Properties

Label 105.3.t.b.11.15
Level 105
Weight 3
Character 105.11
Analytic conductor 2.861
Analytic rank 0
Dimension 36
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.t (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 11.15
Character \(\chi\) \(=\) 105.11
Dual form 105.3.t.b.86.15

$q$-expansion

\(f(q)\) \(=\) \(q+(2.46897 - 1.42546i) q^{2} +(2.03878 + 2.20077i) q^{3} +(2.06389 - 3.57476i) q^{4} +(1.93649 - 1.11803i) q^{5} +(8.17081 + 2.52744i) q^{6} +(-5.93505 - 3.71149i) q^{7} -0.364297i q^{8} +(-0.686770 + 8.97376i) q^{9} +O(q^{10})\) \(q+(2.46897 - 1.42546i) q^{2} +(2.03878 + 2.20077i) q^{3} +(2.06389 - 3.57476i) q^{4} +(1.93649 - 1.11803i) q^{5} +(8.17081 + 2.52744i) q^{6} +(-5.93505 - 3.71149i) q^{7} -0.364297i q^{8} +(-0.686770 + 8.97376i) q^{9} +(3.18743 - 5.52080i) q^{10} +(-8.97923 - 5.18416i) q^{11} +(12.0750 - 2.74600i) q^{12} +11.1104 q^{13} +(-19.9441 - 0.703368i) q^{14} +(6.40861 + 1.98235i) q^{15} +(7.73627 + 13.3996i) q^{16} +(-11.2821 - 6.51372i) q^{17} +(11.0961 + 23.1349i) q^{18} +(-8.07471 - 13.9858i) q^{19} -9.23000i q^{20} +(-3.93213 - 20.6286i) q^{21} -29.5593 q^{22} +(-19.0766 + 11.0139i) q^{23} +(0.801733 - 0.742720i) q^{24} +(2.50000 - 4.33013i) q^{25} +(27.4312 - 15.8374i) q^{26} +(-21.1493 + 16.7841i) q^{27} +(-25.5170 + 13.5563i) q^{28} +20.2647i q^{29} +(18.6485 - 4.24087i) q^{30} +(19.5875 - 33.9265i) q^{31} +(39.4633 + 22.7841i) q^{32} +(-6.89751 - 30.3306i) q^{33} -37.1403 q^{34} +(-15.6428 - 0.551673i) q^{35} +(30.6617 + 20.9759i) q^{36} +(16.1127 + 27.9081i) q^{37} +(-39.8725 - 23.0204i) q^{38} +(22.6515 + 24.4513i) q^{39} +(-0.407296 - 0.705457i) q^{40} +49.3431i q^{41} +(-39.1136 - 45.3263i) q^{42} +35.3127 q^{43} +(-37.0643 + 21.3991i) q^{44} +(8.70304 + 18.1454i) q^{45} +(-31.3998 + 54.3861i) q^{46} +(72.6572 - 41.9486i) q^{47} +(-13.7169 + 44.3446i) q^{48} +(21.4497 + 44.0558i) q^{49} -14.2546i q^{50} +(-8.66649 - 38.1093i) q^{51} +(22.9306 - 39.7169i) q^{52} +(-78.3583 - 45.2402i) q^{53} +(-28.2921 + 71.5871i) q^{54} -23.1843 q^{55} +(-1.35208 + 2.16212i) q^{56} +(14.3170 - 46.2846i) q^{57} +(28.8865 + 50.0330i) q^{58} +(-30.9922 - 17.8933i) q^{59} +(20.3131 - 18.8179i) q^{60} +(-3.02027 - 5.23126i) q^{61} -111.685i q^{62} +(37.3820 - 50.7108i) q^{63} +68.0216 q^{64} +(21.5151 - 12.4218i) q^{65} +(-60.2649 - 65.0533i) q^{66} +(57.4710 - 99.5427i) q^{67} +(-46.5700 + 26.8872i) q^{68} +(-63.1321 - 19.5284i) q^{69} +(-39.4079 + 20.9361i) q^{70} +45.9746i q^{71} +(3.26911 + 0.250188i) q^{72} +(16.2758 - 28.1905i) q^{73} +(79.5639 + 45.9363i) q^{74} +(14.6266 - 3.32624i) q^{75} -66.6613 q^{76} +(34.0513 + 64.0946i) q^{77} +(90.7806 + 28.0808i) q^{78} +(41.0891 + 71.1683i) q^{79} +(29.9625 + 17.2988i) q^{80} +(-80.0567 - 12.3258i) q^{81} +(70.3368 + 121.827i) q^{82} -0.951632i q^{83} +(-81.8578 - 28.5187i) q^{84} -29.1302 q^{85} +(87.1862 - 50.3370i) q^{86} +(-44.5979 + 41.3152i) q^{87} +(-1.88857 + 3.27110i) q^{88} +(14.2959 - 8.25374i) q^{89} +(47.3533 + 32.3948i) q^{90} +(-65.9406 - 41.2359i) q^{91} +90.9260i q^{92} +(114.599 - 26.0611i) q^{93} +(119.592 - 207.140i) q^{94} +(-31.2732 - 18.0556i) q^{95} +(30.3142 + 133.301i) q^{96} +143.204 q^{97} +(115.759 + 78.1967i) q^{98} +(52.6881 - 77.0171i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36q + 4q^{3} + 36q^{4} - 24q^{6} - 58q^{7} - 2q^{9} + O(q^{10}) \) \( 36q + 4q^{3} + 36q^{4} - 24q^{6} - 58q^{7} - 2q^{9} + 20q^{10} - 42q^{12} - 100q^{13} + 20q^{15} - 12q^{16} - 14q^{18} + 50q^{19} - 12q^{21} + 256q^{22} - 140q^{24} + 90q^{25} + 4q^{27} - 48q^{28} + 60q^{30} - 82q^{31} - 76q^{33} - 64q^{34} + 296q^{36} - 26q^{37} - 130q^{39} - 60q^{40} - 98q^{42} - 204q^{43} + 40q^{45} + 28q^{46} + 532q^{48} - 382q^{49} + 208q^{51} + 200q^{52} - 44q^{54} - 160q^{55} + 252q^{57} + 264q^{58} - 130q^{60} - 324q^{61} - 258q^{63} - 24q^{64} - 164q^{66} - 142q^{67} - 112q^{69} + 200q^{70} - 322q^{72} + 386q^{73} - 20q^{75} - 424q^{76} - 440q^{78} + 334q^{79} + 186q^{81} - 68q^{82} + 80q^{84} - 200q^{85} + 342q^{87} + 180q^{88} + 100q^{90} + 46q^{91} - 2q^{93} + 324q^{94} + 732q^{96} + 1616q^{97} + 384q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.46897 1.42546i 1.23449 0.712732i 0.266525 0.963828i \(-0.414124\pi\)
0.967962 + 0.251096i \(0.0807911\pi\)
\(3\) 2.03878 + 2.20077i 0.679593 + 0.733590i
\(4\) 2.06389 3.57476i 0.515973 0.893691i
\(5\) 1.93649 1.11803i 0.387298 0.223607i
\(6\) 8.17081 + 2.52744i 1.36180 + 0.421240i
\(7\) −5.93505 3.71149i −0.847865 0.530212i
\(8\) 0.364297i 0.0455371i
\(9\) −0.686770 + 8.97376i −0.0763078 + 0.997084i
\(10\) 3.18743 5.52080i 0.318743 0.552080i
\(11\) −8.97923 5.18416i −0.816294 0.471287i 0.0328429 0.999461i \(-0.489544\pi\)
−0.849137 + 0.528173i \(0.822877\pi\)
\(12\) 12.0750 2.74600i 1.00625 0.228833i
\(13\) 11.1104 0.854643 0.427321 0.904100i \(-0.359457\pi\)
0.427321 + 0.904100i \(0.359457\pi\)
\(14\) −19.9441 0.703368i −1.42458 0.0502405i
\(15\) 6.40861 + 1.98235i 0.427241 + 0.132157i
\(16\) 7.73627 + 13.3996i 0.483517 + 0.837476i
\(17\) −11.2821 6.51372i −0.663653 0.383160i 0.130015 0.991512i \(-0.458498\pi\)
−0.793667 + 0.608352i \(0.791831\pi\)
\(18\) 11.0961 + 23.1349i 0.616453 + 1.28527i
\(19\) −8.07471 13.9858i −0.424985 0.736096i 0.571434 0.820648i \(-0.306387\pi\)
−0.996419 + 0.0845524i \(0.973054\pi\)
\(20\) 9.23000i 0.461500i
\(21\) −3.93213 20.6286i −0.187244 0.982313i
\(22\) −29.5593 −1.34361
\(23\) −19.0766 + 11.0139i −0.829419 + 0.478865i −0.853654 0.520841i \(-0.825618\pi\)
0.0242347 + 0.999706i \(0.492285\pi\)
\(24\) 0.801733 0.742720i 0.0334055 0.0309467i
\(25\) 2.50000 4.33013i 0.100000 0.173205i
\(26\) 27.4312 15.8374i 1.05505 0.609131i
\(27\) −21.1493 + 16.7841i −0.783309 + 0.621633i
\(28\) −25.5170 + 13.5563i −0.911321 + 0.484154i
\(29\) 20.2647i 0.698782i 0.936977 + 0.349391i \(0.113611\pi\)
−0.936977 + 0.349391i \(0.886389\pi\)
\(30\) 18.6485 4.24087i 0.621615 0.141362i
\(31\) 19.5875 33.9265i 0.631853 1.09440i −0.355319 0.934745i \(-0.615628\pi\)
0.987173 0.159657i \(-0.0510389\pi\)
\(32\) 39.4633 + 22.7841i 1.23323 + 0.712004i
\(33\) −6.89751 30.3306i −0.209016 0.919108i
\(34\) −37.1403 −1.09236
\(35\) −15.6428 0.551673i −0.446936 0.0157621i
\(36\) 30.6617 + 20.9759i 0.851713 + 0.582664i
\(37\) 16.1127 + 27.9081i 0.435480 + 0.754273i 0.997335 0.0729628i \(-0.0232454\pi\)
−0.561855 + 0.827236i \(0.689912\pi\)
\(38\) −39.8725 23.0204i −1.04928 0.605800i
\(39\) 22.6515 + 24.4513i 0.580809 + 0.626957i
\(40\) −0.407296 0.705457i −0.0101824 0.0176364i
\(41\) 49.3431i 1.20349i 0.798688 + 0.601745i \(0.205528\pi\)
−0.798688 + 0.601745i \(0.794472\pi\)
\(42\) −39.1136 45.3263i −0.931276 1.07920i
\(43\) 35.3127 0.821226 0.410613 0.911810i \(-0.365315\pi\)
0.410613 + 0.911810i \(0.365315\pi\)
\(44\) −37.0643 + 21.3991i −0.842371 + 0.486343i
\(45\) 8.70304 + 18.1454i 0.193401 + 0.403232i
\(46\) −31.3998 + 54.3861i −0.682605 + 1.18231i
\(47\) 72.6572 41.9486i 1.54590 0.892524i 0.547449 0.836839i \(-0.315599\pi\)
0.998448 0.0556851i \(-0.0177343\pi\)
\(48\) −13.7169 + 44.3446i −0.285769 + 0.923846i
\(49\) 21.4497 + 44.0558i 0.437749 + 0.899097i
\(50\) 14.2546i 0.285093i
\(51\) −8.66649 38.1093i −0.169931 0.747241i
\(52\) 22.9306 39.7169i 0.440972 0.763787i
\(53\) −78.3583 45.2402i −1.47846 0.853589i −0.478756 0.877948i \(-0.658912\pi\)
−0.999703 + 0.0243596i \(0.992245\pi\)
\(54\) −28.2921 + 71.5871i −0.523928 + 1.32569i
\(55\) −23.1843 −0.421532
\(56\) −1.35208 + 2.16212i −0.0241443 + 0.0386093i
\(57\) 14.3170 46.2846i 0.251176 0.812010i
\(58\) 28.8865 + 50.0330i 0.498044 + 0.862637i
\(59\) −30.9922 17.8933i −0.525291 0.303277i 0.213806 0.976876i \(-0.431414\pi\)
−0.739097 + 0.673599i \(0.764747\pi\)
\(60\) 20.3131 18.8179i 0.338552 0.313632i
\(61\) −3.02027 5.23126i −0.0495126 0.0857583i 0.840207 0.542266i \(-0.182433\pi\)
−0.889720 + 0.456508i \(0.849100\pi\)
\(62\) 111.685i 1.80137i
\(63\) 37.3820 50.7108i 0.593365 0.804933i
\(64\) 68.0216 1.06284
\(65\) 21.5151 12.4218i 0.331002 0.191104i
\(66\) −60.2649 65.0533i −0.913105 0.985655i
\(67\) 57.4710 99.5427i 0.857776 1.48571i −0.0162686 0.999868i \(-0.505179\pi\)
0.874045 0.485845i \(-0.161488\pi\)
\(68\) −46.5700 + 26.8872i −0.684853 + 0.395400i
\(69\) −63.1321 19.5284i −0.914958 0.283020i
\(70\) −39.4079 + 20.9361i −0.562971 + 0.299087i
\(71\) 45.9746i 0.647530i 0.946138 + 0.323765i \(0.104949\pi\)
−0.946138 + 0.323765i \(0.895051\pi\)
\(72\) 3.26911 + 0.250188i 0.0454043 + 0.00347483i
\(73\) 16.2758 28.1905i 0.222956 0.386171i −0.732748 0.680500i \(-0.761763\pi\)
0.955704 + 0.294329i \(0.0950960\pi\)
\(74\) 79.5639 + 45.9363i 1.07519 + 0.620760i
\(75\) 14.6266 3.32624i 0.195021 0.0443499i
\(76\) −66.6613 −0.877123
\(77\) 34.0513 + 64.0946i 0.442224 + 0.832397i
\(78\) 90.7806 + 28.0808i 1.16385 + 0.360010i
\(79\) 41.0891 + 71.1683i 0.520115 + 0.900865i 0.999727 + 0.0233842i \(0.00744411\pi\)
−0.479612 + 0.877481i \(0.659223\pi\)
\(80\) 29.9625 + 17.2988i 0.374531 + 0.216235i
\(81\) −80.0567 12.3258i −0.988354 0.152171i
\(82\) 70.3368 + 121.827i 0.857766 + 1.48569i
\(83\) 0.951632i 0.0114654i −0.999984 0.00573272i \(-0.998175\pi\)
0.999984 0.00573272i \(-0.00182479\pi\)
\(84\) −81.8578 28.5187i −0.974498 0.339508i
\(85\) −29.1302 −0.342709
\(86\) 87.1862 50.3370i 1.01379 0.585314i
\(87\) −44.5979 + 41.3152i −0.512619 + 0.474887i
\(88\) −1.88857 + 3.27110i −0.0214611 + 0.0371716i
\(89\) 14.2959 8.25374i 0.160628 0.0927386i −0.417531 0.908663i \(-0.637105\pi\)
0.578159 + 0.815924i \(0.303771\pi\)
\(90\) 47.3533 + 32.3948i 0.526147 + 0.359942i
\(91\) −65.9406 41.2359i −0.724622 0.453142i
\(92\) 90.9260i 0.988326i
\(93\) 114.599 26.0611i 1.23225 0.280226i
\(94\) 119.592 207.140i 1.27226 2.20362i
\(95\) −31.2732 18.0556i −0.329192 0.190059i
\(96\) 30.3142 + 133.301i 0.315773 + 1.38856i
\(97\) 143.204 1.47633 0.738164 0.674622i \(-0.235693\pi\)
0.738164 + 0.674622i \(0.235693\pi\)
\(98\) 115.759 + 78.1967i 1.18121 + 0.797926i
\(99\) 52.6881 77.0171i 0.532203 0.777951i
\(100\) −10.3195 17.8738i −0.103195 0.178738i
\(101\) 83.0925 + 47.9735i 0.822698 + 0.474985i 0.851346 0.524605i \(-0.175787\pi\)
−0.0286482 + 0.999590i \(0.509120\pi\)
\(102\) −75.7208 81.7372i −0.742360 0.801345i
\(103\) −75.5216 130.807i −0.733220 1.26997i −0.955500 0.294991i \(-0.904683\pi\)
0.222280 0.974983i \(-0.428650\pi\)
\(104\) 4.04747i 0.0389179i
\(105\) −30.6780 35.5508i −0.292171 0.338579i
\(106\) −257.953 −2.43352
\(107\) −41.0753 + 23.7148i −0.383881 + 0.221634i −0.679506 0.733670i \(-0.737806\pi\)
0.295624 + 0.955304i \(0.404472\pi\)
\(108\) 16.3492 + 110.244i 0.151381 + 1.02078i
\(109\) −97.7409 + 169.292i −0.896706 + 1.55314i −0.0650270 + 0.997884i \(0.520713\pi\)
−0.831679 + 0.555257i \(0.812620\pi\)
\(110\) −57.2414 + 33.0483i −0.520376 + 0.300439i
\(111\) −28.5690 + 92.3589i −0.257378 + 0.832062i
\(112\) 3.81732 108.241i 0.0340832 0.966433i
\(113\) 100.129i 0.886097i −0.896498 0.443049i \(-0.853897\pi\)
0.896498 0.443049i \(-0.146103\pi\)
\(114\) −30.6286 134.684i −0.268672 1.18144i
\(115\) −24.6278 + 42.6567i −0.214155 + 0.370927i
\(116\) 72.4414 + 41.8241i 0.624495 + 0.360552i
\(117\) −7.63026 + 99.7017i −0.0652159 + 0.852151i
\(118\) −102.025 −0.864620
\(119\) 42.7842 + 80.5326i 0.359531 + 0.676745i
\(120\) 0.722163 2.33464i 0.00601802 0.0194553i
\(121\) −6.74893 11.6895i −0.0557763 0.0966073i
\(122\) −14.9139 8.61056i −0.122245 0.0705784i
\(123\) −108.593 + 100.600i −0.882868 + 0.817883i
\(124\) −80.8527 140.041i −0.652038 1.12936i
\(125\) 11.1803i 0.0894427i
\(126\) 20.0089 178.490i 0.158800 1.41659i
\(127\) −153.104 −1.20554 −0.602771 0.797914i \(-0.705937\pi\)
−0.602771 + 0.797914i \(0.705937\pi\)
\(128\) 10.0905 5.82577i 0.0788323 0.0455138i
\(129\) 71.9948 + 77.7151i 0.558099 + 0.602443i
\(130\) 35.4135 61.3380i 0.272412 0.471831i
\(131\) −123.570 + 71.3430i −0.943281 + 0.544603i −0.890987 0.454028i \(-0.849986\pi\)
−0.0522935 + 0.998632i \(0.516653\pi\)
\(132\) −122.660 37.9420i −0.929245 0.287439i
\(133\) −3.98431 + 112.976i −0.0299572 + 0.849442i
\(134\) 327.691i 2.44546i
\(135\) −22.1904 + 56.1479i −0.164373 + 0.415910i
\(136\) −2.37293 + 4.11003i −0.0174480 + 0.0302208i
\(137\) 1.15617 + 0.667514i 0.00843918 + 0.00487236i 0.504214 0.863579i \(-0.331782\pi\)
−0.495774 + 0.868451i \(0.665116\pi\)
\(138\) −183.709 + 41.7774i −1.33122 + 0.302735i
\(139\) 42.8276 0.308113 0.154056 0.988062i \(-0.450766\pi\)
0.154056 + 0.988062i \(0.450766\pi\)
\(140\) −34.2570 + 54.7805i −0.244693 + 0.391290i
\(141\) 240.451 + 74.3777i 1.70533 + 0.527502i
\(142\) 65.5351 + 113.510i 0.461515 + 0.799367i
\(143\) −99.7625 57.5979i −0.697640 0.402782i
\(144\) −125.558 + 60.2210i −0.871930 + 0.418201i
\(145\) 22.6566 + 39.2424i 0.156252 + 0.270637i
\(146\) 92.8022i 0.635632i
\(147\) −53.2253 + 137.026i −0.362077 + 0.932148i
\(148\) 133.020 0.898783
\(149\) −164.476 + 94.9604i −1.10387 + 0.637318i −0.937234 0.348701i \(-0.886623\pi\)
−0.166633 + 0.986019i \(0.553290\pi\)
\(150\) 31.3712 29.0620i 0.209141 0.193747i
\(151\) −46.5602 + 80.6446i −0.308346 + 0.534070i −0.978001 0.208602i \(-0.933109\pi\)
0.669655 + 0.742672i \(0.266442\pi\)
\(152\) −5.09499 + 2.94159i −0.0335196 + 0.0193526i
\(153\) 66.2008 96.7694i 0.432685 0.632479i
\(154\) 175.436 + 109.709i 1.13920 + 0.712397i
\(155\) 87.5978i 0.565147i
\(156\) 134.158 30.5091i 0.859988 0.195571i
\(157\) −33.4000 + 57.8506i −0.212739 + 0.368475i −0.952571 0.304317i \(-0.901572\pi\)
0.739832 + 0.672792i \(0.234905\pi\)
\(158\) 202.896 + 117.142i 1.28415 + 0.741404i
\(159\) −60.1920 264.683i −0.378566 1.66467i
\(160\) 101.894 0.636836
\(161\) 154.099 + 5.43460i 0.957136 + 0.0337553i
\(162\) −215.228 + 83.6857i −1.32857 + 0.516579i
\(163\) −29.0660 50.3438i −0.178319 0.308857i 0.762986 0.646415i \(-0.223733\pi\)
−0.941305 + 0.337558i \(0.890399\pi\)
\(164\) 176.390 + 101.839i 1.07555 + 0.620968i
\(165\) −47.2676 51.0232i −0.286470 0.309232i
\(166\) −1.35652 2.34956i −0.00817179 0.0141539i
\(167\) 102.831i 0.615755i 0.951426 + 0.307877i \(0.0996187\pi\)
−0.951426 + 0.307877i \(0.900381\pi\)
\(168\) −7.51492 + 1.43246i −0.0447317 + 0.00852655i
\(169\) −45.5600 −0.269586
\(170\) −71.9218 + 41.5241i −0.423070 + 0.244259i
\(171\) 131.051 62.8555i 0.766379 0.367576i
\(172\) 72.8816 126.235i 0.423730 0.733922i
\(173\) −95.7931 + 55.3062i −0.553718 + 0.319689i −0.750620 0.660734i \(-0.770245\pi\)
0.196903 + 0.980423i \(0.436912\pi\)
\(174\) −51.2178 + 165.579i −0.294355 + 0.951602i
\(175\) −30.9088 + 16.4208i −0.176622 + 0.0938332i
\(176\) 160.424i 0.911502i
\(177\) −23.8070 104.687i −0.134503 0.591453i
\(178\) 23.5308 40.7565i 0.132196 0.228969i
\(179\) 61.4074 + 35.4536i 0.343058 + 0.198065i 0.661623 0.749836i \(-0.269868\pi\)
−0.318566 + 0.947901i \(0.603201\pi\)
\(180\) 82.8278 + 6.33889i 0.460154 + 0.0352160i
\(181\) 199.219 1.10066 0.550329 0.834948i \(-0.314502\pi\)
0.550329 + 0.834948i \(0.314502\pi\)
\(182\) −221.586 7.81467i −1.21751 0.0429377i
\(183\) 5.35513 17.3123i 0.0292630 0.0946026i
\(184\) 4.01233 + 6.94955i 0.0218061 + 0.0377693i
\(185\) 62.4044 + 36.0292i 0.337321 + 0.194752i
\(186\) 245.792 227.700i 1.32146 1.22420i
\(187\) 67.5364 + 116.976i 0.361157 + 0.625542i
\(188\) 346.310i 1.84207i
\(189\) 187.816 21.1189i 0.993737 0.111740i
\(190\) −102.950 −0.541844
\(191\) −170.185 + 98.2561i −0.891018 + 0.514430i −0.874275 0.485430i \(-0.838663\pi\)
−0.0167430 + 0.999860i \(0.505330\pi\)
\(192\) 138.681 + 149.700i 0.722297 + 0.779687i
\(193\) 121.341 210.169i 0.628711 1.08896i −0.359100 0.933299i \(-0.616916\pi\)
0.987811 0.155660i \(-0.0497505\pi\)
\(194\) 353.566 204.132i 1.82251 1.05223i
\(195\) 71.2020 + 22.0246i 0.365138 + 0.112947i
\(196\) 201.759 + 14.2486i 1.02938 + 0.0726968i
\(197\) 133.478i 0.677553i 0.940867 + 0.338777i \(0.110013\pi\)
−0.940867 + 0.338777i \(0.889987\pi\)
\(198\) 20.3005 265.258i 0.102528 1.33969i
\(199\) −47.2126 + 81.7747i −0.237249 + 0.410928i −0.959924 0.280260i \(-0.909579\pi\)
0.722675 + 0.691188i \(0.242913\pi\)
\(200\) −1.57745 0.910741i −0.00788725 0.00455371i
\(201\) 336.241 76.4651i 1.67284 0.380423i
\(202\) 273.538 1.35415
\(203\) 75.2121 120.272i 0.370503 0.592473i
\(204\) −154.118 47.6728i −0.755483 0.233690i
\(205\) 55.1673 + 95.5525i 0.269109 + 0.466110i
\(206\) −372.922 215.307i −1.81030 1.04518i
\(207\) −85.7348 178.753i −0.414178 0.863542i
\(208\) 85.9527 + 148.875i 0.413234 + 0.715743i
\(209\) 167.443i 0.801160i
\(210\) −126.420 44.0437i −0.601998 0.209732i
\(211\) 78.2298 0.370758 0.185379 0.982667i \(-0.440649\pi\)
0.185379 + 0.982667i \(0.440649\pi\)
\(212\) −323.446 + 186.742i −1.52569 + 0.880857i
\(213\) −101.180 + 93.7320i −0.475021 + 0.440057i
\(214\) −67.6092 + 117.103i −0.315931 + 0.547209i
\(215\) 68.3828 39.4808i 0.318059 0.183632i
\(216\) 6.11438 + 7.70463i 0.0283073 + 0.0356696i
\(217\) −242.170 + 128.657i −1.11599 + 0.592889i
\(218\) 557.305i 2.55644i
\(219\) 95.2236 21.6549i 0.434811 0.0988809i
\(220\) −47.8498 + 82.8783i −0.217499 + 0.376720i
\(221\) −125.348 72.3697i −0.567186 0.327465i
\(222\) 61.1181 + 268.756i 0.275307 + 1.21061i
\(223\) −302.053 −1.35450 −0.677249 0.735754i \(-0.736828\pi\)
−0.677249 + 0.735754i \(0.736828\pi\)
\(224\) −149.654 281.693i −0.668097 1.25756i
\(225\) 37.1406 + 25.4082i 0.165069 + 0.112925i
\(226\) −142.730 247.216i −0.631550 1.09388i
\(227\) −278.504 160.795i −1.22689 0.708346i −0.260514 0.965470i \(-0.583892\pi\)
−0.966378 + 0.257124i \(0.917225\pi\)
\(228\) −135.908 146.706i −0.596086 0.643448i
\(229\) −103.283 178.891i −0.451016 0.781183i 0.547433 0.836849i \(-0.315605\pi\)
−0.998449 + 0.0556665i \(0.982272\pi\)
\(230\) 140.424i 0.610540i
\(231\) −71.6344 + 205.614i −0.310106 + 0.890102i
\(232\) 7.38235 0.0318205
\(233\) 198.117 114.383i 0.850289 0.490914i −0.0104596 0.999945i \(-0.503329\pi\)
0.860748 + 0.509031i \(0.169996\pi\)
\(234\) 123.282 + 257.038i 0.526847 + 1.09845i
\(235\) 93.8000 162.466i 0.399149 0.691346i
\(236\) −127.929 + 73.8598i −0.542071 + 0.312965i
\(237\) −72.8536 + 235.524i −0.307399 + 0.993772i
\(238\) 220.430 + 137.846i 0.926174 + 0.579183i
\(239\) 164.805i 0.689562i −0.938683 0.344781i \(-0.887953\pi\)
0.938683 0.344781i \(-0.112047\pi\)
\(240\) 23.0161 + 101.209i 0.0959002 + 0.421704i
\(241\) −118.758 + 205.695i −0.492772 + 0.853507i −0.999965 0.00832573i \(-0.997350\pi\)
0.507193 + 0.861833i \(0.330683\pi\)
\(242\) −33.3259 19.2407i −0.137710 0.0795070i
\(243\) −136.092 201.316i −0.560047 0.828461i
\(244\) −24.9340 −0.102189
\(245\) 90.7930 + 61.3321i 0.370584 + 0.250335i
\(246\) −124.712 + 403.173i −0.506958 + 1.63891i
\(247\) −89.7130 155.387i −0.363210 0.629099i
\(248\) −12.3593 7.13564i −0.0498359 0.0287728i
\(249\) 2.09432 1.94017i 0.00841093 0.00779183i
\(250\) −15.9372 27.6040i −0.0637487 0.110416i
\(251\) 468.137i 1.86509i −0.361056 0.932544i \(-0.617584\pi\)
0.361056 0.932544i \(-0.382416\pi\)
\(252\) −104.127 238.293i −0.413201 0.945609i
\(253\) 228.391 0.902733
\(254\) −378.010 + 218.244i −1.48823 + 0.859228i
\(255\) −59.3901 64.1089i −0.232902 0.251408i
\(256\) −119.434 + 206.866i −0.466541 + 0.808072i
\(257\) 225.231 130.037i 0.876384 0.505981i 0.00691968 0.999976i \(-0.497797\pi\)
0.869465 + 0.493995i \(0.164464\pi\)
\(258\) 288.533 + 89.2508i 1.11835 + 0.345933i
\(259\) 7.95053 225.438i 0.0306970 0.870418i
\(260\) 102.549i 0.394418i
\(261\) −181.850 13.9172i −0.696744 0.0533225i
\(262\) −203.394 + 352.288i −0.776312 + 1.34461i
\(263\) 192.735 + 111.276i 0.732834 + 0.423102i 0.819458 0.573139i \(-0.194275\pi\)
−0.0866239 + 0.996241i \(0.527608\pi\)
\(264\) −11.0493 + 2.51274i −0.0418535 + 0.00951796i
\(265\) −202.320 −0.763473
\(266\) 151.206 + 284.614i 0.568442 + 1.06998i
\(267\) 47.3107 + 14.6344i 0.177194 + 0.0548106i
\(268\) −237.228 410.891i −0.885179 1.53317i
\(269\) −71.2791 41.1530i −0.264978 0.152985i 0.361625 0.932324i \(-0.382222\pi\)
−0.626603 + 0.779338i \(0.715555\pi\)
\(270\) 25.2494 + 170.259i 0.0935161 + 0.630590i
\(271\) −158.301 274.186i −0.584138 1.01176i −0.994982 0.100051i \(-0.968099\pi\)
0.410844 0.911706i \(-0.365234\pi\)
\(272\) 201.568i 0.741057i
\(273\) −43.6874 229.191i −0.160027 0.839527i
\(274\) 3.80606 0.0138907
\(275\) −44.8962 + 25.9208i −0.163259 + 0.0942575i
\(276\) −200.107 + 185.378i −0.725026 + 0.671659i
\(277\) 240.836 417.139i 0.869442 1.50592i 0.00687507 0.999976i \(-0.497812\pi\)
0.862567 0.505942i \(-0.168855\pi\)
\(278\) 105.740 61.0492i 0.380361 0.219602i
\(279\) 290.996 + 199.073i 1.04300 + 0.713523i
\(280\) −0.200972 + 5.69860i −0.000717759 + 0.0203521i
\(281\) 219.532i 0.781254i 0.920549 + 0.390627i \(0.127742\pi\)
−0.920549 + 0.390627i \(0.872258\pi\)
\(282\) 699.690 159.118i 2.48117 0.564246i
\(283\) −188.686 + 326.814i −0.666735 + 1.15482i 0.312076 + 0.950057i \(0.398976\pi\)
−0.978812 + 0.204762i \(0.934358\pi\)
\(284\) 164.348 + 94.8866i 0.578692 + 0.334108i
\(285\) −24.0229 105.637i −0.0842910 0.370655i
\(286\) −328.415 −1.14830
\(287\) 183.136 292.854i 0.638106 1.02040i
\(288\) −231.562 + 338.487i −0.804033 + 1.17530i
\(289\) −59.6429 103.305i −0.206377 0.357455i
\(290\) 111.877 + 64.5923i 0.385783 + 0.222732i
\(291\) 291.961 + 315.158i 1.00330 + 1.08302i
\(292\) −67.1830 116.364i −0.230079 0.398508i
\(293\) 101.422i 0.346149i 0.984909 + 0.173074i \(0.0553701\pi\)
−0.984909 + 0.173074i \(0.944630\pi\)
\(294\) 63.9132 + 414.184i 0.217392 + 1.40879i
\(295\) −80.0214 −0.271259
\(296\) 10.1668 5.86982i 0.0343474 0.0198305i
\(297\) 276.916 41.0665i 0.932378 0.138271i
\(298\) −270.725 + 468.910i −0.908473 + 1.57352i
\(299\) −211.948 + 122.368i −0.708857 + 0.409259i
\(300\) 18.2971 59.1515i 0.0609903 0.197172i
\(301\) −209.583 131.063i −0.696289 0.435424i
\(302\) 265.479i 0.879071i
\(303\) 63.8286 + 280.675i 0.210655 + 0.926319i
\(304\) 124.936 216.396i 0.410975 0.711829i
\(305\) −11.6974 6.75352i −0.0383523 0.0221427i
\(306\) 25.5068 333.288i 0.0833556 1.08918i
\(307\) 418.952 1.36467 0.682333 0.731042i \(-0.260966\pi\)
0.682333 + 0.731042i \(0.260966\pi\)
\(308\) 299.401 + 10.5590i 0.972082 + 0.0342824i
\(309\) 133.905 432.893i 0.433349 1.40095i
\(310\) −124.867 216.277i −0.402798 0.697667i
\(311\) 220.311 + 127.197i 0.708396 + 0.408993i 0.810467 0.585784i \(-0.199213\pi\)
−0.102071 + 0.994777i \(0.532547\pi\)
\(312\) 8.90754 8.25188i 0.0285498 0.0264483i
\(313\) 130.448 + 225.942i 0.416765 + 0.721859i 0.995612 0.0935778i \(-0.0298304\pi\)
−0.578847 + 0.815436i \(0.696497\pi\)
\(314\) 190.442i 0.606503i
\(315\) 15.6935 139.995i 0.0498208 0.444430i
\(316\) 339.213 1.07346
\(317\) 348.433 201.168i 1.09916 0.634599i 0.163158 0.986600i \(-0.447832\pi\)
0.936000 + 0.352001i \(0.114499\pi\)
\(318\) −525.909 567.695i −1.65380 1.78520i
\(319\) 105.055 181.961i 0.329327 0.570411i
\(320\) 131.723 76.0505i 0.411635 0.237658i
\(321\) −135.934 42.0480i −0.423471 0.130991i
\(322\) 388.213 206.244i 1.20563 0.640510i
\(323\) 210.386i 0.651349i
\(324\) −209.290 + 260.745i −0.645957 + 0.804767i
\(325\) 27.7759 48.1093i 0.0854643 0.148028i
\(326\) −143.526 82.8650i −0.440265 0.254187i
\(327\) −571.845 + 130.044i −1.74876 + 0.397688i
\(328\) 17.9755 0.0548034
\(329\) −586.916 20.6988i −1.78394 0.0629142i
\(330\) −189.434 58.5969i −0.574043 0.177566i
\(331\) 179.035 + 310.098i 0.540891 + 0.936851i 0.998853 + 0.0478793i \(0.0152463\pi\)
−0.457962 + 0.888972i \(0.651420\pi\)
\(332\) −3.40186 1.96406i −0.0102466 0.00591586i
\(333\) −261.506 + 125.425i −0.785304 + 0.376653i
\(334\) 146.582 + 253.887i 0.438868 + 0.760142i
\(335\) 257.018i 0.767219i
\(336\) 245.995 212.277i 0.732128 0.631778i
\(337\) 84.7770 0.251564 0.125782 0.992058i \(-0.459856\pi\)
0.125782 + 0.992058i \(0.459856\pi\)
\(338\) −112.486 + 64.9441i −0.332800 + 0.192142i
\(339\) 220.361 204.141i 0.650032 0.602185i
\(340\) −60.1216 + 104.134i −0.176828 + 0.306276i
\(341\) −351.761 + 203.089i −1.03156 + 0.595569i
\(342\) 233.963 341.997i 0.684102 0.999991i
\(343\) 36.2071 341.084i 0.105560 0.994413i
\(344\) 12.8643i 0.0373962i
\(345\) −144.088 + 32.7673i −0.417647 + 0.0949776i
\(346\) −157.674 + 273.099i −0.455705 + 0.789304i
\(347\) 92.7077 + 53.5248i 0.267169 + 0.154250i 0.627601 0.778536i \(-0.284037\pi\)
−0.360431 + 0.932786i \(0.617370\pi\)
\(348\) 55.6468 + 244.697i 0.159905 + 0.703152i
\(349\) 158.877 0.455234 0.227617 0.973751i \(-0.426907\pi\)
0.227617 + 0.973751i \(0.426907\pi\)
\(350\) −52.9059 + 84.6020i −0.151160 + 0.241720i
\(351\) −234.977 + 186.477i −0.669449 + 0.531274i
\(352\) −236.233 409.168i −0.671117 1.16241i
\(353\) −259.886 150.045i −0.736222 0.425058i 0.0844720 0.996426i \(-0.473080\pi\)
−0.820694 + 0.571368i \(0.806413\pi\)
\(354\) −208.007 224.534i −0.587589 0.634276i
\(355\) 51.4012 + 89.0295i 0.144792 + 0.250787i
\(356\) 68.1393i 0.191402i
\(357\) −90.0061 + 258.346i −0.252118 + 0.723659i
\(358\) 202.151 0.564668
\(359\) 120.127 69.3556i 0.334617 0.193191i −0.323272 0.946306i \(-0.604783\pi\)
0.657889 + 0.753115i \(0.271450\pi\)
\(360\) 6.61032 3.17049i 0.0183620 0.00880691i
\(361\) 50.0980 86.7722i 0.138776 0.240366i
\(362\) 491.867 283.980i 1.35875 0.784474i
\(363\) 11.9663 38.6851i 0.0329650 0.106571i
\(364\) −283.503 + 150.615i −0.778854 + 0.413779i
\(365\) 72.7876i 0.199418i
\(366\) −11.4563 50.3771i −0.0313014 0.137642i
\(367\) −243.334 + 421.468i −0.663036 + 1.14841i 0.316777 + 0.948500i \(0.397399\pi\)
−0.979814 + 0.199913i \(0.935934\pi\)
\(368\) −295.164 170.413i −0.802076 0.463079i
\(369\) −442.793 33.8874i −1.19998 0.0918357i
\(370\) 205.433 0.555225
\(371\) 297.152 + 559.329i 0.800950 + 1.50763i
\(372\) 143.357 463.451i 0.385369 1.24584i
\(373\) 164.757 + 285.367i 0.441707 + 0.765060i 0.997816 0.0660498i \(-0.0210396\pi\)
−0.556109 + 0.831109i \(0.687706\pi\)
\(374\) 333.491 + 192.541i 0.891687 + 0.514816i
\(375\) 24.6053 22.7942i 0.0656143 0.0607846i
\(376\) −15.2817 26.4688i −0.0406429 0.0703956i
\(377\) 225.148i 0.597209i
\(378\) 433.610 319.867i 1.14712 0.846210i
\(379\) 165.444 0.436528 0.218264 0.975890i \(-0.429961\pi\)
0.218264 + 0.975890i \(0.429961\pi\)
\(380\) −129.089 + 74.5296i −0.339708 + 0.196131i
\(381\) −312.145 336.946i −0.819278 0.884374i
\(382\) −280.121 + 485.184i −0.733301 + 1.27011i
\(383\) 39.4178 22.7579i 0.102918 0.0594200i −0.447657 0.894205i \(-0.647742\pi\)
0.550576 + 0.834785i \(0.314408\pi\)
\(384\) 33.3935 + 10.3295i 0.0869623 + 0.0268997i
\(385\) 137.600 + 86.0482i 0.357402 + 0.223502i
\(386\) 691.870i 1.79241i
\(387\) −24.2517 + 316.888i −0.0626659 + 0.818832i
\(388\) 295.557 511.920i 0.761745 1.31938i
\(389\) 221.480 + 127.871i 0.569356 + 0.328718i 0.756892 0.653540i \(-0.226717\pi\)
−0.187536 + 0.982258i \(0.560050\pi\)
\(390\) 207.191 47.1176i 0.531259 0.120814i
\(391\) 286.966 0.733928
\(392\) 16.0494 7.81406i 0.0409422 0.0199338i
\(393\) −408.941 126.496i −1.04056 0.321873i
\(394\) 190.268 + 329.554i 0.482914 + 0.836431i
\(395\) 159.137 + 91.8779i 0.402879 + 0.232602i
\(396\) −166.576 347.302i −0.420645 0.877026i
\(397\) 29.5642 + 51.2068i 0.0744691 + 0.128984i 0.900855 0.434120i \(-0.142940\pi\)
−0.826386 + 0.563104i \(0.809607\pi\)
\(398\) 269.200i 0.676381i
\(399\) −256.757 + 221.564i −0.643501 + 0.555298i
\(400\) 77.3627 0.193407
\(401\) 155.996 90.0643i 0.389017 0.224599i −0.292717 0.956199i \(-0.594559\pi\)
0.681734 + 0.731600i \(0.261226\pi\)
\(402\) 721.173 668.090i 1.79396 1.66191i
\(403\) 217.624 376.935i 0.540009 0.935323i
\(404\) 342.988 198.024i 0.848979 0.490158i
\(405\) −168.810 + 65.6373i −0.416814 + 0.162067i
\(406\) 14.2535 404.160i 0.0351072 0.995469i
\(407\) 334.124i 0.820944i
\(408\) −13.8831 + 3.15717i −0.0340272 + 0.00773817i
\(409\) −72.3928 + 125.388i −0.177000 + 0.306572i −0.940851 0.338819i \(-0.889972\pi\)
0.763852 + 0.645392i \(0.223306\pi\)
\(410\) 272.413 + 157.278i 0.664422 + 0.383604i
\(411\) 0.888125 + 3.90537i 0.00216089 + 0.00950212i
\(412\) −623.474 −1.51329
\(413\) 117.529 + 221.225i 0.284574 + 0.535653i
\(414\) −466.483 319.125i −1.12677 0.770834i
\(415\) −1.06396 1.84283i −0.00256375 0.00444055i
\(416\) 438.451 + 253.140i 1.05397 + 0.608509i
\(417\) 87.3161 + 94.2538i 0.209391 + 0.226028i
\(418\) 238.683 + 413.411i 0.571012 + 0.989022i
\(419\) 534.928i 1.27668i −0.769756 0.638339i \(-0.779622\pi\)
0.769756 0.638339i \(-0.220378\pi\)
\(420\) −190.402 + 36.2936i −0.453338 + 0.0864132i
\(421\) 314.435 0.746876 0.373438 0.927655i \(-0.378179\pi\)
0.373438 + 0.927655i \(0.378179\pi\)
\(422\) 193.148 111.514i 0.457696 0.264251i
\(423\) 326.538 + 680.817i 0.771958 + 1.60950i
\(424\) −16.4808 + 28.5457i −0.0388699 + 0.0673247i
\(425\) −56.4105 + 32.5686i −0.132731 + 0.0766320i
\(426\) −116.198 + 375.650i −0.272766 + 0.881807i
\(427\) −1.49029 + 42.2575i −0.00349015 + 0.0989636i
\(428\) 195.779i 0.457428i
\(429\) −76.6339 336.983i −0.178634 0.785509i
\(430\) 112.557 194.954i 0.261760 0.453382i
\(431\) −144.893 83.6543i −0.336180 0.194093i 0.322402 0.946603i \(-0.395510\pi\)
−0.658581 + 0.752510i \(0.728843\pi\)
\(432\) −388.517 153.547i −0.899346 0.355433i
\(433\) −307.177 −0.709415 −0.354707 0.934977i \(-0.615420\pi\)
−0.354707 + 0.934977i \(0.615420\pi\)
\(434\) −414.517 + 662.855i −0.955108 + 1.52732i
\(435\) −40.1716 + 129.868i −0.0923486 + 0.298548i
\(436\) 403.453 + 698.802i 0.925352 + 1.60276i
\(437\) 308.077 + 177.868i 0.704981 + 0.407021i
\(438\) 204.236 189.203i 0.466293 0.431971i
\(439\) 281.613 + 487.769i 0.641488 + 1.11109i 0.985101 + 0.171979i \(0.0550160\pi\)
−0.343612 + 0.939112i \(0.611651\pi\)
\(440\) 8.44595i 0.0191953i
\(441\) −410.077 + 162.228i −0.929879 + 0.367865i
\(442\) −412.642 −0.933578
\(443\) 275.103 158.831i 0.621000 0.358535i −0.156258 0.987716i \(-0.549943\pi\)
0.777258 + 0.629182i \(0.216610\pi\)
\(444\) 271.198 + 292.746i 0.610806 + 0.659338i
\(445\) 18.4559 31.9666i 0.0414740 0.0718350i
\(446\) −745.762 + 430.566i −1.67211 + 0.965394i
\(447\) −544.316 168.371i −1.21771 0.376669i
\(448\) −403.712 252.461i −0.901143 0.563530i
\(449\) 343.801i 0.765705i 0.923810 + 0.382852i \(0.125058\pi\)
−0.923810 + 0.382852i \(0.874942\pi\)
\(450\) 127.918 + 9.78965i 0.284261 + 0.0217548i
\(451\) 255.803 443.063i 0.567190 0.982402i
\(452\) −357.938 206.655i −0.791897 0.457202i
\(453\) −272.406 + 61.9482i −0.601338 + 0.136751i
\(454\) −916.827 −2.01944
\(455\) −173.797 6.12928i −0.381970 0.0134709i
\(456\) −16.8613 5.21564i −0.0369765 0.0114378i
\(457\) −238.079 412.365i −0.520960 0.902330i −0.999703 0.0243743i \(-0.992241\pi\)
0.478743 0.877955i \(-0.341093\pi\)
\(458\) −510.005 294.451i −1.11355 0.642907i
\(459\) 347.936 51.5986i 0.758030 0.112415i
\(460\) 101.658 + 176.077i 0.220996 + 0.382777i
\(461\) 137.889i 0.299109i −0.988754 0.149554i \(-0.952216\pi\)
0.988754 0.149554i \(-0.0477839\pi\)
\(462\) 116.231 + 609.767i 0.251582 + 1.31984i
\(463\) −436.221 −0.942163 −0.471081 0.882090i \(-0.656136\pi\)
−0.471081 + 0.882090i \(0.656136\pi\)
\(464\) −271.539 + 156.773i −0.585213 + 0.337873i
\(465\) 192.782 178.592i 0.414586 0.384070i
\(466\) 326.098 564.818i 0.699780 1.21206i
\(467\) −66.6417 + 38.4756i −0.142702 + 0.0823889i −0.569651 0.821887i \(-0.692922\pi\)
0.426949 + 0.904276i \(0.359588\pi\)
\(468\) 340.662 + 233.050i 0.727910 + 0.497970i
\(469\) −710.545 + 377.488i −1.51502 + 0.804880i
\(470\) 534.834i 1.13794i
\(471\) −195.411 + 44.4387i −0.414885 + 0.0943496i
\(472\) −6.51848 + 11.2903i −0.0138103 + 0.0239202i
\(473\) −317.081 183.067i −0.670362 0.387034i
\(474\) 155.857 + 685.353i 0.328812 + 1.44589i
\(475\) −80.7471 −0.169994
\(476\) 376.187 + 13.2670i 0.790309 + 0.0278718i
\(477\) 459.789 672.099i 0.963918 1.40901i
\(478\) −234.924 406.900i −0.491473 0.851256i
\(479\) 372.658 + 215.154i 0.777992 + 0.449174i 0.835718 0.549159i \(-0.185052\pi\)
−0.0577262 + 0.998332i \(0.518385\pi\)
\(480\) 207.739 + 224.245i 0.432789 + 0.467176i
\(481\) 179.018 + 310.069i 0.372180 + 0.644634i
\(482\) 677.141i 1.40486i
\(483\) 302.213 + 350.216i 0.625700 + 0.725085i
\(484\) −55.7162 −0.115116
\(485\) 277.313 160.107i 0.571779 0.330117i
\(486\) −622.975 303.050i −1.28184 0.623561i
\(487\) −457.072 + 791.671i −0.938546 + 1.62561i −0.170360 + 0.985382i \(0.554493\pi\)
−0.768186 + 0.640227i \(0.778840\pi\)
\(488\) −1.90573 + 1.10027i −0.00390518 + 0.00225466i
\(489\) 51.5359 166.607i 0.105390 0.340710i
\(490\) 311.592 + 22.0052i 0.635903 + 0.0449086i
\(491\) 668.798i 1.36211i −0.732230 0.681057i \(-0.761520\pi\)
0.732230 0.681057i \(-0.238480\pi\)
\(492\) 135.496 + 595.820i 0.275399 + 1.21102i
\(493\) 131.998 228.628i 0.267745 0.463748i
\(494\) −442.998 255.765i −0.896757 0.517743i
\(495\) 15.9223 208.050i 0.0321662 0.420303i
\(496\) 606.136 1.22205
\(497\) 170.634 272.862i 0.343328 0.549018i
\(498\) 2.40519 7.77560i 0.00482971 0.0156137i
\(499\) 215.322 + 372.948i 0.431506 + 0.747391i 0.997003 0.0773597i \(-0.0246490\pi\)
−0.565497 + 0.824750i \(0.691316\pi\)
\(500\) −39.9671 23.0750i −0.0799342 0.0461500i
\(501\) −226.307 + 209.650i −0.451711 + 0.418462i
\(502\) −667.312 1155.82i −1.32931 2.30243i
\(503\) 188.768i 0.375285i −0.982237 0.187643i \(-0.939915\pi\)
0.982237 0.187643i \(-0.0600846\pi\)
\(504\) −18.4738 13.6181i −0.0366543 0.0270201i
\(505\) 214.544 0.424839
\(506\) 563.893 325.564i 1.11441 0.643406i
\(507\) −92.8867 100.267i −0.183208 0.197765i
\(508\) −315.990 + 547.310i −0.622027 + 1.07738i
\(509\) −51.9288 + 29.9811i −0.102021 + 0.0589019i −0.550142 0.835071i \(-0.685427\pi\)
0.448121 + 0.893973i \(0.352093\pi\)
\(510\) −238.018 73.6250i −0.466701 0.144363i
\(511\) −201.226 + 106.905i −0.393790 + 0.209207i
\(512\) 727.604i 1.42110i
\(513\) 405.514 + 160.264i 0.790476 + 0.312406i
\(514\) 370.726 642.116i 0.721257 1.24925i
\(515\) −292.494 168.872i −0.567950 0.327906i
\(516\) 426.403 96.9688i 0.826362 0.187924i
\(517\) −869.874 −1.68254
\(518\) −301.724 567.935i −0.582480 1.09640i
\(519\) −317.017 98.0615i −0.610823 0.188943i
\(520\) −4.52520 7.83788i −0.00870231 0.0150729i
\(521\) 162.262 + 93.6823i 0.311444 + 0.179812i 0.647573 0.762004i \(-0.275784\pi\)
−0.336128 + 0.941816i \(0.609118\pi\)
\(522\) −468.822 + 224.860i −0.898127 + 0.430766i
\(523\) −37.8206 65.5072i −0.0723147 0.125253i 0.827601 0.561317i \(-0.189705\pi\)
−0.899915 + 0.436065i \(0.856372\pi\)
\(524\) 588.977i 1.12400i
\(525\) −99.1547 34.5448i −0.188866 0.0657997i
\(526\) 634.478 1.20623
\(527\) −441.975 + 255.174i −0.838662 + 0.484202i
\(528\) 353.057 327.070i 0.668669 0.619450i
\(529\) −21.8879 + 37.9110i −0.0413760 + 0.0716653i
\(530\) −499.524 + 288.400i −0.942498 + 0.544151i
\(531\) 181.855 265.828i 0.342476 0.500617i
\(532\) 395.639 + 247.413i 0.743681 + 0.465061i
\(533\) 548.220i 1.02855i
\(534\) 137.670 31.3077i 0.257809 0.0586286i
\(535\) −53.0280 + 91.8471i −0.0991177 + 0.171677i
\(536\) −36.2631 20.9365i −0.0676550 0.0390606i
\(537\) 47.1709 + 207.425i 0.0878415 + 0.386267i
\(538\) −234.648 −0.436149
\(539\) 35.7901 506.786i 0.0664010 0.940233i
\(540\) 154.917 + 195.208i 0.286883 + 0.361497i
\(541\) −514.257 890.720i −0.950568 1.64643i −0.744199 0.667958i \(-0.767169\pi\)
−0.206369 0.978474i \(-0.566165\pi\)
\(542\) −781.684 451.306i −1.44222 0.832667i
\(543\) 406.164 + 438.435i 0.747999 + 0.807432i
\(544\) −296.819 514.106i −0.545623 0.945047i
\(545\) 437.111i 0.802038i
\(546\) −434.566 503.592i −0.795909 0.922329i
\(547\) 886.579 1.62080 0.810401 0.585875i \(-0.199249\pi\)
0.810401 + 0.585875i \(0.199249\pi\)
\(548\) 4.77241 2.75535i 0.00870877 0.00502801i
\(549\) 49.0183 23.5105i 0.0892864 0.0428242i
\(550\) −73.8983 + 127.996i −0.134361 + 0.232719i
\(551\) 283.418 163.631i 0.514370 0.296972i
\(552\) −7.11412 + 22.9988i −0.0128879 + 0.0416645i
\(553\) 20.2746 574.889i 0.0366629 1.03958i
\(554\) 1373.21i 2.47872i
\(555\) 47.9368 + 210.793i 0.0863725 + 0.379808i
\(556\) 88.3916 153.099i 0.158978 0.275357i
\(557\) 938.357 + 541.760i 1.68466 + 0.972640i 0.958490 + 0.285126i \(0.0920356\pi\)
0.726172 + 0.687513i \(0.241298\pi\)
\(558\) 1002.23 + 76.7018i 1.79612 + 0.137458i
\(559\) 392.337 0.701855
\(560\) −113.624 213.875i −0.202901 0.381919i
\(561\) −119.746 + 387.121i −0.213452 + 0.690055i
\(562\) 312.935 + 542.020i 0.556824 + 0.964448i
\(563\) −522.999 301.954i −0.928951 0.536330i −0.0424714 0.999098i \(-0.513523\pi\)
−0.886480 + 0.462768i \(0.846856\pi\)
\(564\) 762.148 706.048i 1.35133 1.25186i
\(565\) −111.948 193.899i −0.198137 0.343184i
\(566\) 1075.86i 1.90081i
\(567\) 429.394 + 370.284i 0.757308 + 0.653058i
\(568\) 16.7484 0.0294866
\(569\) 26.9827 15.5785i 0.0474213 0.0273787i −0.476102 0.879390i \(-0.657951\pi\)
0.523523 + 0.852011i \(0.324617\pi\)
\(570\) −209.893 226.570i −0.368233 0.397492i
\(571\) −118.832 + 205.822i −0.208111 + 0.360460i −0.951120 0.308823i \(-0.900065\pi\)
0.743008 + 0.669282i \(0.233398\pi\)
\(572\) −411.798 + 237.752i −0.719926 + 0.415650i
\(573\) −563.207 174.215i −0.982910 0.304039i
\(574\) 34.7063 984.103i 0.0604640 1.71447i
\(575\) 110.139i 0.191546i
\(576\) −46.7152 + 610.410i −0.0811028 + 1.05974i
\(577\) 423.514 733.547i 0.733993 1.27131i −0.221171 0.975235i \(-0.570988\pi\)
0.955164 0.296078i \(-0.0956787\pi\)
\(578\) −294.514 170.038i −0.509539 0.294183i
\(579\) 709.922 161.444i 1.22612 0.278833i
\(580\) 187.043 0.322488
\(581\) −3.53197 + 5.64799i −0.00607912 + 0.00972115i
\(582\) 1170.09 + 361.939i 2.01046 + 0.621888i
\(583\) 469.065 + 812.444i 0.804571 + 1.39356i
\(584\) −10.2697 5.92922i −0.0175851 0.0101528i
\(585\) 96.6939 + 201.602i 0.165289 + 0.344619i
\(586\) 144.573 + 250.407i 0.246711 + 0.427316i
\(587\) 741.750i 1.26363i −0.775120 0.631814i \(-0.782311\pi\)
0.775120 0.631814i \(-0.217689\pi\)
\(588\) 379.984 + 473.074i 0.646231 + 0.804548i
\(589\) −632.653 −1.07411
\(590\) −197.571 + 114.068i −0.334866 + 0.193335i
\(591\) −293.754 + 272.132i −0.497046 + 0.460460i
\(592\) −249.305 + 431.809i −0.421124 + 0.729408i
\(593\) −228.049 + 131.664i −0.384568 + 0.222031i −0.679804 0.733394i \(-0.737935\pi\)
0.295236 + 0.955424i \(0.404602\pi\)
\(594\) 625.160 496.126i 1.05246 0.835229i
\(595\) 172.890 + 108.117i 0.290571 + 0.181708i
\(596\) 783.951i 1.31535i
\(597\) −276.223 + 62.8163i −0.462686 + 0.105220i
\(598\) −348.863 + 604.249i −0.583383 + 1.01045i
\(599\) 539.808 + 311.658i 0.901182 + 0.520298i 0.877584 0.479424i \(-0.159154\pi\)
0.0235986 + 0.999722i \(0.492488\pi\)
\(600\) −1.21174 5.32840i −0.00201957 0.00888067i
\(601\) 120.748 0.200911 0.100455 0.994942i \(-0.467970\pi\)
0.100455 + 0.994942i \(0.467970\pi\)
\(602\) −704.280 24.8378i −1.16990 0.0412588i
\(603\) 853.803 + 584.094i 1.41593 + 0.968647i
\(604\) 192.190 + 332.883i 0.318196 + 0.551131i
\(605\) −26.1385 15.0911i −0.0432041 0.0249439i
\(606\) 557.682 + 601.993i 0.920268 + 0.993388i
\(607\) 61.3136 + 106.198i 0.101011 + 0.174956i 0.912101 0.409965i \(-0.134459\pi\)
−0.811090 + 0.584921i \(0.801126\pi\)
\(608\) 735.902i 1.21036i
\(609\) 418.031 79.6833i 0.686423 0.130843i
\(610\) −38.5076 −0.0631272
\(611\) 807.247 466.064i 1.32119 0.762789i
\(612\) −209.296 436.373i −0.341988 0.713029i
\(613\) 397.390 688.299i 0.648271 1.12284i −0.335265 0.942124i \(-0.608826\pi\)
0.983536 0.180714i \(-0.0578408\pi\)
\(614\) 1034.38 597.201i 1.68466 0.972640i
\(615\) −97.8152 + 316.221i −0.159049 + 0.514180i
\(616\) 23.3494 12.4048i 0.0379049 0.0201376i
\(617\) 505.078i 0.818603i 0.912399 + 0.409301i \(0.134228\pi\)
−0.912399 + 0.409301i \(0.865772\pi\)
\(618\) −286.465 1259.68i −0.463536 2.03831i
\(619\) −184.318 + 319.249i −0.297768 + 0.515749i −0.975625 0.219445i \(-0.929575\pi\)
0.677857 + 0.735194i \(0.262909\pi\)
\(620\) −313.141 180.792i −0.505067 0.291600i
\(621\) 218.600 553.121i 0.352013 0.890693i
\(622\) 725.257 1.16601
\(623\) −115.481 4.07265i −0.185362 0.00653716i
\(624\) −152.400 + 492.684i −0.244231 + 0.789558i
\(625\) −12.5000 21.6506i −0.0200000 0.0346410i
\(626\) 644.143 + 371.896i 1.02898 + 0.594084i
\(627\) −368.502 + 341.378i −0.587723 + 0.544463i
\(628\) 137.868 + 238.794i 0.219535 + 0.380246i
\(629\) 419.816i 0.667434i
\(630\) −160.811 368.016i −0.255256 0.584152i
\(631\) −332.061 −0.526245 −0.263123 0.964762i \(-0.584752\pi\)
−0.263123 + 0.964762i \(0.584752\pi\)
\(632\) 25.9264 14.9686i 0.0410228 0.0236845i
\(633\) 159.493 + 172.166i 0.251964 + 0.271984i
\(634\) 573.515 993.357i 0.904598 1.56681i
\(635\) −296.484 + 171.175i −0.466905 + 0.269568i
\(636\) −1070.41 331.105i −1.68303 0.520606i
\(637\) 238.314 + 489.475i 0.374119 + 0.768407i
\(638\) 599.010i 0.938887i
\(639\) −412.565 31.5740i −0.645642 0.0494116i
\(640\) 13.0268 22.5631i 0.0203544 0.0352549i
\(641\) −877.294 506.506i −1.36863 0.790181i −0.377880 0.925854i \(-0.623347\pi\)
−0.990754 + 0.135673i \(0.956680\pi\)
\(642\) −395.556 + 89.9539i −0.616131 + 0.140115i
\(643\) 779.296 1.21197 0.605984 0.795477i \(-0.292779\pi\)
0.605984 + 0.795477i \(0.292779\pi\)
\(644\) 337.471 539.651i 0.524023 0.837967i
\(645\) 226.305 + 70.0021i 0.350861 + 0.108530i
\(646\) 299.897 + 519.437i 0.464237 + 0.804082i
\(647\) −1057.92 610.788i −1.63511 0.944031i −0.982483 0.186351i \(-0.940334\pi\)
−0.652626 0.757680i \(-0.726333\pi\)
\(648\) −4.49025 + 29.1644i −0.00692940 + 0.0450068i
\(649\) 185.524 + 321.337i 0.285861 + 0.495126i
\(650\) 158.374i 0.243652i
\(651\) −776.875 270.658i −1.19336 0.415758i
\(652\) −239.956 −0.368031
\(653\) −91.8529 + 53.0313i −0.140663 + 0.0812118i −0.568680 0.822559i \(-0.692546\pi\)
0.428017 + 0.903771i \(0.359212\pi\)
\(654\) −1226.50 + 1136.22i −1.87538 + 1.73734i
\(655\) −159.528 + 276.310i −0.243554 + 0.421848i
\(656\) −661.179 + 381.732i −1.00789 + 0.581908i
\(657\) 241.797 + 165.416i 0.368032 + 0.251774i
\(658\) −1478.59 + 785.523i −2.24709 + 1.19380i
\(659\) 1145.05i 1.73756i 0.495202 + 0.868778i \(0.335094\pi\)
−0.495202 + 0.868778i \(0.664906\pi\)
\(660\) −279.951 + 63.6641i −0.424168 + 0.0964607i
\(661\) 32.4640 56.2292i 0.0491134 0.0850669i −0.840424 0.541930i \(-0.817694\pi\)
0.889537 + 0.456863i \(0.151027\pi\)
\(662\) 884.066 + 510.416i 1.33545 + 0.771021i
\(663\) −96.2878 423.408i −0.145230 0.638624i
\(664\) −0.346676 −0.000522103
\(665\) 118.595 + 223.231i 0.178339 + 0.335686i
\(666\) −466.863 + 682.440i −0.700996 + 1.02468i
\(667\) −223.193 386.582i −0.334622 0.579583i
\(668\) 367.597 + 212.232i 0.550294 + 0.317713i
\(669\) −615.819 664.749i −0.920507 0.993646i
\(670\) −366.370 634.572i −0.546821 0.947122i
\(671\) 62.6302i 0.0933386i
\(672\) 314.830 903.662i 0.468497 1.34473i
\(673\) −414.755 −0.616278 −0.308139 0.951341i \(-0.599706\pi\)
−0.308139 + 0.951341i \(0.599706\pi\)
\(674\) 209.312 120.846i 0.310552 0.179297i
\(675\) 19.8038 + 133.540i 0.0293390 + 0.197836i
\(676\) −94.0308 + 162.866i −0.139099 + 0.240926i
\(677\) 254.799 147.109i 0.376366 0.217295i −0.299870 0.953980i \(-0.596943\pi\)
0.676236 + 0.736685i \(0.263610\pi\)
\(678\) 253.070 818.135i 0.373260 1.20669i
\(679\) −849.922 531.499i −1.25173 0.782767i
\(680\) 10.6120i 0.0156060i
\(681\) −213.937 940.749i −0.314151 1.38142i
\(682\) −578.992 + 1002.84i −0.848962 + 1.47045i
\(683\) 363.270 + 209.734i 0.531874 + 0.307078i 0.741779 0.670644i \(-0.233982\pi\)
−0.209905 + 0.977722i \(0.567316\pi\)
\(684\) 45.7810 598.203i 0.0669313 0.874565i
\(685\) 2.98521 0.00435797
\(686\) −396.808 893.739i −0.578437 1.30283i
\(687\) 183.127 592.020i 0.266560 0.861747i
\(688\) 273.189 + 473.177i 0.397077 + 0.687757i
\(689\) −870.589 502.635i −1.26355 0.729513i
\(690\) −309.041 + 286.294i −0.447886 + 0.414919i
\(691\) −65.4780 113.411i −0.0947583 0.164126i 0.814749 0.579813i \(-0.196874\pi\)
−0.909508 + 0.415687i \(0.863541\pi\)
\(692\) 456.584i 0.659803i
\(693\) −598.555 + 261.550i −0.863715 + 0.377417i
\(694\) 305.191 0.439756
\(695\) 82.9354 47.8828i 0.119331 0.0688961i
\(696\) 15.0510 + 16.2469i 0.0216250 + 0.0233432i
\(697\) 321.407 556.694i 0.461129 0.798699i
\(698\) 392.262 226.473i 0.561980 0.324459i
\(699\) 655.648 + 202.809i 0.937980 + 0.290141i
\(700\) −5.09194 + 144.383i −0.00727420 + 0.206261i
\(701\) 585.441i 0.835152i 0.908642 + 0.417576i \(0.137120\pi\)
−0.908642 + 0.417576i \(0.862880\pi\)
\(702\) −314.335 + 795.358i −0.447771 + 1.13299i
\(703\) 260.212 450.700i 0.370145 0.641109i
\(704\) −610.782 352.635i −0.867588 0.500902i
\(705\) 548.788 124.801i 0.778423 0.177022i
\(706\) −855.537 −1.21181
\(707\) −315.105 593.122i −0.445694 0.838927i
\(708\) −423.367 130.958i −0.597976 0.184969i
\(709\) 458.739 + 794.560i 0.647023 + 1.12068i 0.983830 + 0.179103i \(0.0573196\pi\)
−0.336807 + 0.941574i \(0.609347\pi\)
\(710\) 253.816 + 146.541i 0.357488 + 0.206396i
\(711\) −666.866 + 319.847i −0.937927 + 0.449855i
\(712\) −3.00681 5.20795i −0.00422305 0.00731453i
\(713\) 862.937i 1.21029i
\(714\) 146.040 + 766.151i 0.204538 + 1.07304i
\(715\) −257.586 −0.360260
\(716\) 253.476 146.345i 0.354017 0.204392i
\(717\) 362.699 336.002i 0.505856 0.468622i
\(718\) 197.728 342.474i 0.275387 0.476984i
\(719\) 115.945 66.9409i 0.161259 0.0931028i −0.417199 0.908815i \(-0.636988\pi\)
0.578458 + 0.815712i \(0.303655\pi\)
\(720\) −175.813 + 256.996i −0.244185 + 0.356938i
\(721\) −37.2647 + 1056.65i −0.0516848 + 1.46553i
\(722\) 285.651i 0.395639i
\(723\) −694.809 + 158.007i −0.961008 + 0.218544i
\(724\) 411.167 712.161i 0.567910 0.983648i
\(725\) 87.7486 + 50.6617i 0.121033 + 0.0698782i
\(726\) −25.5997 112.570i −0.0352613 0.155055i
\(727\) −71.4890 −0.0983343 −0.0491672 0.998791i \(-0.515657\pi\)
−0.0491672 + 0.998791i \(0.515657\pi\)
\(728\) −15.0221 + 24.0219i −0.0206348 + 0.0329971i
\(729\) 165.589 709.944i 0.227146 0.973861i
\(730\) −103.756 179.711i −0.142132 0.246179i
\(731\) −398.401 230.017i −0.545009 0.314661i
\(732\) −50.8349 54.8740i −0.0694466 0.0749645i
\(733\) −12.2559 21.2278i −0.0167201 0.0289601i 0.857544 0.514410i \(-0.171989\pi\)
−0.874264 + 0.485450i \(0.838656\pi\)
\(734\) 1387.46i 1.89027i
\(735\) 50.1291 + 324.857i 0.0682028 + 0.441982i
\(736\) −1003.77 −1.36382
\(737\) −1032.09 + 595.878i −1.40040 + 0.808519i
\(738\) −1141.55 + 547.518i −1.54682 + 0.741895i
\(739\) −492.233 + 852.573i −0.666080 + 1.15368i 0.312911 + 0.949782i \(0.398696\pi\)
−0.978991 + 0.203902i \(0.934638\pi\)
\(740\) 257.592 148.721i 0.348097 0.200974i
\(741\) 159.067 514.238i 0.214665 0.693978i
\(742\) 1530.96 + 957.389i 2.06329 + 1.29028i
\(743\) 409.859i 0.551627i 0.961211 + 0.275813i \(0.0889472\pi\)
−0.961211 + 0.275813i \(0.911053\pi\)
\(744\) −9.49396 41.7480i −0.0127607 0.0561128i
\(745\) −212.338 + 367.780i −0.285017 + 0.493664i
\(746\) 813.561 + 469.710i 1.09056 + 0.629638i
\(747\) 8.53972 + 0.653552i 0.0114320 + 0.000874903i
\(748\) 557.551 0.745389
\(749\) 331.801 + 11.7016i 0.442992 + 0.0156230i
\(750\) 28.2576 91.3524i 0.0376769 0.121803i
\(751\) −272.435 471.871i −0.362762 0.628323i 0.625652 0.780102i \(-0.284833\pi\)
−0.988414 + 0.151779i \(0.951500\pi\)
\(752\) 1124.19 + 649.052i 1.49494 + 0.863101i
\(753\) 1030.26 954.427i 1.36821 1.26750i
\(754\) 320.940 + 555.884i 0.425650 + 0.737247i
\(755\) 208.223i 0.275793i
\(756\) 312.137 714.986i 0.412880 0.945749i
\(757\) −878.475 −1.16047 −0.580234 0.814450i \(-0.697039\pi\)
−0.580234 + 0.814450i \(0.697039\pi\)
\(758\) 408.477 235.834i 0.538888 0.311127i
\(759\) 465.639 + 502.637i 0.613491 + 0.662236i
\(760\) −6.57760 + 11.3927i −0.00865473 + 0.0149904i
\(761\) 153.563 88.6596i 0.201791 0.116504i −0.395700 0.918380i \(-0.629498\pi\)
0.597491 + 0.801876i \(0.296165\pi\)
\(762\) −1250.98 386.961i −1.64171 0.507823i
\(763\) 1208.42 641.995i 1.58378 0.841408i
\(764\) 811.159i 1.06173i
\(765\) 20.0058 261.408i