157 1.30572i
\(549\) 30.0387 + 118.203i 0.0547153 + 0.215306i
\(550\) 104.876 181.650i 0.190683 0.330273i
\(551\) −96.8020 + 55.8887i −0.175684 + 0.101431i
\(552\) −285.092 701.068i −0.516472 1.27005i
\(553\) −691.123 350.651i −1.24977 0.634090i
\(554\) 527.876i 0.952845i
\(555\) −203.234 158.046i −0.366187 0.284768i
\(556\) 479.013 829.676i 0.861535 1.49222i
\(557\) −858.157 495.457i −1.54068 0.889510i −0.998796 0.0490540i \(-0.984379\pi\)
−0.541880 0.840456i \(-0.682287\pi\)
\(558\) −225.783 + 801.029i −0.404629 + 1.43554i
\(559\) 290.535 0.519740
\(560\) 864.991 46.8213i 1.54463 0.0836095i
\(561\) −180.758 444.501i −0.322207 0.792337i
\(562\) −251.869 436.249i −0.448165 0.776245i
\(563\) −208.613 120.443i −0.370539 0.213931i 0.303155 0.952941i \(-0.401960\pi\)
−0.673694 + 0.739011i \(0.735293\pi\)
\(564\) −24.9143 + 180.225i −0.0441743 + 0.319548i
\(565\) 87.5989 + 151.726i 0.155042 + 0.268541i
\(566\) 1990.61i 3.51698i
\(567\) −566.775 + 15.9862i −0.999602 + 0.0281943i
\(568\) 657.351 1.15731
\(569\) −100.616 + 58.0909i −0.176830 + 0.102093i −0.585803 0.810454i \(-0.699221\pi\)
0.408972 + 0.912547i \(0.365887\pi\)
\(570\) −282.409 39.0402i −0.495454 0.0684916i
\(571\) 519.274 899.409i 0.909412 1.57515i 0.0945293 0.995522i \(-0.469865\pi\)
0.814883 0.579626i \(-0.196801\pi\)
\(572\) −380.021 + 219.405i −0.664373 + 0.383576i
\(573\) −174.127 + 70.8096i −0.303887 + 0.123577i
\(574\) 1614.56 + 819.170i 2.81282 + 1.42713i
\(575\) 49.2831i 0.0857097i
\(576\) −1722.22 485.436i −2.98996 0.842771i
\(577\) 37.6724 65.2504i 0.0652901 0.113086i −0.831533 0.555476i \(-0.812536\pi\)
0.896823 + 0.442390i \(0.145869\pi\)
\(578\) −250.804 144.802i −0.433917 0.250522i
\(579\) −18.1501 + 23.3394i −0.0313473 + 0.0403099i
\(580\) 240.654 0.414920
\(581\) 390.492 + 599.051i 0.672103 + 1.03107i
\(582\) 66.3773 26.9926i 0.114050 0.0463791i
\(583\) −378.969 656.394i −0.650033 1.12589i
\(584\) −549.947 317.512i −0.941689 0.543685i
\(585\) −73.1932 + 18.6004i −0.125117 + 0.0317956i
\(586\) 674.009 + 1167.42i 1.15019 + 1.99218i
\(587\) 34.4849i 0.0587477i −0.999568 0.0293739i \(-0.990649\pi\)
0.999568 0.0293739i \(-0.00935134\pi\)
\(588\) 744.930 + 1381.98i 1.26689 + 2.35031i
\(589\) −267.709 −0.454514
\(590\) −389.281 + 224.752i −0.659799 + 0.380935i
\(591\) 36.6898 265.407i 0.0620809 0.449081i
\(592\) 1062.01 1839.45i 1.79393 3.10718i
\(593\) 179.738 103.772i 0.303099 0.174994i −0.340735 0.940159i \(-0.610676\pi\)
0.643834 + 0.765165i \(0.277343\pi\)
\(594\) −1037.83 453.677i −1.74719 0.763766i
\(595\) −191.558 + 124.867i −0.321947 + 0.209861i
\(596\) 1241.59i 2.08321i
\(597\) 189.048 243.100i 0.316664 0.407202i
\(598\) 70.8588 122.731i 0.118493 0.205236i
\(599\) 99.0015 + 57.1586i 0.165278 + 0.0954233i 0.580357 0.814362i \(-0.302913\pi\)
−0.415079 + 0.909785i \(0.636246\pi\)
\(600\) 303.061 + 235.678i 0.505102 + 0.392796i
\(601\) −705.812 −1.17440 −0.587198 0.809444i \(-0.699769\pi\)
−0.587198 + 0.809444i \(0.699769\pi\)
\(602\) 939.524 1851.77i 1.56067 3.07603i
\(603\) −136.991 + 133.491i −0.227182 + 0.221377i
\(604\) 86.1650 + 149.242i 0.142657 + 0.247090i
\(605\) −2.17078 1.25330i −0.00358807 0.00207157i
\(606\) −588.590 81.3666i −0.971271 0.134268i
\(607\) 301.545 + 522.291i 0.496779 + 0.860446i 0.999993 0.00371550i \(-0.00118268\pi\)
−0.503214 + 0.864162i \(0.667849\pi\)
\(608\) 1216.46i 2.00076i
\(609\) 90.1953 + 191.435i 0.148104 + 0.314343i
\(610\) 116.098 0.190324
\(611\) −18.4542 + 10.6545i −0.0302032 + 0.0174378i
\(612\) 1360.94 345.852i 2.22375 0.565118i
\(613\) −286.342 + 495.959i −0.467116 + 0.809069i −0.999294 0.0375638i \(-0.988040\pi\)
0.532178 + 0.846632i \(0.321374\pi\)
\(614\) −1294.99 + 747.661i −2.10910 + 1.21769i
\(615\) 170.581 + 419.476i 0.277368 + 0.682074i
\(616\) 106.025 + 1958.74i 0.172119 + 3.17978i
\(617\) 30.2182i 0.0489759i 0.999700 + 0.0244880i \(0.00779554\pi\)
−0.999700 + 0.0244880i \(0.992204\pi\)
\(618\) −1055.74 821.008i −1.70833 1.32849i
\(619\) 92.6047 160.396i 0.149604 0.259121i −0.781477 0.623934i \(-0.785534\pi\)
0.931081 + 0.364812i \(0.118867\pi\)
\(620\) 499.151 + 288.185i 0.805082 + 0.464814i
\(621\) 264.476 29.6095i 0.425888 0.0476803i
\(622\) 278.068 0.447054
\(623\) 228.706 450.773i 0.367105 0.723552i
\(624\) −234.699 577.147i −0.376120 0.924915i
\(625\) −12.5000 21.6506i −0.0200000 0.0346410i
\(626\) 1643.55 + 948.906i 2.62548 + 1.51582i
\(627\) 49.8925 360.912i 0.0795733 0.575617i
\(628\) −1026.59 1778.11i −1.63470 2.83138i
\(629\) 560.668i 0.891364i
\(630\) −118.137 + 526.658i −0.187519 + 0.835966i
\(631\) 451.153 0.714981 0.357491 0.933917i \(-0.383632\pi\)
0.357491 + 0.933917i \(0.383632\pi\)
\(632\) 2453.98 1416.81i 3.88288 2.24178i
\(633\) 704.004 + 97.3215i 1.11217 + 0.153746i
\(634\) 687.242 1190.34i 1.08398 1.87751i
\(635\) −132.686 + 76.6061i −0.208954 + 0.120640i
\(636\) 2054.59 835.507i 3.23049 1.31369i
\(637\) −74.2126 + 168.236i −0.116503 + 0.264107i
\(638\) 422.737i 0.662597i
\(639\) −62.7104 + 222.483i −0.0981383 + 0.348173i
\(640\) −361.210 + 625.634i −0.564391 + 0.977554i
\(641\) 240.850 + 139.055i 0.375741 + 0.216934i 0.675964 0.736935i \(-0.263728\pi\)
−0.300223 + 0.953869i \(0.597061\pi\)
\(642\) −1005.90 + 1293.50i −1.56682 + 2.01479i
\(643\) 231.489 0.360014 0.180007 0.983665i \(-0.442388\pi\)
0.180007 + 0.983665i \(0.442388\pi\)
\(644\) −402.396 617.313i −0.624838 0.958560i
\(645\) 481.106 195.644i 0.745900 0.303323i
\(646\) 310.431 + 537.682i 0.480543 + 0.832324i
\(647\) 397.213 + 229.331i 0.613930 + 0.354452i 0.774502 0.632572i \(-0.218001\pi\)
−0.160572 + 0.987024i \(0.551334\pi\)
\(648\) 1082.68 1767.97i 1.67080 2.72834i
\(649\) −287.227 497.492i −0.442569 0.766552i
\(650\) 71.8896i 0.110599i
\(651\) −42.1665 + 505.073i −0.0647719 + 0.775842i
\(652\) −2959.72 −4.53945
\(653\) −5.08630 + 2.93658i −0.00778913 + 0.00449706i −0.503890 0.863768i \(-0.668098\pi\)
0.496100 + 0.868265i \(0.334765\pi\)
\(654\) −127.033 + 918.934i −0.194241 + 1.40510i
\(655\) −20.7461 + 35.9332i −0.0316734 + 0.0548599i
\(656\) −3235.39 + 1867.95i −4.93200 + 2.84749i
\(657\) 159.927 155.841i 0.243420 0.237201i
\(658\) 8.23171 + 152.075i 0.0125102 + 0.231117i
\(659\) 425.682i 0.645952i 0.946407 + 0.322976i \(0.104683\pi\)
−0.946407 + 0.322976i \(0.895317\pi\)
\(660\) −481.543 + 619.223i −0.729611 + 0.938217i
\(661\) −516.635 + 894.838i −0.781596 + 1.35376i 0.149415 + 0.988775i \(0.452261\pi\)
−0.931012 + 0.364990i \(0.881072\pi\)
\(662\) 1046.15 + 603.993i 1.58028 + 0.912376i
\(663\) 129.826 + 100.960i 0.195816 + 0.152278i
\(664\) −2614.58 −3.93763
\(665\) −173.367 + 9.38424i −0.260703 + 0.0141116i
\(666\) 923.618 + 947.835i 1.38681 + 1.42317i
\(667\) −49.6629 86.0187i −0.0744572 0.128964i
\(668\) −319.409 184.411i −0.478157 0.276064i
\(669\) −588.532 81.3586i −0.879718 0.121612i
\(670\) 91.0404 + 157.687i 0.135881 + 0.235353i
\(671\) 148.370i 0.221118i
\(672\) −2295.04 191.603i −3.41523 0.285124i
\(673\) −726.867 −1.08004 −0.540020 0.841652i \(-0.681583\pi\)
−0.540020 + 0.841652i \(0.681583\pi\)
\(674\) 347.829 200.819i 0.516066 0.297951i
\(675\) −108.677 + 80.0887i −0.161004 + 0.118650i
\(676\) −827.265 + 1432.87i −1.22377 + 2.11962i
\(677\) 139.975 80.8146i 0.206758 0.119372i −0.393046 0.919519i \(-0.628579\pi\)
0.599804 + 0.800147i \(0.295245\pi\)
\(678\) −339.252 834.251i −0.500371 1.23046i
\(679\) 36.5570 23.8297i 0.0538395 0.0350953i
\(680\) 836.064i 1.22951i
\(681\) −57.3184 44.5741i −0.0841680 0.0654539i
\(682\) −506.230 + 876.817i −0.742273 + 1.28566i
\(683\) 245.110 + 141.515i 0.358873 + 0.207195i 0.668586 0.743635i \(-0.266900\pi\)
−0.309713 + 0.950830i \(0.600233\pi\)
\(684\) 1026.20 + 289.252i 1.50030 + 0.422884i
\(685\) 299.621 0.437403
\(686\) 832.294 + 1017.04i 1.21326 + 1.48257i
\(687\) 208.106 + 511.751i 0.302919 + 0.744906i
\(688\) 2142.40 + 3710.74i 3.11395 + 5.39351i
\(689\) 224.970 + 129.887i 0.326517 + 0.188515i
\(690\) 34.6913 250.950i 0.0502772 0.363695i
\(691\) −380.317 658.729i −0.550387 0.953298i −0.998246 0.0591940i \(-0.981147\pi\)
0.447860 0.894104i \(-0.352186\pi\)
\(692\) 3456.00i 4.99422i
\(693\) −673.057 150.977i −0.971222 0.217859i
\(694\) 1668.82 2.40465
\(695\) 173.708 100.290i 0.249940 0.144303i
\(696\) −766.458 105.955i −1.10123 0.152234i
\(697\) 493.076 854.032i 0.707426 1.22530i
\(698\) −1235.93 + 713.565i −1.77068 + 1.02230i
\(699\) 372.669 151.547i 0.533145 0.216806i
\(700\) 333.350 + 169.130i 0.476215 + 0.241615i
\(701\) 193.212i 0.275624i −0.990458 0.137812i \(-0.955993\pi\)
0.990458 0.137812i \(-0.0440070\pi\)
\(702\) 385.794 43.1916i 0.549564 0.0615265i
\(703\) −212.855 + 368.675i −0.302780 + 0.524431i
\(704\) −1885.16 1088.40i −2.67779 1.54602i
\(705\) −23.3842 + 30.0700i −0.0331691 + 0.0426525i
\(706\) −197.311 −0.279477
\(707\) −361.328 + 19.5584i −0.511072 + 0.0276639i
\(708\) 1557.21 633.246i 2.19945 0.894415i
\(709\) 163.509 + 283.205i 0.230618 + 0.399443i 0.957990 0.286801i \(-0.0925917\pi\)
−0.727372 + 0.686244i \(0.759258\pi\)
\(710\) 190.561 + 110.020i 0.268396 + 0.154958i
\(711\) 245.416 + 965.718i 0.345170 + 1.35825i
\(712\) 924.087 + 1600.57i 1.29788 + 2.24799i
\(713\) 237.887i 0.333642i
\(714\) 1063.31 500.985i 1.48923 0.701660i
\(715\) −91.8732 −0.128494
\(716\) −61.0420 + 35.2426i −0.0852542 + 0.0492216i
\(717\) −181.956 + 1316.23i −0.253774 + 1.83575i
\(718\) −711.359 + 1232.11i −0.990751 + 1.71603i
\(719\) 535.646 309.256i 0.744988 0.430119i −0.0788921 0.996883i \(-0.525138\pi\)
0.823880 + 0.566764i \(0.191805\pi\)
\(720\) −777.291 797.671i −1.07957 1.10788i
\(721\) −726.333 368.516i −1.00740 0.511118i
\(722\) 911.741i 1.26280i
\(723\) 697.860 897.388i 0.965228 1.24120i
\(724\) 1205.57 2088.11i 1.66515 2.88413i
\(725\) 43.6350 + 25.1927i 0.0601862 + 0.0347485i
\(726\) 10.1714 + 7.90988i 0.0140102 + 0.0108952i
\(727\) −944.743 −1.29951 −0.649755 0.760144i \(-0.725128\pi\)
−0.649755 + 0.760144i \(0.725128\pi\)
\(728\) −367.137 563.222i −0.504309 0.773657i
\(729\) 495.088 + 535.097i 0.679133 + 0.734015i
\(730\) −106.283 184.088i −0.145594 0.252176i
\(731\) −979.508 565.519i −1.33996 0.773624i
\(732\) −430.090 59.4556i −0.587554 0.0812234i
\(733\) −398.388 690.029i −0.543504 0.941377i −0.998699 0.0509850i \(-0.983764\pi\)
0.455195 0.890392i \(-0.349569\pi\)
\(734\) 1275.86i 1.73823i
\(735\) −9.60210 + 328.562i −0.0130641 + 0.447023i
\(736\) 1080.95 1.46868
\(737\) −201.520 + 116.348i −0.273433 + 0.157866i
\(738\) −573.326 2256.05i −0.776864 3.05698i
\(739\) 526.190 911.387i 0.712029 1.23327i −0.252065 0.967710i \(-0.581110\pi\)
0.964094 0.265561i \(-0.0855571\pi\)
\(740\) 793.748 458.271i 1.07263 0.619285i
\(741\) 47.0399 + 115.676i 0.0634817 + 0.156107i
\(742\) 1555.36 1013.86i 2.09617 1.36639i
\(743\) 923.243i 1.24259i −0.783577 0.621294i \(-0.786607\pi\)
0.783577 0.621294i \(-0.213393\pi\)
\(744\) −1462.86 1137.61i −1.96621 1.52904i
\(745\) 129.975 225.124i 0.174463 0.302179i
\(746\) 139.972 + 80.8131i 0.187631 + 0.108329i
\(747\) 249.428 884.914i 0.333906 1.18462i
\(748\) 1708.27 2.28378
\(749\) −451.506 + 889.903i −0.602811 + 1.18812i
\(750\) 48.4098 + 119.044i 0.0645465 + 0.158726i
\(751\) 256.554 + 444.364i 0.341616 + 0.591697i 0.984733 0.174071i \(-0.0556924\pi\)
−0.643117 + 0.765768i \(0.722359\pi\)
\(752\) −272.161 157.132i −0.361916 0.208953i
\(753\) −112.108 + 810.970i −0.148882 + 1.07699i
\(754\) −72.4437 125.476i −0.0960792 0.166414i
\(755\) 36.0805i 0.0477888i
\(756\) 707.355 1890.53i 0.935655 2.50070i
\(757\) −702.065 −0.927430 −0.463715 0.885984i \(-0.653484\pi\)
−0.463715 + 0.885984i \(0.653484\pi\)
\(758\) −1341.26 + 774.375i −1.76947 + 1.02160i
\(759\) 320.708 + 44.3347i 0.422540 + 0.0584119i
\(760\) 317.408 549.766i 0.417641 0.723376i
\(761\) 129.267 74.6326i 0.169865 0.0980717i −0.412657 0.910886i \(-0.635399\pi\)
0.582522 + 0.812815i \(0.302066\pi\)
\(762\) 729.562 296.679i 0.957430 0.389343i
\(763\) 30.5355 + 564.121i 0.0400203 + 0.739347i
\(764\) 669.191i 0.875905i
\(765\) 282.969 + 79.7593i 0.369894 + 0.104261i
\(766\) 748.942 1297.21i 0.977732 1.69348i
\(767