Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [105,3,Mod(11,105)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(105, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 0, 4]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("105.11");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 105 = 3 \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 105.t (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.86104277578\) |
Analytic rank: | \(0\) |
Dimension: | \(36\) |
Relative dimension: | \(18\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11.1 | −3.31814 | + | 1.91573i | 1.84164 | + | 2.36819i | 5.34002 | − | 9.24919i | −1.93649 | + | 1.11803i | −10.6476 | − | 4.32991i | −5.86414 | + | 3.82255i | 25.5943i | −2.21669 | + | 8.72274i | 4.28370 | − | 7.41958i | ||
11.2 | −2.61597 | + | 1.51033i | −0.469377 | − | 2.96305i | 2.56220 | − | 4.43785i | 1.93649 | − | 1.11803i | 5.70307 | + | 7.04234i | −4.99419 | + | 4.90490i | 3.39641i | −8.55937 | + | 2.78158i | −3.37720 | + | 5.84948i | ||
11.3 | −2.60397 | + | 1.50340i | 2.88780 | − | 0.812762i | 2.52044 | − | 4.36553i | 1.93649 | − | 1.11803i | −6.29785 | + | 6.45794i | −0.494553 | − | 6.98251i | 3.12973i | 7.67884 | − | 4.69420i | −3.36171 | + | 5.82265i | ||
11.4 | −2.46897 | + | 1.42546i | −2.92531 | − | 0.665249i | 2.06389 | − | 3.57476i | −1.93649 | + | 1.11803i | 8.17081 | − | 2.52744i | −5.93505 | − | 3.71149i | 0.364297i | 8.11489 | + | 3.89212i | 3.18743 | − | 5.52080i | ||
11.5 | −2.31825 | + | 1.33844i | 2.46021 | − | 1.71679i | 1.58287 | − | 2.74161i | −1.93649 | + | 1.11803i | −3.40557 | + | 7.27281i | 4.89419 | + | 5.00469i | − | 2.23323i | 3.10528 | − | 8.44732i | 2.99285 | − | 5.18377i | |
11.6 | −1.50527 | + | 0.869067i | −1.65926 | + | 2.49937i | −0.489445 | + | 0.847743i | −1.93649 | + | 1.11803i | 0.325501 | − | 5.20423i | 2.93407 | + | 6.35541i | − | 8.65398i | −3.49374 | − | 8.29420i | 1.94329 | − | 3.36588i | |
11.7 | −0.987174 | + | 0.569945i | −0.202464 | − | 2.99316i | −1.35032 | + | 2.33883i | −1.93649 | + | 1.11803i | 1.90581 | + | 2.83938i | 2.61061 | − | 6.49498i | − | 7.63801i | −8.91802 | + | 1.21201i | 1.27444 | − | 2.20739i | |
11.8 | −0.860118 | + | 0.496589i | 2.51213 | + | 1.63987i | −1.50680 | + | 2.60985i | 1.93649 | − | 1.11803i | −2.97507 | − | 0.162987i | −1.66850 | + | 6.79824i | − | 6.96575i | 3.62163 | + | 8.23916i | −1.11041 | + | 1.92328i | |
11.9 | −0.644768 | + | 0.372257i | −2.67627 | + | 1.35556i | −1.72285 | + | 2.98406i | 1.93649 | − | 1.11803i | 1.22096 | − | 1.87029i | −5.98242 | − | 3.63464i | − | 5.54343i | 5.32489 | − | 7.25573i | −0.832392 | + | 1.44175i | |
11.10 | 0.644768 | − | 0.372257i | 0.164184 | + | 2.99550i | −1.72285 | + | 2.98406i | −1.93649 | + | 1.11803i | 1.22096 | + | 1.87029i | −5.98242 | − | 3.63464i | 5.54343i | −8.94609 | + | 0.983626i | −0.832392 | + | 1.44175i | ||
11.11 | 0.860118 | − | 0.496589i | −2.67624 | − | 1.35563i | −1.50680 | + | 2.60985i | −1.93649 | + | 1.11803i | −2.97507 | + | 0.162987i | −1.66850 | + | 6.79824i | 6.96575i | 5.32451 | + | 7.25600i | −1.11041 | + | 1.92328i | ||
11.12 | 0.987174 | − | 0.569945i | 2.69338 | − | 1.32124i | −1.35032 | + | 2.33883i | 1.93649 | − | 1.11803i | 1.90581 | − | 2.83938i | 2.61061 | − | 6.49498i | 7.63801i | 5.50864 | − | 7.11722i | 1.27444 | − | 2.20739i | ||
11.13 | 1.50527 | − | 0.869067i | −1.33489 | + | 2.68664i | −0.489445 | + | 0.847743i | 1.93649 | − | 1.11803i | 0.325501 | + | 5.20423i | 2.93407 | + | 6.35541i | 8.65398i | −5.43612 | − | 7.17277i | 1.94329 | − | 3.36588i | ||
11.14 | 2.31825 | − | 1.33844i | 0.256676 | − | 2.98900i | 1.58287 | − | 2.74161i | 1.93649 | − | 1.11803i | −3.40557 | − | 7.27281i | 4.89419 | + | 5.00469i | 2.23323i | −8.86824 | − | 1.53441i | 2.99285 | − | 5.18377i | ||
11.15 | 2.46897 | − | 1.42546i | 2.03878 | + | 2.20077i | 2.06389 | − | 3.57476i | 1.93649 | − | 1.11803i | 8.17081 | + | 2.52744i | −5.93505 | − | 3.71149i | − | 0.364297i | −0.686770 | + | 8.97376i | 3.18743 | − | 5.52080i | |
11.16 | 2.60397 | − | 1.50340i | −0.740030 | − | 2.90729i | 2.52044 | − | 4.36553i | −1.93649 | + | 1.11803i | −6.29785 | − | 6.45794i | −0.494553 | − | 6.98251i | − | 3.12973i | −7.90471 | + | 4.30297i | −3.36171 | + | 5.82265i | |
11.17 | 2.61597 | − | 1.51033i | 2.80077 | − | 1.07503i | 2.56220 | − | 4.43785i | −1.93649 | + | 1.11803i | 5.70307 | − | 7.04234i | −4.99419 | + | 4.90490i | − | 3.39641i | 6.68860 | − | 6.02184i | −3.37720 | + | 5.84948i | |
11.18 | 3.31814 | − | 1.91573i | −2.97174 | − | 0.410813i | 5.34002 | − | 9.24919i | 1.93649 | − | 1.11803i | −10.6476 | + | 4.32991i | −5.86414 | + | 3.82255i | − | 25.5943i | 8.66247 | + | 2.44166i | 4.28370 | − | 7.41958i | |
86.1 | −3.31814 | − | 1.91573i | 1.84164 | − | 2.36819i | 5.34002 | + | 9.24919i | −1.93649 | − | 1.11803i | −10.6476 | + | 4.32991i | −5.86414 | − | 3.82255i | − | 25.5943i | −2.21669 | − | 8.72274i | 4.28370 | + | 7.41958i | |
86.2 | −2.61597 | − | 1.51033i | −0.469377 | + | 2.96305i | 2.56220 | + | 4.43785i | 1.93649 | + | 1.11803i | 5.70307 | − | 7.04234i | −4.99419 | − | 4.90490i | − | 3.39641i | −8.55937 | − | 2.78158i | −3.37720 | − | 5.84948i | |
See all 36 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
7.c | even | 3 | 1 | inner |
21.h | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 105.3.t.b | ✓ | 36 |
3.b | odd | 2 | 1 | inner | 105.3.t.b | ✓ | 36 |
7.c | even | 3 | 1 | inner | 105.3.t.b | ✓ | 36 |
21.h | odd | 6 | 1 | inner | 105.3.t.b | ✓ | 36 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
105.3.t.b | ✓ | 36 | 1.a | even | 1 | 1 | trivial |
105.3.t.b | ✓ | 36 | 3.b | odd | 2 | 1 | inner |
105.3.t.b | ✓ | 36 | 7.c | even | 3 | 1 | inner |
105.3.t.b | ✓ | 36 | 21.h | odd | 6 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{36} - 54 T_{2}^{34} + 1713 T_{2}^{32} - 36282 T_{2}^{30} + 573854 T_{2}^{28} - 6959778 T_{2}^{26} + \cdots + 22915904400 \)
acting on \(S_{3}^{\mathrm{new}}(105, [\chi])\).