Properties

Label 105.3.t.b.11.14
Level $105$
Weight $3$
Character 105.11
Analytic conductor $2.861$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.t (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 11.14
Character \(\chi\) \(=\) 105.11
Dual form 105.3.t.b.86.14

$q$-expansion

\(f(q)\) \(=\) \(q+(2.31825 - 1.33844i) q^{2} +(0.256676 - 2.98900i) q^{3} +(1.58287 - 2.74161i) q^{4} +(1.93649 - 1.11803i) q^{5} +(-3.40557 - 7.27281i) q^{6} +(4.89419 + 5.00469i) q^{7} +2.23323i q^{8} +(-8.86824 - 1.53441i) q^{9} +O(q^{10})\) \(q+(2.31825 - 1.33844i) q^{2} +(0.256676 - 2.98900i) q^{3} +(1.58287 - 2.74161i) q^{4} +(1.93649 - 1.11803i) q^{5} +(-3.40557 - 7.27281i) q^{6} +(4.89419 + 5.00469i) q^{7} +2.23323i q^{8} +(-8.86824 - 1.53441i) q^{9} +(2.99285 - 5.18377i) q^{10} +(-15.6726 - 9.04859i) q^{11} +(-7.78838 - 5.43489i) q^{12} +2.70603 q^{13} +(18.0445 + 5.05154i) q^{14} +(-2.84475 - 6.07514i) q^{15} +(9.32053 + 16.1436i) q^{16} +(3.39734 + 1.96145i) q^{17} +(-22.6125 + 8.31250i) q^{18} +(14.7810 + 25.6015i) q^{19} -7.07880i q^{20} +(16.2152 - 13.3441i) q^{21} -48.4441 q^{22} +(5.66814 - 3.27250i) q^{23} +(6.67514 + 0.573217i) q^{24} +(2.50000 - 4.33013i) q^{25} +(6.27326 - 3.62187i) q^{26} +(-6.86260 + 26.1133i) q^{27} +(21.4677 - 5.49618i) q^{28} +18.8690i q^{29} +(-14.7261 - 10.2762i) q^{30} +(12.6486 - 21.9079i) q^{31} +(35.4786 + 20.4836i) q^{32} +(-31.0690 + 44.5229i) q^{33} +10.5012 q^{34} +(15.0730 + 4.21967i) q^{35} +(-18.2440 + 21.8845i) q^{36} +(-33.5038 - 58.0303i) q^{37} +(68.5323 + 39.5671i) q^{38} +(0.694571 - 8.08831i) q^{39} +(2.49683 + 4.32464i) q^{40} -38.7488i q^{41} +(19.7306 - 52.6383i) q^{42} -63.9074 q^{43} +(-49.6153 + 28.6454i) q^{44} +(-18.8888 + 6.94362i) q^{45} +(8.76013 - 15.1730i) q^{46} +(-33.6085 + 19.4039i) q^{47} +(50.6457 - 23.7154i) q^{48} +(-1.09384 + 48.9878i) q^{49} -13.3844i q^{50} +(6.73480 - 9.65119i) q^{51} +(4.28328 - 7.41886i) q^{52} +(0.787120 + 0.454444i) q^{53} +(19.0420 + 69.7225i) q^{54} -40.4665 q^{55} +(-11.1766 + 10.9299i) q^{56} +(80.3167 - 37.6092i) q^{57} +(25.2551 + 43.7430i) q^{58} +(20.6520 + 11.9234i) q^{59} +(-21.1585 - 1.81696i) q^{60} +(-25.3438 - 43.8968i) q^{61} -67.7176i q^{62} +(-35.7236 - 51.8924i) q^{63} +35.1002 q^{64} +(5.24020 - 3.02543i) q^{65} +(-12.4344 + 144.799i) q^{66} +(-34.7257 + 60.1466i) q^{67} +(10.7551 - 6.20944i) q^{68} +(-8.32663 - 17.7820i) q^{69} +(40.5908 - 10.3921i) q^{70} +55.2444i q^{71} +(3.42669 - 19.8048i) q^{72} +(14.8601 - 25.7384i) q^{73} +(-155.341 - 89.6861i) q^{74} +(-12.3011 - 8.58394i) q^{75} +93.5856 q^{76} +(-31.4193 - 122.722i) q^{77} +(-9.21556 - 19.6804i) q^{78} +(-14.9827 - 25.9507i) q^{79} +(36.0983 + 20.8413i) q^{80} +(76.2912 + 27.2150i) q^{81} +(-51.8631 - 89.8295i) q^{82} -78.4979i q^{83} +(-10.9178 - 65.5778i) q^{84} +8.77189 q^{85} +(-148.153 + 85.5364i) q^{86} +(56.3993 + 4.84320i) q^{87} +(20.2076 - 35.0006i) q^{88} +(133.421 - 77.0307i) q^{89} +(-34.4953 + 41.3787i) q^{90} +(13.2438 + 13.5428i) q^{91} -20.7198i q^{92} +(-62.2363 - 43.4298i) q^{93} +(-51.9421 + 89.9663i) q^{94} +(57.2466 + 33.0514i) q^{95} +(70.3318 - 100.788i) q^{96} +32.8490 q^{97} +(63.0316 + 115.030i) q^{98} +(125.104 + 104.293i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36q + 4q^{3} + 36q^{4} - 24q^{6} - 58q^{7} - 2q^{9} + O(q^{10}) \) \( 36q + 4q^{3} + 36q^{4} - 24q^{6} - 58q^{7} - 2q^{9} + 20q^{10} - 42q^{12} - 100q^{13} + 20q^{15} - 12q^{16} - 14q^{18} + 50q^{19} - 12q^{21} + 256q^{22} - 140q^{24} + 90q^{25} + 4q^{27} - 48q^{28} + 60q^{30} - 82q^{31} - 76q^{33} - 64q^{34} + 296q^{36} - 26q^{37} - 130q^{39} - 60q^{40} - 98q^{42} - 204q^{43} + 40q^{45} + 28q^{46} + 532q^{48} - 382q^{49} + 208q^{51} + 200q^{52} - 44q^{54} - 160q^{55} + 252q^{57} + 264q^{58} - 130q^{60} - 324q^{61} - 258q^{63} - 24q^{64} - 164q^{66} - 142q^{67} - 112q^{69} + 200q^{70} - 322q^{72} + 386q^{73} - 20q^{75} - 424q^{76} - 440q^{78} + 334q^{79} + 186q^{81} - 68q^{82} + 80q^{84} - 200q^{85} + 342q^{87} + 180q^{88} + 100q^{90} + 46q^{91} - 2q^{93} + 324q^{94} + 732q^{96} + 1616q^{97} + 384q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.31825 1.33844i 1.15913 0.669222i 0.208032 0.978122i \(-0.433294\pi\)
0.951095 + 0.308900i \(0.0999607\pi\)
\(3\) 0.256676 2.98900i 0.0855585 0.996333i
\(4\) 1.58287 2.74161i 0.395717 0.685402i
\(5\) 1.93649 1.11803i 0.387298 0.223607i
\(6\) −3.40557 7.27281i −0.567595 1.21213i
\(7\) 4.89419 + 5.00469i 0.699170 + 0.714956i
\(8\) 2.23323i 0.279154i
\(9\) −8.86824 1.53441i −0.985359 0.170490i
\(10\) 2.99285 5.18377i 0.299285 0.518377i
\(11\) −15.6726 9.04859i −1.42478 0.822599i −0.428080 0.903741i \(-0.640810\pi\)
−0.996703 + 0.0811419i \(0.974143\pi\)
\(12\) −7.78838 5.43489i −0.649032 0.452908i
\(13\) 2.70603 0.208156 0.104078 0.994569i \(-0.466811\pi\)
0.104078 + 0.994569i \(0.466811\pi\)
\(14\) 18.0445 + 5.05154i 1.28889 + 0.360824i
\(15\) −2.84475 6.07514i −0.189650 0.405010i
\(16\) 9.32053 + 16.1436i 0.582533 + 1.00898i
\(17\) 3.39734 + 1.96145i 0.199843 + 0.115380i 0.596582 0.802552i \(-0.296525\pi\)
−0.396739 + 0.917931i \(0.629858\pi\)
\(18\) −22.6125 + 8.31250i −1.25625 + 0.461805i
\(19\) 14.7810 + 25.6015i 0.777948 + 1.34745i 0.933122 + 0.359559i \(0.117073\pi\)
−0.155174 + 0.987887i \(0.549594\pi\)
\(20\) 7.07880i 0.353940i
\(21\) 16.2152 13.3441i 0.772154 0.635435i
\(22\) −48.4441 −2.20201
\(23\) 5.66814 3.27250i 0.246441 0.142283i −0.371693 0.928356i \(-0.621222\pi\)
0.618133 + 0.786073i \(0.287889\pi\)
\(24\) 6.67514 + 0.573217i 0.278131 + 0.0238840i
\(25\) 2.50000 4.33013i 0.100000 0.173205i
\(26\) 6.27326 3.62187i 0.241279 0.139303i
\(27\) −6.86260 + 26.1133i −0.254170 + 0.967159i
\(28\) 21.4677 5.49618i 0.766705 0.196292i
\(29\) 18.8690i 0.650654i 0.945602 + 0.325327i \(0.105474\pi\)
−0.945602 + 0.325327i \(0.894526\pi\)
\(30\) −14.7261 10.2762i −0.490870 0.342539i
\(31\) 12.6486 21.9079i 0.408018 0.706708i −0.586650 0.809841i \(-0.699553\pi\)
0.994668 + 0.103133i \(0.0328867\pi\)
\(32\) 35.4786 + 20.4836i 1.10871 + 0.640111i
\(33\) −31.0690 + 44.5229i −0.941485 + 1.34918i
\(34\) 10.5012 0.308859
\(35\) 15.0730 + 4.21967i 0.430656 + 0.120562i
\(36\) −18.2440 + 21.8845i −0.506777 + 0.607901i
\(37\) −33.5038 58.0303i −0.905509 1.56839i −0.820232 0.572031i \(-0.806156\pi\)
−0.0852768 0.996357i \(-0.527177\pi\)
\(38\) 68.5323 + 39.5671i 1.80348 + 1.04124i
\(39\) 0.694571 8.08831i 0.0178095 0.207393i
\(40\) 2.49683 + 4.32464i 0.0624208 + 0.108116i
\(41\) 38.7488i 0.945092i −0.881306 0.472546i \(-0.843335\pi\)
0.881306 0.472546i \(-0.156665\pi\)
\(42\) 19.7306 52.6383i 0.469777 1.25329i
\(43\) −63.9074 −1.48622 −0.743109 0.669171i \(-0.766650\pi\)
−0.743109 + 0.669171i \(0.766650\pi\)
\(44\) −49.6153 + 28.6454i −1.12762 + 0.651032i
\(45\) −18.8888 + 6.94362i −0.419751 + 0.154303i
\(46\) 8.76013 15.1730i 0.190438 0.329847i
\(47\) −33.6085 + 19.4039i −0.715075 + 0.412849i −0.812937 0.582351i \(-0.802133\pi\)
0.0978620 + 0.995200i \(0.468800\pi\)
\(48\) 50.6457 23.7154i 1.05512 0.494071i
\(49\) −1.09384 + 48.9878i −0.0223233 + 0.999751i
\(50\) 13.3844i 0.267689i
\(51\) 6.73480 9.65119i 0.132055 0.189239i
\(52\) 4.28328 7.41886i 0.0823708 0.142670i
\(53\) 0.787120 + 0.454444i 0.0148513 + 0.00857442i 0.507407 0.861706i \(-0.330604\pi\)
−0.492556 + 0.870281i \(0.663937\pi\)
\(54\) 19.0420 + 69.7225i 0.352629 + 1.29116i
\(55\) −40.4665 −0.735755
\(56\) −11.1766 + 10.9299i −0.199583 + 0.195176i
\(57\) 80.3167 37.6092i 1.40907 0.659810i
\(58\) 25.2551 + 43.7430i 0.435432 + 0.754190i
\(59\) 20.6520 + 11.9234i 0.350033 + 0.202092i 0.664700 0.747110i \(-0.268559\pi\)
−0.314667 + 0.949202i \(0.601893\pi\)
\(60\) −21.1585 1.81696i −0.352642 0.0302826i
\(61\) −25.3438 43.8968i −0.415472 0.719619i 0.580006 0.814612i \(-0.303050\pi\)
−0.995478 + 0.0949935i \(0.969717\pi\)
\(62\) 67.7176i 1.09222i
\(63\) −35.7236 51.8924i −0.567041 0.823690i
\(64\) 35.1002 0.548440
\(65\) 5.24020 3.02543i 0.0806184 0.0465451i
\(66\) −12.4344 + 144.799i −0.188400 + 2.19393i
\(67\) −34.7257 + 60.1466i −0.518294 + 0.897711i 0.481481 + 0.876457i \(0.340099\pi\)
−0.999774 + 0.0212540i \(0.993234\pi\)
\(68\) 10.7551 6.20944i 0.158163 0.0913154i
\(69\) −8.32663 17.7820i −0.120676 0.257711i
\(70\) 40.5908 10.3921i 0.579868 0.148458i
\(71\) 55.2444i 0.778090i 0.921219 + 0.389045i \(0.127195\pi\)
−0.921219 + 0.389045i \(0.872805\pi\)
\(72\) 3.42669 19.8048i 0.0475929 0.275067i
\(73\) 14.8601 25.7384i 0.203563 0.352581i −0.746111 0.665821i \(-0.768081\pi\)
0.949674 + 0.313241i \(0.101415\pi\)
\(74\) −155.341 89.6861i −2.09920 1.21197i
\(75\) −12.3011 8.58394i −0.164014 0.114452i
\(76\) 93.5856 1.23139
\(77\) −31.4193 122.722i −0.408043 1.59379i
\(78\) −9.21556 19.6804i −0.118148 0.252313i
\(79\) −14.9827 25.9507i −0.189654 0.328490i 0.755481 0.655171i \(-0.227403\pi\)
−0.945135 + 0.326680i \(0.894070\pi\)
\(80\) 36.0983 + 20.8413i 0.451228 + 0.260517i
\(81\) 76.2912 + 27.2150i 0.941867 + 0.335987i
\(82\) −51.8631 89.8295i −0.632476 1.09548i
\(83\) 78.4979i 0.945758i −0.881127 0.472879i \(-0.843215\pi\)
0.881127 0.472879i \(-0.156785\pi\)
\(84\) −10.9178 65.5778i −0.129974 0.780688i
\(85\) 8.77189 0.103199
\(86\) −148.153 + 85.5364i −1.72271 + 0.994610i
\(87\) 56.3993 + 4.84320i 0.648268 + 0.0556690i
\(88\) 20.2076 35.0006i 0.229632 0.397734i
\(89\) 133.421 77.0307i 1.49911 0.865513i 0.499114 0.866537i \(-0.333659\pi\)
0.999999 + 0.00102332i \(0.000325734\pi\)
\(90\) −34.4953 + 41.3787i −0.383282 + 0.459763i
\(91\) 13.2438 + 13.5428i 0.145536 + 0.148822i
\(92\) 20.7198i 0.225215i
\(93\) −62.2363 43.4298i −0.669207 0.466987i
\(94\) −51.9421 + 89.9663i −0.552575 + 0.957089i
\(95\) 57.2466 + 33.0514i 0.602596 + 0.347909i
\(96\) 70.3318 100.788i 0.732623 1.04987i
\(97\) 32.8490 0.338650 0.169325 0.985560i \(-0.445841\pi\)
0.169325 + 0.985560i \(0.445841\pi\)
\(98\) 63.0316 + 115.030i 0.643180 + 1.17378i
\(99\) 125.104 + 104.293i 1.26368 + 1.05347i
\(100\) −7.91434 13.7080i −0.0791434 0.137080i
\(101\) −52.7241 30.4403i −0.522021 0.301389i 0.215740 0.976451i \(-0.430784\pi\)
−0.737761 + 0.675062i \(0.764117\pi\)
\(102\) 2.69540 31.3881i 0.0264255 0.307726i
\(103\) 22.1261 + 38.3235i 0.214816 + 0.372073i 0.953216 0.302291i \(-0.0977513\pi\)
−0.738399 + 0.674364i \(0.764418\pi\)
\(104\) 6.04319i 0.0581076i
\(105\) 16.4815 43.9700i 0.156966 0.418762i
\(106\) 2.43299 0.0229528
\(107\) −129.731 + 74.9005i −1.21244 + 0.700004i −0.963291 0.268460i \(-0.913485\pi\)
−0.249152 + 0.968464i \(0.580152\pi\)
\(108\) 60.7298 + 60.1485i 0.562313 + 0.556930i
\(109\) 41.1471 71.2689i 0.377496 0.653843i −0.613201 0.789927i \(-0.710118\pi\)
0.990697 + 0.136084i \(0.0434517\pi\)
\(110\) −93.8116 + 54.1622i −0.852833 + 0.492383i
\(111\) −182.052 + 85.2480i −1.64011 + 0.768000i
\(112\) −35.1774 + 125.656i −0.314084 + 1.12193i
\(113\) 56.1617i 0.497006i −0.968631 0.248503i \(-0.920061\pi\)
0.968631 0.248503i \(-0.0799386\pi\)
\(114\) 135.857 194.687i 1.19173 1.70778i
\(115\) 7.31754 12.6743i 0.0636308 0.110212i
\(116\) 51.7313 + 29.8671i 0.445959 + 0.257475i
\(117\) −23.9977 4.15214i −0.205108 0.0354884i
\(118\) 63.8353 0.540977
\(119\) 6.81074 + 26.6024i 0.0572331 + 0.223549i
\(120\) 13.5672 6.35300i 0.113060 0.0529417i
\(121\) 103.254 + 178.841i 0.853338 + 1.47802i
\(122\) −117.507 67.8426i −0.963170 0.556086i
\(123\) −115.820 9.94586i −0.941626 0.0808607i
\(124\) −40.0420 69.3547i −0.322919 0.559312i
\(125\) 11.1803i 0.0894427i
\(126\) −152.271 72.4858i −1.20850 0.575284i
\(127\) 31.3811 0.247095 0.123548 0.992339i \(-0.460573\pi\)
0.123548 + 0.992339i \(0.460573\pi\)
\(128\) −60.5431 + 34.9546i −0.472993 + 0.273083i
\(129\) −16.4035 + 191.019i −0.127159 + 1.48077i
\(130\) 8.09874 14.0274i 0.0622980 0.107903i
\(131\) −0.204424 + 0.118024i −0.00156049 + 0.000900947i −0.500780 0.865575i \(-0.666953\pi\)
0.499220 + 0.866476i \(0.333620\pi\)
\(132\) 72.8861 + 155.653i 0.552168 + 1.17919i
\(133\) −55.7864 + 199.273i −0.419446 + 1.49829i
\(134\) 185.914i 1.38741i
\(135\) 15.9062 + 58.2408i 0.117824 + 0.431413i
\(136\) −4.38039 + 7.58705i −0.0322087 + 0.0557872i
\(137\) 234.604 + 135.448i 1.71244 + 0.988675i 0.931253 + 0.364372i \(0.118716\pi\)
0.781182 + 0.624303i \(0.214617\pi\)
\(138\) −43.1035 30.0785i −0.312344 0.217960i
\(139\) −70.1988 −0.505027 −0.252514 0.967593i \(-0.581257\pi\)
−0.252514 + 0.967593i \(0.581257\pi\)
\(140\) 35.4272 34.6450i 0.253051 0.247464i
\(141\) 49.3718 + 105.436i 0.350154 + 0.747776i
\(142\) 73.9415 + 128.071i 0.520715 + 0.901905i
\(143\) −42.4105 24.4857i −0.296577 0.171229i
\(144\) −57.8858 157.467i −0.401984 1.09352i
\(145\) 21.0961 + 36.5396i 0.145491 + 0.251997i
\(146\) 79.5575i 0.544914i
\(147\) 146.144 + 15.8435i 0.994175 + 0.107779i
\(148\) −212.129 −1.43330
\(149\) 50.9648 29.4245i 0.342046 0.197480i −0.319131 0.947711i \(-0.603391\pi\)
0.661176 + 0.750231i \(0.270058\pi\)
\(150\) −40.0061 3.43546i −0.266707 0.0229031i
\(151\) 128.237 222.112i 0.849249 1.47094i −0.0326304 0.999467i \(-0.510388\pi\)
0.881879 0.471475i \(-0.156278\pi\)
\(152\) −57.1741 + 33.0095i −0.376145 + 0.217168i
\(153\) −27.1187 22.6075i −0.177247 0.147762i
\(154\) −237.095 242.448i −1.53958 1.57434i
\(155\) 56.5661i 0.364942i
\(156\) −21.0756 14.7070i −0.135100 0.0942754i
\(157\) −36.6914 + 63.5513i −0.233703 + 0.404785i −0.958895 0.283761i \(-0.908418\pi\)
0.725192 + 0.688547i \(0.241751\pi\)
\(158\) −69.4672 40.1069i −0.439666 0.253841i
\(159\) 1.56037 2.23606i 0.00981364 0.0140633i
\(160\) 91.6053 0.572533
\(161\) 44.1188 + 12.3510i 0.274030 + 0.0767145i
\(162\) 213.288 39.0204i 1.31659 0.240866i
\(163\) −32.3989 56.1166i −0.198766 0.344274i 0.749362 0.662160i \(-0.230360\pi\)
−0.948129 + 0.317887i \(0.897027\pi\)
\(164\) −106.234 61.3342i −0.647768 0.373989i
\(165\) −10.3868 + 120.954i −0.0629501 + 0.733057i
\(166\) −105.065 181.978i −0.632922 1.09625i
\(167\) 208.422i 1.24803i 0.781411 + 0.624017i \(0.214500\pi\)
−0.781411 + 0.624017i \(0.785500\pi\)
\(168\) 29.8006 + 36.2124i 0.177385 + 0.215550i
\(169\) −161.677 −0.956671
\(170\) 20.3355 11.7407i 0.119620 0.0690629i
\(171\) −91.7985 249.720i −0.536833 1.46035i
\(172\) −101.157 + 175.209i −0.588121 + 1.01866i
\(173\) 152.382 87.9780i 0.880823 0.508543i 0.00989305 0.999951i \(-0.496851\pi\)
0.870930 + 0.491408i \(0.163518\pi\)
\(174\) 137.230 64.2596i 0.788680 0.369308i
\(175\) 33.9064 8.68073i 0.193751 0.0496042i
\(176\) 337.351i 1.91676i
\(177\) 40.9399 58.6682i 0.231299 0.331459i
\(178\) 206.203 357.153i 1.15844 2.00648i
\(179\) 119.555 + 69.0248i 0.667902 + 0.385614i 0.795281 0.606240i \(-0.207323\pi\)
−0.127379 + 0.991854i \(0.540656\pi\)
\(180\) −10.8618 + 62.7765i −0.0603431 + 0.348758i
\(181\) 220.457 1.21800 0.608998 0.793172i \(-0.291572\pi\)
0.608998 + 0.793172i \(0.291572\pi\)
\(182\) 48.8288 + 13.6696i 0.268290 + 0.0751077i
\(183\) −137.713 + 64.4854i −0.752527 + 0.352379i
\(184\) 7.30826 + 12.6583i 0.0397188 + 0.0687950i
\(185\) −129.760 74.9169i −0.701404 0.404956i
\(186\) −202.408 17.3814i −1.08821 0.0934486i
\(187\) −35.4968 61.4822i −0.189822 0.328782i
\(188\) 122.855i 0.653485i
\(189\) −164.276 + 93.4583i −0.869184 + 0.494488i
\(190\) 176.950 0.931314
\(191\) 164.995 95.2597i 0.863846 0.498742i −0.00145232 0.999999i \(-0.500462\pi\)
0.865298 + 0.501257i \(0.167129\pi\)
\(192\) 9.00936 104.914i 0.0469238 0.546429i
\(193\) 50.5882 87.6213i 0.262115 0.453996i −0.704689 0.709517i \(-0.748913\pi\)
0.966804 + 0.255520i \(0.0822467\pi\)
\(194\) 76.1523 43.9666i 0.392538 0.226632i
\(195\) −7.69798 16.4395i −0.0394768 0.0843051i
\(196\) 132.574 + 80.5401i 0.676397 + 0.410919i
\(197\) 73.4072i 0.372625i 0.982491 + 0.186313i \(0.0596537\pi\)
−0.982491 + 0.186313i \(0.940346\pi\)
\(198\) 429.614 + 74.3330i 2.16977 + 0.375419i
\(199\) 39.3463 68.1497i 0.197720 0.342461i −0.750069 0.661360i \(-0.769980\pi\)
0.947789 + 0.318899i \(0.103313\pi\)
\(200\) 9.67019 + 5.58309i 0.0483509 + 0.0279154i
\(201\) 170.865 + 119.233i 0.850075 + 0.593200i
\(202\) −162.970 −0.806784
\(203\) −94.4333 + 92.3482i −0.465189 + 0.454917i
\(204\) −15.7995 33.7407i −0.0774483 0.165396i
\(205\) −43.3224 75.0367i −0.211329 0.366032i
\(206\) 102.588 + 59.2291i 0.497999 + 0.287520i
\(207\) −55.2877 + 20.3241i −0.267091 + 0.0981840i
\(208\) 25.2216 + 43.6851i 0.121258 + 0.210024i
\(209\) 534.989i 2.55976i
\(210\) −20.6432 123.993i −0.0983010 0.590444i
\(211\) −26.1357 −0.123866 −0.0619329 0.998080i \(-0.519726\pi\)
−0.0619329 + 0.998080i \(0.519726\pi\)
\(212\) 2.49181 1.43865i 0.0117538 0.00678608i
\(213\) 165.125 + 14.1799i 0.775237 + 0.0665722i
\(214\) −200.500 + 347.277i −0.936917 + 1.62279i
\(215\) −123.756 + 71.4506i −0.575610 + 0.332328i
\(216\) −58.3171 15.3258i −0.269987 0.0709528i
\(217\) 171.547 43.9195i 0.790539 0.202394i
\(218\) 220.292i 1.01052i
\(219\) −73.1178 51.0231i −0.333871 0.232982i
\(220\) −64.0531 + 110.943i −0.291151 + 0.504288i
\(221\) 9.19329 + 5.30775i 0.0415986 + 0.0240170i
\(222\) −307.944 + 441.293i −1.38713 + 1.98781i
\(223\) −383.186 −1.71832 −0.859161 0.511705i \(-0.829014\pi\)
−0.859161 + 0.511705i \(0.829014\pi\)
\(224\) 71.1249 + 277.810i 0.317522 + 1.24022i
\(225\) −28.8148 + 34.5646i −0.128066 + 0.153620i
\(226\) −75.1693 130.197i −0.332608 0.576093i
\(227\) −207.499 119.799i −0.914091 0.527751i −0.0323460 0.999477i \(-0.510298\pi\)
−0.881745 + 0.471726i \(0.843631\pi\)
\(228\) 24.0211 279.727i 0.105356 1.22687i
\(229\) 178.359 + 308.927i 0.778861 + 1.34903i 0.932599 + 0.360915i \(0.117536\pi\)
−0.153738 + 0.988112i \(0.549131\pi\)
\(230\) 39.1765i 0.170332i
\(231\) −374.881 + 62.4126i −1.62286 + 0.270185i
\(232\) −42.1388 −0.181633
\(233\) −51.5126 + 29.7408i −0.221084 + 0.127643i −0.606452 0.795120i \(-0.707408\pi\)
0.385368 + 0.922763i \(0.374075\pi\)
\(234\) −61.1901 + 22.4938i −0.261496 + 0.0961275i
\(235\) −43.3884 + 75.1510i −0.184632 + 0.319791i
\(236\) 65.3786 37.7464i 0.277028 0.159942i
\(237\) −81.4124 + 38.1222i −0.343512 + 0.160853i
\(238\) 51.3948 + 52.5552i 0.215945 + 0.220820i
\(239\) 279.616i 1.16994i 0.811054 + 0.584971i \(0.198894\pi\)
−0.811054 + 0.584971i \(0.801106\pi\)
\(240\) 71.5603 102.548i 0.298168 0.427284i
\(241\) 110.381 191.186i 0.458014 0.793304i −0.540842 0.841124i \(-0.681894\pi\)
0.998856 + 0.0478204i \(0.0152275\pi\)
\(242\) 478.737 + 276.399i 1.97825 + 1.14215i
\(243\) 100.928 221.049i 0.415340 0.909666i
\(244\) −160.464 −0.657637
\(245\) 52.6518 + 96.0874i 0.214905 + 0.392193i
\(246\) −281.812 + 131.962i −1.14558 + 0.536429i
\(247\) 39.9978 + 69.2783i 0.161934 + 0.280479i
\(248\) 48.9256 + 28.2472i 0.197281 + 0.113900i
\(249\) −234.630 20.1485i −0.942290 0.0809177i
\(250\) −14.9643 25.9189i −0.0598571 0.103675i
\(251\) 289.707i 1.15421i 0.816670 + 0.577106i \(0.195818\pi\)
−0.816670 + 0.577106i \(0.804182\pi\)
\(252\) −198.814 + 15.8012i −0.788946 + 0.0627031i
\(253\) −118.446 −0.468166
\(254\) 72.7494 42.0019i 0.286415 0.165362i
\(255\) 2.25153 26.2192i 0.00882953 0.102820i
\(256\) −163.770 + 283.658i −0.639726 + 1.10804i
\(257\) 135.364 78.1525i 0.526709 0.304095i −0.212966 0.977060i \(-0.568312\pi\)
0.739675 + 0.672964i \(0.234979\pi\)
\(258\) 217.641 + 464.786i 0.843570 + 1.80150i
\(259\) 126.450 451.688i 0.488223 1.74397i
\(260\) 19.1554i 0.0736747i
\(261\) 28.9527 167.334i 0.110930 0.641128i
\(262\) −0.315937 + 0.547219i −0.00120587 + 0.00208862i
\(263\) −25.0501 14.4627i −0.0952475 0.0549912i 0.451620 0.892211i \(-0.350846\pi\)
−0.546867 + 0.837219i \(0.684180\pi\)
\(264\) −99.4300 69.3844i −0.376629 0.262820i
\(265\) 2.03234 0.00766919
\(266\) 137.389 + 536.632i 0.516499 + 2.01741i
\(267\) −195.999 418.567i −0.734078 1.56767i
\(268\) 109.932 + 190.408i 0.410195 + 0.710479i
\(269\) −175.613 101.390i −0.652838 0.376916i 0.136705 0.990612i \(-0.456349\pi\)
−0.789543 + 0.613696i \(0.789682\pi\)
\(270\) 114.827 + 113.727i 0.425284 + 0.421213i
\(271\) 189.529 + 328.273i 0.699367 + 1.21134i 0.968686 + 0.248288i \(0.0798681\pi\)
−0.269319 + 0.963051i \(0.586799\pi\)
\(272\) 73.1272i 0.268850i
\(273\) 43.8788 36.1096i 0.160728 0.132270i
\(274\) 725.161 2.64657
\(275\) −78.3631 + 45.2429i −0.284957 + 0.164520i
\(276\) −61.9313 5.31825i −0.224389 0.0192690i
\(277\) 66.1143 114.513i 0.238680 0.413406i −0.721656 0.692252i \(-0.756619\pi\)
0.960336 + 0.278846i \(0.0899520\pi\)
\(278\) −162.739 + 93.9572i −0.585391 + 0.337975i
\(279\) −145.786 + 174.877i −0.522531 + 0.626798i
\(280\) −9.42352 + 33.6615i −0.0336554 + 0.120220i
\(281\) 33.0779i 0.117715i −0.998266 0.0588574i \(-0.981254\pi\)
0.998266 0.0588574i \(-0.0187457\pi\)
\(282\) 255.577 + 178.347i 0.906302 + 0.632436i
\(283\) −39.7064 + 68.7735i −0.140305 + 0.243016i −0.927612 0.373546i \(-0.878142\pi\)
0.787306 + 0.616562i \(0.211475\pi\)
\(284\) 151.458 + 87.4445i 0.533304 + 0.307903i
\(285\) 113.484 162.627i 0.398191 0.570620i
\(286\) −131.091 −0.458360
\(287\) 193.926 189.644i 0.675699 0.660780i
\(288\) −283.202 236.092i −0.983341 0.819762i
\(289\) −136.805 236.954i −0.473375 0.819910i
\(290\) 97.8124 + 56.4720i 0.337284 + 0.194731i
\(291\) 8.43154 98.1856i 0.0289744 0.337408i
\(292\) −47.0430 81.4809i −0.161106 0.279044i
\(293\) 127.804i 0.436192i −0.975927 0.218096i \(-0.930015\pi\)
0.975927 0.218096i \(-0.0699846\pi\)
\(294\) 360.004 158.876i 1.22450 0.540395i
\(295\) 53.3231 0.180756
\(296\) 129.595 74.8219i 0.437822 0.252777i
\(297\) 343.843 347.167i 1.15772 1.16891i
\(298\) 78.7663 136.427i 0.264316 0.457809i
\(299\) 15.3381 8.85548i 0.0512981 0.0296170i
\(300\) −43.0047 + 20.1374i −0.143349 + 0.0671248i
\(301\) −312.775 319.836i −1.03912 1.06258i
\(302\) 686.550i 2.27335i
\(303\) −104.519 + 149.779i −0.344947 + 0.494320i
\(304\) −275.534 + 477.239i −0.906361 + 1.56986i
\(305\) −98.1561 56.6705i −0.321823 0.185805i
\(306\) −93.1270 16.1131i −0.304337 0.0526572i
\(307\) 178.227 0.580545 0.290273 0.956944i \(-0.406254\pi\)
0.290273 + 0.956944i \(0.406254\pi\)
\(308\) −386.188 108.113i −1.25386 0.351017i
\(309\) 120.228 56.2982i 0.389088 0.182195i
\(310\) −75.7105 131.135i −0.244228 0.423015i
\(311\) 440.590 + 254.375i 1.41669 + 0.817926i 0.996006 0.0892815i \(-0.0284571\pi\)
0.420683 + 0.907208i \(0.361790\pi\)
\(312\) 18.0631 + 1.55114i 0.0578945 + 0.00497160i
\(313\) 149.067 + 258.191i 0.476251 + 0.824892i 0.999630 0.0272088i \(-0.00866190\pi\)
−0.523378 + 0.852100i \(0.675329\pi\)
\(314\) 196.437i 0.625597i
\(315\) −127.196 60.5491i −0.403797 0.192219i
\(316\) −94.8623 −0.300197
\(317\) −272.046 + 157.066i −0.858190 + 0.495476i −0.863406 0.504510i \(-0.831673\pi\)
0.00521565 + 0.999986i \(0.498340\pi\)
\(318\) 0.624490 7.27222i 0.00196381 0.0228686i
\(319\) 170.737 295.726i 0.535227 0.927040i
\(320\) 67.9712 39.2432i 0.212410 0.122635i
\(321\) 190.579 + 406.992i 0.593703 + 1.26789i
\(322\) 118.810 30.4177i 0.368974 0.0944650i
\(323\) 115.969i 0.359038i
\(324\) 195.372 166.083i 0.602999 0.512601i
\(325\) 6.76507 11.7174i 0.0208156 0.0360537i
\(326\) −150.218 86.7284i −0.460791 0.266038i
\(327\) −202.461 141.282i −0.619147 0.432054i
\(328\) 86.5351 0.263826
\(329\) −261.597 73.2340i −0.795128 0.222596i
\(330\) 137.812 + 294.305i 0.417611 + 0.891834i
\(331\) 72.4842 + 125.546i 0.218985 + 0.379294i 0.954498 0.298217i \(-0.0963920\pi\)
−0.735513 + 0.677511i \(0.763059\pi\)
\(332\) −215.210 124.252i −0.648224 0.374253i
\(333\) 208.078 + 566.035i 0.624858 + 1.69981i
\(334\) 278.961 + 483.174i 0.835212 + 1.44663i
\(335\) 155.298i 0.463576i
\(336\) 366.558 + 137.398i 1.09095 + 0.408923i
\(337\) −187.624 −0.556748 −0.278374 0.960473i \(-0.589796\pi\)
−0.278374 + 0.960473i \(0.589796\pi\)
\(338\) −374.809 + 216.396i −1.10890 + 0.640226i
\(339\) −167.867 14.4153i −0.495184 0.0425231i
\(340\) 13.8847 24.0491i 0.0408375 0.0707326i
\(341\) −396.472 + 228.903i −1.16267 + 0.671270i
\(342\) −547.049 456.047i −1.59956 1.33347i
\(343\) −250.522 + 234.281i −0.730385 + 0.683035i
\(344\) 142.720i 0.414884i
\(345\) −36.0054 25.1253i −0.104363 0.0728270i
\(346\) 235.507 407.911i 0.680657 1.17893i
\(347\) −516.443 298.168i −1.48831 0.859274i −0.488396 0.872622i \(-0.662418\pi\)
−0.999911 + 0.0133476i \(0.995751\pi\)
\(348\) 102.551 146.959i 0.294686 0.422295i
\(349\) −44.7573 −0.128244 −0.0641221 0.997942i \(-0.520425\pi\)
−0.0641221 + 0.997942i \(0.520425\pi\)
\(350\) 66.9850 65.5060i 0.191386 0.187160i
\(351\) −18.5704 + 70.6633i −0.0529071 + 0.201320i
\(352\) −370.695 642.062i −1.05311 1.82404i
\(353\) −552.513 318.993i −1.56519 0.903664i −0.996717 0.0809631i \(-0.974200\pi\)
−0.568475 0.822701i \(-0.692466\pi\)
\(354\) 16.3850 190.804i 0.0462852 0.538993i
\(355\) 61.7651 + 106.980i 0.173986 + 0.301353i
\(356\) 487.717i 1.36999i
\(357\) 81.2626 13.5291i 0.227626 0.0378967i
\(358\) 369.544 1.03224
\(359\) 95.5156 55.1460i 0.266060 0.153610i −0.361036 0.932552i \(-0.617577\pi\)
0.627096 + 0.778942i \(0.284243\pi\)
\(360\) −15.5067 42.1831i −0.0430743 0.117175i
\(361\) −256.457 + 444.196i −0.710407 + 1.23046i
\(362\) 511.076 295.070i 1.41181 0.815110i
\(363\) 561.058 262.722i 1.54561 0.723751i
\(364\) 58.0923 14.8728i 0.159594 0.0408594i
\(365\) 66.4562i 0.182072i
\(366\) −232.942 + 333.814i −0.636455 + 0.912060i
\(367\) −296.749 + 513.984i −0.808581 + 1.40050i 0.105266 + 0.994444i \(0.466430\pi\)
−0.913847 + 0.406059i \(0.866903\pi\)
\(368\) 105.660 + 61.0029i 0.287120 + 0.165769i
\(369\) −59.4564 + 343.633i −0.161128 + 0.931255i
\(370\) −401.088 −1.08402
\(371\) 1.57796 + 6.16343i 0.00425327 + 0.0166130i
\(372\) −217.579 + 101.884i −0.584890 + 0.273881i
\(373\) 92.0852 + 159.496i 0.246877 + 0.427604i 0.962658 0.270722i \(-0.0872623\pi\)
−0.715781 + 0.698325i \(0.753929\pi\)
\(374\) −164.581 95.0209i −0.440056 0.254067i
\(375\) −33.4180 2.86972i −0.0891147 0.00765259i
\(376\) −43.3335 75.0558i −0.115249 0.199616i
\(377\) 51.0599i 0.135437i
\(378\) −255.744 + 436.534i −0.676573 + 1.15485i
\(379\) 486.561 1.28380 0.641901 0.766787i \(-0.278146\pi\)
0.641901 + 0.766787i \(0.278146\pi\)
\(380\) 181.228 104.632i 0.476915 0.275347i
\(381\) 8.05477 93.7982i 0.0211411 0.246189i
\(382\) 255.000 441.672i 0.667538 1.15621i
\(383\) 517.073 298.532i 1.35006 0.779458i 0.361803 0.932255i \(-0.382161\pi\)
0.988258 + 0.152797i \(0.0488280\pi\)
\(384\) 88.9393 + 189.935i 0.231613 + 0.494623i
\(385\) −198.051 202.522i −0.514417 0.526032i
\(386\) 270.838i 0.701653i
\(387\) 566.745 + 98.0599i 1.46446 + 0.253385i
\(388\) 51.9956 90.0591i 0.134009 0.232111i
\(389\) −262.695 151.667i −0.675310 0.389890i 0.122776 0.992434i \(-0.460820\pi\)
−0.798085 + 0.602544i \(0.794154\pi\)
\(390\) −39.8492 27.8076i −0.102177 0.0713016i
\(391\) 25.6755 0.0656661
\(392\) −109.401 2.44280i −0.279085 0.00623164i
\(393\) 0.300303 + 0.641316i 0.000764130 + 0.00163185i
\(394\) 98.2514 + 170.176i 0.249369 + 0.431920i
\(395\) −58.0276 33.5022i −0.146905 0.0848158i
\(396\) 483.954 177.904i 1.22211 0.449253i
\(397\) −140.150 242.747i −0.353022 0.611452i 0.633755 0.773534i \(-0.281513\pi\)
−0.986777 + 0.162081i \(0.948179\pi\)
\(398\) 210.651i 0.529274i
\(399\) 581.307 + 217.894i 1.45691 + 0.546100i
\(400\) 93.2053 0.233013
\(401\) 110.748 63.9406i 0.276180 0.159453i −0.355513 0.934671i \(-0.615694\pi\)
0.631693 + 0.775219i \(0.282360\pi\)
\(402\) 555.695 + 47.7195i 1.38233 + 0.118705i
\(403\) 34.2273 59.2835i 0.0849313 0.147105i
\(404\) −166.910 + 96.3658i −0.413145 + 0.238529i
\(405\) 178.165 32.5946i 0.439912 0.0804805i
\(406\) −95.3173 + 340.480i −0.234772 + 0.838622i
\(407\) 1212.65i 2.97948i
\(408\) 21.5534 + 15.0404i 0.0528269 + 0.0368637i
\(409\) −48.0455 + 83.2172i −0.117471 + 0.203465i −0.918765 0.394806i \(-0.870812\pi\)
0.801294 + 0.598271i \(0.204145\pi\)
\(410\) −200.865 115.969i −0.489914 0.282852i
\(411\) 465.073 666.464i 1.13156 1.62157i
\(412\) 140.091 0.340026
\(413\) 41.4016 + 161.712i 0.100246 + 0.391555i
\(414\) −100.968 + 121.116i −0.243885 + 0.292551i
\(415\) −87.7634 152.011i −0.211478 0.366291i
\(416\) 96.0059 + 55.4290i 0.230783 + 0.133243i
\(417\) −18.0183 + 209.824i −0.0432094 + 0.503175i
\(418\) −716.053 1240.24i −1.71305 2.96708i
\(419\) 339.702i 0.810745i 0.914152 + 0.405373i \(0.132858\pi\)
−0.914152 + 0.405373i \(0.867142\pi\)
\(420\) −94.4605 114.784i −0.224906 0.273296i
\(421\) −323.174 −0.767634 −0.383817 0.923409i \(-0.625391\pi\)
−0.383817 + 0.923409i \(0.625391\pi\)
\(422\) −60.5891 + 34.9811i −0.143576 + 0.0828937i
\(423\) 327.822 120.509i 0.774993 0.284892i
\(424\) −1.01488 + 1.75782i −0.00239359 + 0.00414581i
\(425\) 16.9867 9.80727i 0.0399687 0.0230759i
\(426\) 401.782 188.139i 0.943150 0.441640i
\(427\) 95.6523 341.677i 0.224010 0.800180i
\(428\) 474.230i 1.10801i
\(429\) −84.0735 + 120.480i −0.195976 + 0.280839i
\(430\) −191.265 + 331.281i −0.444803 + 0.770421i
\(431\) −234.768 135.543i −0.544705 0.314485i 0.202279 0.979328i \(-0.435165\pi\)
−0.746984 + 0.664843i \(0.768499\pi\)
\(432\) −485.527 + 132.603i −1.12390 + 0.306950i
\(433\) 642.220 1.48319 0.741594 0.670849i \(-0.234070\pi\)
0.741594 + 0.670849i \(0.234070\pi\)
\(434\) 338.905 331.423i 0.780888 0.763646i
\(435\) 114.632 53.6775i 0.263521 0.123397i
\(436\) −130.261 225.618i −0.298763 0.517473i
\(437\) 167.562 + 96.7418i 0.383437 + 0.221377i
\(438\) −237.797 20.4205i −0.542916 0.0466221i
\(439\) −267.354 463.071i −0.609007 1.05483i −0.991404 0.130833i \(-0.958235\pi\)
0.382398 0.923998i \(-0.375098\pi\)
\(440\) 90.3712i 0.205389i
\(441\) 84.8676 432.757i 0.192444 0.981308i
\(442\) 28.4165 0.0642907
\(443\) −174.920 + 100.990i −0.394854 + 0.227969i −0.684261 0.729237i \(-0.739875\pi\)
0.289407 + 0.957206i \(0.406542\pi\)
\(444\) −54.4482 + 634.052i −0.122631 + 1.42805i
\(445\) 172.246 298.339i 0.387069 0.670424i
\(446\) −888.322 + 512.873i −1.99175 + 1.14994i
\(447\) −74.8685 159.886i −0.167491 0.357688i
\(448\) 171.787 + 175.666i 0.383453 + 0.392111i
\(449\) 751.940i 1.67470i 0.546668 + 0.837350i \(0.315896\pi\)
−0.546668 + 0.837350i \(0.684104\pi\)
\(450\) −20.5372 + 118.696i −0.0456382 + 0.263770i
\(451\) −350.622 + 607.294i −0.777431 + 1.34655i
\(452\) −153.973 88.8966i −0.340649 0.196674i
\(453\) −630.978 440.310i −1.39289 0.971987i
\(454\) −641.380 −1.41273
\(455\) 40.7878 + 11.4185i 0.0896436 + 0.0250957i
\(456\) 83.9901 + 179.366i 0.184189 + 0.393347i
\(457\) −7.76422 13.4480i −0.0169895 0.0294268i 0.857406 0.514641i \(-0.172075\pi\)
−0.874395 + 0.485214i \(0.838742\pi\)
\(458\) 826.964 + 477.448i 1.80560 + 1.04246i
\(459\) −74.5346 + 75.2551i −0.162385 + 0.163954i
\(460\) −23.1654 40.1236i −0.0503595 0.0872253i
\(461\) 344.491i 0.747269i −0.927576 0.373634i \(-0.878112\pi\)
0.927576 0.373634i \(-0.121888\pi\)
\(462\) −785.533 + 646.445i −1.70029 + 1.39923i
\(463\) −172.651 −0.372896 −0.186448 0.982465i \(-0.559698\pi\)
−0.186448 + 0.982465i \(0.559698\pi\)
\(464\) −304.614 + 175.869i −0.656495 + 0.379027i
\(465\) −169.076 14.5191i −0.363604 0.0312239i
\(466\) −79.6129 + 137.894i −0.170843 + 0.295909i
\(467\) 593.172 342.468i 1.27018 0.733336i 0.295155 0.955449i \(-0.404629\pi\)
0.975021 + 0.222113i \(0.0712955\pi\)
\(468\) −49.3687 + 59.2199i −0.105489 + 0.126538i
\(469\) −470.969 + 120.578i −1.00420 + 0.257095i
\(470\) 232.292i 0.494239i
\(471\) 180.537 + 125.982i 0.383306 + 0.267479i
\(472\) −26.6278 + 46.1207i −0.0564148 + 0.0977133i
\(473\) 1001.60 + 578.271i 2.11754 + 1.22256i
\(474\) −137.710 + 197.343i −0.290528 + 0.416335i
\(475\) 147.810 0.311179
\(476\) 83.7137 + 23.4356i 0.175869 + 0.0492345i
\(477\) −6.28307 5.23788i −0.0131720 0.0109809i
\(478\) 374.251 + 648.221i 0.782951 + 1.35611i
\(479\) −204.293 117.949i −0.426499 0.246239i 0.271355 0.962479i \(-0.412528\pi\)
−0.697854 + 0.716240i \(0.745862\pi\)
\(480\) 23.5128 273.808i 0.0489851 0.570433i
\(481\) −90.6623 157.032i −0.188487 0.326469i
\(482\) 590.958i 1.22605i
\(483\) 48.2415 128.701i 0.0998788 0.266461i
\(484\) 653.749 1.35072
\(485\) 63.6118 36.7263i 0.131158 0.0757243i
\(486\) −61.8860 647.533i −0.127337 1.33237i
\(487\) −261.107 + 452.251i −0.536155 + 0.928647i 0.462952 + 0.886384i \(0.346790\pi\)
−0.999106 + 0.0422639i \(0.986543\pi\)
\(488\) 98.0317 56.5987i 0.200885 0.115981i
\(489\) −176.049 + 82.4366i −0.360017 + 0.168582i
\(490\) 250.668 + 152.283i 0.511567 + 0.310783i
\(491\) 907.148i 1.84755i −0.382933 0.923776i \(-0.625086\pi\)
0.382933 0.923776i \(-0.374914\pi\)
\(492\) −210.595 + 301.790i −0.428039 + 0.613394i
\(493\) −37.0106 + 64.1042i −0.0750722 + 0.130029i
\(494\) 185.450 + 107.070i 0.375405 + 0.216740i
\(495\) 358.867 + 62.0921i 0.724983 + 0.125439i
\(496\) 471.565 0.950736
\(497\) −276.481 + 270.376i −0.556300 + 0.544017i
\(498\) −570.900 + 267.330i −1.14639 + 0.536808i
\(499\) −23.5236 40.7441i −0.0471415 0.0816515i 0.841492 0.540270i \(-0.181678\pi\)
−0.888633 + 0.458618i \(0.848345\pi\)
\(500\) −30.6521 17.6970i −0.0613042 0.0353940i
\(501\) 622.972 + 53.4968i 1.24346 + 0.106780i
\(502\) 387.757 + 671.614i 0.772424 + 1.33788i
\(503\) 55.4203i 0.110180i 0.998481 + 0.0550898i \(0.0175445\pi\)
−0.998481 + 0.0550898i \(0.982455\pi\)
\(504\) 115.888 79.7791i 0.229936 0.158292i
\(505\) −136.133 −0.269570
\(506\) −274.588 + 158.534i −0.542664 + 0.313307i
\(507\) −41.4987 + 483.254i −0.0818514 + 0.953163i
\(508\) 49.6722 86.0347i 0.0977798 0.169360i
\(509\) −220.030 + 127.035i −0.432280 + 0.249577i −0.700317 0.713832i \(-0.746958\pi\)
0.268038 + 0.963408i \(0.413625\pi\)
\(510\) −29.8733 63.7963i −0.0585751 0.125091i
\(511\) 201.541 51.5985i 0.394404 0.100976i
\(512\) 597.151i 1.16631i
\(513\) −769.975 + 210.289i −1.50093 + 0.409919i
\(514\) 209.206 362.355i 0.407015 0.704970i
\(515\) 85.6940 + 49.4754i 0.166396 + 0.0960688i
\(516\) 497.735 + 347.330i 0.964602 + 0.673120i
\(517\) 702.312 1.35844
\(518\) −311.416 1216.37i −0.601190 2.34821i
\(519\) −223.853 478.052i −0.431317 0.921103i
\(520\) 6.75649 + 11.7026i 0.0129933 + 0.0225050i
\(521\) 188.089 + 108.593i 0.361016 + 0.208433i 0.669526 0.742788i \(-0.266497\pi\)
−0.308510 + 0.951221i \(0.599830\pi\)
\(522\) −156.848 426.675i −0.300475 0.817385i
\(523\) 260.787 + 451.696i 0.498636 + 0.863664i 0.999999 0.00157381i \(-0.000500960\pi\)
−0.501362 + 0.865237i \(0.667168\pi\)
\(524\) 0.747265i 0.00142608i
\(525\) −17.2438 103.574i −0.0328452 0.197285i
\(526\) −77.4300 −0.147205
\(527\) 85.9429 49.6191i 0.163079 0.0941540i
\(528\) −1008.34 86.5897i −1.90974 0.163996i
\(529\) −243.081 + 421.029i −0.459511 + 0.795897i
\(530\) 4.71147 2.72017i 0.00888957 0.00513239i
\(531\) −164.851 137.428i −0.310454 0.258810i
\(532\) 458.025 + 468.367i 0.860950 + 0.880389i
\(533\) 104.855i 0.196726i
\(534\) −1014.60 708.012i −1.90001 1.32587i
\(535\) −167.483 + 290.088i −0.313052 + 0.542221i
\(536\) −134.322 77.5506i −0.250600 0.144684i
\(537\) 237.002 339.631i 0.441344 0.632461i
\(538\) −542.822 −1.00896
\(539\) 460.414 757.869i 0.854200 1.40606i
\(540\) 184.851 + 48.5790i 0.342316 + 0.0899610i
\(541\) 39.6152 + 68.6156i 0.0732260 + 0.126831i 0.900313 0.435242i \(-0.143337\pi\)
−0.827087 + 0.562073i \(0.810004\pi\)
\(542\) 878.750 + 507.347i 1.62131 + 0.936064i
\(543\) 56.5860 658.947i 0.104210 1.21353i
\(544\) 80.3551 + 139.179i 0.147712 + 0.255844i
\(545\) 184.015i 0.337643i
\(546\) 53.3916 142.441i 0.0977868 0.260880i
\(547\) −280.601 −0.512982 −0.256491 0.966547i \(-0.582566\pi\)
−0.256491 + 0.966547i \(0.582566\pi\)
\(548\) 742.693 428.794i 1.35528 0.782471i
\(549\) 157.399 + 428.174i 0.286702 + 0.779917i
\(550\) −121.110 + 209.769i −0.220201 + 0.381399i
\(551\) −483.073 + 278.902i −0.876721 + 0.506175i
\(552\) 39.7115 18.5953i 0.0719411 0.0336872i
\(553\) 56.5474 201.991i 0.102256 0.365265i
\(554\) 353.961i 0.638920i
\(555\) −257.233 + 368.623i −0.463482 + 0.664185i
\(556\) −111.115 + 192.457i −0.199848 + 0.346147i
\(557\) −798.395 460.954i −1.43338 0.827565i −0.436007 0.899943i \(-0.643608\pi\)
−0.997377 + 0.0723785i \(0.976941\pi\)
\(558\) −103.906 + 600.535i −0.186212 + 1.07623i
\(559\) −172.935 −0.309365
\(560\) 72.3672 + 282.662i 0.129227 + 0.504754i
\(561\) −192.881 + 90.3189i −0.343817 + 0.160996i
\(562\) −44.2729 76.6829i −0.0787774 0.136446i
\(563\) 210.180 + 121.347i 0.373321 + 0.215537i 0.674909 0.737901i \(-0.264183\pi\)
−0.301587 + 0.953439i \(0.597516\pi\)
\(564\) 367.214 + 31.5339i 0.651089 + 0.0559112i
\(565\) −62.7907 108.757i −0.111134 0.192490i
\(566\) 212.579i 0.375581i
\(567\) 237.181 + 515.009i 0.418309 + 0.908305i
\(568\) −123.374 −0.217207
\(569\) 247.611 142.958i 0.435168 0.251245i −0.266378 0.963869i \(-0.585827\pi\)
0.701546 + 0.712624i \(0.252493\pi\)
\(570\) 45.4187 528.902i 0.0796819 0.927899i
\(571\) 432.123 748.459i 0.756783 1.31079i −0.187701 0.982226i \(-0.560103\pi\)
0.944483 0.328560i \(-0.106563\pi\)
\(572\) −134.260 + 77.5153i −0.234721 + 0.135516i
\(573\) −242.381 517.620i −0.423004 0.903350i
\(574\) 195.741 699.201i 0.341012 1.21812i
\(575\) 32.7250i 0.0569131i
\(576\) −311.277 53.8579i −0.540411 0.0935034i
\(577\) 348.257 603.199i 0.603566 1.04541i −0.388711 0.921360i \(-0.627080\pi\)
0.992276 0.124046i \(-0.0395872\pi\)
\(578\) −634.299 366.213i −1.09740 0.633586i
\(579\) −248.915 173.698i −0.429905 0.299997i
\(580\) 133.570 0.230292
\(581\) 392.858 384.184i 0.676175 0.661246i
\(582\) −111.870 238.904i −0.192216 0.410489i
\(583\) −8.22416 14.2447i −0.0141066 0.0244334i
\(584\) 57.4799 + 33.1860i 0.0984244 + 0.0568254i
\(585\) −51.1135 + 18.7896i −0.0873736 + 0.0321190i
\(586\) −171.059 296.283i −0.291909 0.505602i
\(587\) 596.728i 1.01657i 0.861188 + 0.508287i \(0.169721\pi\)
−0.861188 + 0.508287i \(0.830279\pi\)
\(588\) 274.763 375.591i 0.467283 0.638759i
\(589\) 747.834 1.26967
\(590\) 123.617 71.3700i 0.209520 0.120966i
\(591\) 219.414 + 18.8418i 0.371259 + 0.0318813i
\(592\) 624.547 1081.75i 1.05498 1.82728i
\(593\) −394.499 + 227.764i −0.665260 + 0.384088i −0.794278 0.607554i \(-0.792151\pi\)
0.129019 + 0.991642i \(0.458817\pi\)
\(594\) 332.453 1265.04i 0.559685 2.12969i
\(595\) 42.9313 + 43.9006i 0.0721534 + 0.0737825i
\(596\) 186.301i 0.312585i
\(597\) −193.600 135.098i −0.324289 0.226295i
\(598\) 23.7051 41.0585i 0.0396407 0.0686597i
\(599\) 974.123 + 562.410i 1.62625 + 0.938915i 0.985199 + 0.171415i \(0.0548338\pi\)
0.641049 + 0.767500i \(0.278499\pi\)
\(600\) 19.1699 27.4711i 0.0319499 0.0457852i
\(601\) −1026.03 −1.70721 −0.853603 0.520923i \(-0.825588\pi\)
−0.853603 + 0.520923i \(0.825588\pi\)
\(602\) −1153.17 322.831i −1.91557 0.536264i
\(603\) 400.245 480.111i 0.663756 0.796204i
\(604\) −405.963 703.149i −0.672124 1.16415i
\(605\) 399.900 + 230.883i 0.660992 + 0.381624i
\(606\) −41.8305 + 487.118i −0.0690273 + 0.803826i
\(607\) 302.447 + 523.854i 0.498266 + 0.863022i 0.999998 0.00200136i \(-0.000637054\pi\)
−0.501732 + 0.865023i \(0.667304\pi\)
\(608\) 1211.07i 1.99189i
\(609\) 251.790 + 305.965i 0.413448 + 0.502405i
\(610\) −303.401 −0.497379
\(611\) −90.9456 + 52.5075i −0.148847 + 0.0859369i
\(612\) −104.906 + 38.5642i −0.171416 + 0.0630133i
\(613\) −377.326 + 653.548i −0.615540 + 1.06615i 0.374749 + 0.927126i \(0.377729\pi\)
−0.990289 + 0.139021i \(0.955605\pi\)
\(614\) 413.176 238.548i 0.672926 0.388514i
\(615\) −235.404 + 110.231i −0.382771 + 0.179237i
\(616\) 274.067 70.1668i 0.444914 0.113907i
\(617\) 145.504i 0.235825i −0.993024 0.117912i \(-0.962380\pi\)
0.993024 0.117912i \(-0.0376202\pi\)
\(618\) 203.368 291.432i 0.329074 0.471573i
\(619\) 425.339 736.709i 0.687139 1.19016i −0.285620 0.958343i \(-0.592200\pi\)
0.972759 0.231817i \(-0.0744671\pi\)
\(620\) −155.082 89.5366i −0.250132 0.144414i
\(621\) 46.5577 + 170.472i 0.0749721 + 0.274512i
\(622\) 1361.87 2.18950
\(623\) 1038.50 + 290.728i 1.66694 + 0.466659i
\(624\) 137.048 64.1745i 0.219629 0.102844i
\(625\) −12.5000 21.6506i −0.0200000 0.0346410i
\(626\) 691.149 + 399.035i 1.10407 + 0.637436i
\(627\) −1599.08 137.319i −2.55037 0.219009i
\(628\) 116.155 + 201.187i 0.184960 + 0.320361i
\(629\) 262.865i 0.417909i
\(630\) −375.914 + 29.8765i −0.596689 + 0.0474230i
\(631\) −1034.07 −1.63878 −0.819390 0.573237i \(-0.805687\pi\)
−0.819390 + 0.573237i \(0.805687\pi\)
\(632\) 57.9541 33.4598i 0.0916995 0.0529427i
\(633\) −6.70839 + 78.1195i −0.0105978 + 0.123412i
\(634\) −420.448 + 728.238i −0.663168 + 1.14864i
\(635\) 60.7693 35.0852i 0.0956997 0.0552522i
\(636\) −3.66054 7.81730i −0.00575556 0.0122914i
\(637\) −2.95996 + 132.562i −0.00464672 + 0.208104i
\(638\) 914.090i 1.43274i
\(639\) 84.7673 489.920i 0.132656 0.766698i
\(640\) −78.1608 + 135.379i −0.122126 + 0.211529i
\(641\) −619.639 357.749i −0.966675 0.558110i −0.0684543 0.997654i \(-0.521807\pi\)
−0.898221 + 0.439544i \(0.855140\pi\)
\(642\) 986.546 + 688.433i 1.53668 + 1.07233i
\(643\) 47.5168 0.0738986 0.0369493 0.999317i \(-0.488236\pi\)
0.0369493 + 0.999317i \(0.488236\pi\)
\(644\) 103.696 101.406i 0.161019 0.157463i
\(645\) 181.801 + 388.246i 0.281861 + 0.601932i
\(646\) 155.218 + 268.846i 0.240276 + 0.416170i
\(647\) −790.372 456.321i −1.22159 0.705288i −0.256337 0.966587i \(-0.582516\pi\)
−0.965258 + 0.261299i \(0.915849\pi\)
\(648\) −60.7774 + 170.376i −0.0937923 + 0.262926i
\(649\) −215.780 373.742i −0.332481 0.575874i
\(650\) 36.2187i 0.0557210i
\(651\) −87.2434 524.027i −0.134015 0.804956i
\(652\) −205.133 −0.314621
\(653\) −474.633 + 274.029i −0.726850 + 0.419647i −0.817269 0.576257i \(-0.804513\pi\)
0.0904189 + 0.995904i \(0.471179\pi\)
\(654\) −658.454 56.5437i −1.00681 0.0864583i
\(655\) −0.263910 + 0.457105i −0.000402916 + 0.000697870i
\(656\) 625.546 361.159i 0.953576 0.550547i
\(657\) −171.276 + 205.453i −0.260694 + 0.312713i
\(658\) −704.468 + 180.358i −1.07062 + 0.274101i
\(659\) 682.581i 1.03578i −0.855446 0.517891i \(-0.826717\pi\)
0.855446 0.517891i \(-0.173283\pi\)
\(660\) 315.168 + 219.931i 0.477528 + 0.333229i
\(661\) −300.416 + 520.336i −0.454487 + 0.787195i −0.998659 0.0517791i \(-0.983511\pi\)
0.544171 + 0.838974i \(0.316844\pi\)
\(662\) 336.073 + 194.032i 0.507664 + 0.293100i
\(663\) 18.2245 26.1164i 0.0274880 0.0393912i
\(664\) 175.304 0.264012
\(665\) 114.764 + 448.261i 0.172577 + 0.674077i
\(666\) 1239.98 + 1033.71i 1.86184 + 1.55212i
\(667\) 61.7487 + 106.952i 0.0925768 + 0.160348i
\(668\) 571.410 + 329.904i 0.855405 + 0.493868i
\(669\) −98.3545 + 1145.34i −0.147017 + 1.71202i
\(670\) 207.858 + 360.020i 0.310235 + 0.537343i
\(671\) 917.302i 1.36707i
\(672\) 848.629 141.285i 1.26284 0.210246i
\(673\) −161.729 −0.240310 −0.120155 0.992755i \(-0.538339\pi\)
−0.120155 + 0.992755i \(0.538339\pi\)
\(674\) −434.961 + 251.125i −0.645342 + 0.372588i
\(675\) 95.9174 + 94.9992i 0.142100 + 0.140740i
\(676\) −255.914 + 443.256i −0.378571 + 0.655704i
\(677\) 104.116 60.1113i 0.153790 0.0887907i −0.421130 0.907000i \(-0.638366\pi\)
0.574920 + 0.818210i \(0.305033\pi\)
\(678\) −408.453 + 191.263i −0.602438 + 0.282098i
\(679\) 160.769 + 164.399i 0.236773 + 0.242119i
\(680\) 19.5897i 0.0288084i
\(681\) −411.340 + 589.464i −0.604024 + 0.865586i
\(682\) −612.748 + 1061.31i −0.898458 + 1.55617i
\(683\) −292.871 169.089i −0.428801 0.247569i 0.270034 0.962851i \(-0.412965\pi\)
−0.698836 + 0.715282i \(0.746298\pi\)
\(684\) −829.939 143.598i −1.21336 0.209939i
\(685\) 605.744 0.884298
\(686\) −267.202 + 878.433i −0.389507 + 1.28051i
\(687\) 969.163 453.821i 1.41072 0.660584i
\(688\) −595.650 1031.70i −0.865771 1.49956i
\(689\) 2.12997 + 1.22974i 0.00309139 + 0.00178482i
\(690\) −117.098 10.0556i −0.169708 0.0145734i
\(691\) 165.191 + 286.119i 0.239061 + 0.414065i 0.960445 0.278470i \(-0.0898272\pi\)
−0.721384 + 0.692535i \(0.756494\pi\)
\(692\) 557.030i 0.804956i
\(693\) 90.3286 + 1136.54i 0.130344 + 1.64003i
\(694\) −1596.33 −2.30018
\(695\) −135.939 + 78.4846i −0.195596 + 0.112928i
\(696\) −10.8160 + 125.953i −0.0155402 + 0.180967i
\(697\) 76.0039 131.643i 0.109044 0.188870i
\(698\) −103.759 + 59.9051i −0.148651 + 0.0858239i
\(699\) 75.6732 + 161.605i 0.108259 + 0.231194i
\(700\) 29.8702 106.699i 0.0426717 0.152426i
\(701\) 462.419i 0.659656i 0.944041 + 0.329828i \(0.106991\pi\)
−0.944041 + 0.329828i \(0.893009\pi\)
\(702\) 51.5280 + 188.671i 0.0734018 + 0.268762i
\(703\) 990.442 1715.50i 1.40888 2.44025i
\(704\) −550.111 317.607i −0.781408 0.451146i
\(705\) 213.490 + 148.977i 0.302822 + 0.211316i
\(706\) −1707.82 −2.41901
\(707\) −105.697 412.848i −0.149501 0.583943i
\(708\) −96.0428 205.105i −0.135654 0.289697i
\(709\) 277.738 + 481.056i 0.391732 + 0.678500i 0.992678 0.120790i \(-0.0385427\pi\)
−0.600946 + 0.799290i \(0.705209\pi\)
\(710\) 286.374 + 165.338i 0.403344 + 0.232871i
\(711\) 93.0508 + 253.127i 0.130873 + 0.356015i
\(712\) 172.028 + 297.961i 0.241612 + 0.418484i
\(713\) 165.570i 0.232216i
\(714\) 170.279 140.129i 0.238486 0.196260i
\(715\) −109.503 −0.153152
\(716\) 378.478 218.514i 0.528601 0.305188i
\(717\) 835.773 + 71.7707i 1.16565 + 0.100099i
\(718\) 147.620 255.685i 0.205598 0.356107i
\(719\) −874.330 + 504.795i −1.21604 + 0.702079i −0.964068 0.265657i \(-0.914411\pi\)
−0.251968 + 0.967736i \(0.581078\pi\)
\(720\) −288.149 240.215i −0.400207 0.333632i
\(721\) −83.5081 + 298.297i −0.115823 + 0.413726i
\(722\) 1373.01i 1.90168i
\(723\) −543.123 379.003i −0.751208 0.524209i
\(724\) 348.955 604.407i 0.481982 0.834817i
\(725\) 81.7050 + 47.1724i 0.112697 + 0.0650654i
\(726\) 949.037 1360.00i 1.30721 1.87328i
\(727\) −448.687 −0.617177 −0.308588 0.951196i \(-0.599857\pi\)
−0.308588 + 0.951196i \(0.599857\pi\)
\(728\) −30.2443 + 29.5765i −0.0415444 + 0.0406271i
\(729\) −634.809 358.410i −0.870795 0.491647i
\(730\) −88.9480 154.062i −0.121847 0.211044i
\(731\) −217.115 125.351i −0.297011 0.171479i
\(732\) −41.1871 + 479.625i −0.0562665 + 0.655226i
\(733\) −50.8478 88.0709i −0.0693694 0.120151i 0.829254 0.558871i \(-0.188765\pi\)
−0.898624 + 0.438720i \(0.855432\pi\)
\(734\) 1588.73i 2.16448i
\(735\) 300.720 132.713i 0.409142 0.180562i
\(736\) 268.130 0.364307
\(737\) 1088.48 628.436i 1.47691 0.852695i
\(738\) 322.099 + 876.208i 0.436448 + 1.18727i
\(739\) 94.0310 162.866i 0.127241 0.220388i −0.795366 0.606130i \(-0.792721\pi\)
0.922607 + 0.385742i \(0.126055\pi\)
\(740\) −410.785 + 237.167i −0.555115 + 0.320496i
\(741\) 217.339 101.771i 0.293305 0.137343i
\(742\) 11.9075 + 12.1764i 0.0160479 + 0.0164102i
\(743\) 122.415i 0.164757i 0.996601 + 0.0823786i \(0.0262517\pi\)
−0.996601 + 0.0823786i \(0.973748\pi\)
\(744\) 96.9888 138.988i 0.130361 0.186812i
\(745\) 65.7953 113.961i 0.0883158 0.152967i
\(746\) 426.954 + 246.502i 0.572324 + 0.330431i
\(747\) −120.448 + 696.138i −0.161242 + 0.931912i
\(748\) −224.747 −0.300464
\(749\) −1009.78 282.689i −1.34818 0.377421i
\(750\) −81.3124 + 38.0754i −0.108417 + 0.0507673i
\(751\) 330.331 + 572.150i 0.439855 + 0.761850i 0.997678 0.0681093i \(-0.0216967\pi\)
−0.557823 + 0.829960i \(0.688363\pi\)
\(752\) −626.499 361.709i −0.833110 0.480996i
\(753\) 865.934 + 74.3607i 1.14998 + 0.0987526i
\(754\) 68.3408 + 118.370i 0.0906377 + 0.156989i
\(755\) 573.492i 0.759591i
\(756\) −3.80112 + 598.312i −0.00502793 + 0.791418i
\(757\) 225.258 0.297567 0.148783 0.988870i \(-0.452464\pi\)
0.148783 + 0.988870i \(0.452464\pi\)
\(758\) 1127.97 651.235i 1.48809 0.859149i
\(759\) −30.4022 + 354.035i −0.0400556 + 0.466450i
\(760\) −73.8114 + 127.845i −0.0971203 + 0.168217i
\(761\) −1106.40 + 638.781i −1.45388 + 0.839396i −0.998698 0.0510038i \(-0.983758\pi\)
−0.455179 + 0.890400i \(0.650425\pi\)
\(762\) −106.871 228.229i −0.140250 0.299513i
\(763\) 558.060 142.875i 0.731403 0.187254i
\(764\) 603.134i 0.789442i
\(765\) −77.7912 13.4596i −0.101688 0.0175943i
\(766\) 799.138 1384.15i 1.04326 1.80698i