Properties

Label 105.3.t.a
Level $105$
Weight $3$
Character orbit 105.t
Analytic conductor $2.861$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [105,3,Mod(11,105)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(105, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 4]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("105.11");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.t (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.3317760000.8
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 4x^{6} + 7x^{4} + 36x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{5} - \beta_{4} + \beta_{2}) q^{2} + (\beta_{7} - \beta_{6} + \beta_{5} + \cdots - 1) q^{3} + ( - 4 \beta_{7} - 2 \beta_{5} + \cdots + 3) q^{4} - \beta_{2} q^{5} + ( - \beta_{7} - 2 \beta_{6} - \beta_{5} + \cdots + 4) q^{6}+ \cdots + ( - 18 \beta_{7} + 18 \beta_{6} + \cdots - 9) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} + 12 q^{4} + 32 q^{6} + 56 q^{7} + 8 q^{9} - 20 q^{10} + 52 q^{12} + 8 q^{13} - 40 q^{15} - 84 q^{16} - 52 q^{18} + 36 q^{19} - 28 q^{21} - 72 q^{22} + 24 q^{24} + 20 q^{25} + 56 q^{27} + 84 q^{28}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 4x^{6} + 7x^{4} + 36x^{2} + 81 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{6} + 14\nu^{4} - 7\nu^{2} - 36 ) / 63 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 4\nu^{6} + 7\nu^{4} + 28\nu^{2} + 144 ) / 63 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -4\nu^{7} - 7\nu^{5} + 35\nu^{3} - 81\nu ) / 189 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -5\nu^{7} + 7\nu^{5} - 35\nu^{3} - 180\nu ) / 189 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -8\nu^{6} - 14\nu^{4} + 7\nu^{2} - 162 ) / 63 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -\nu^{7} - 4\nu^{5} - 7\nu^{3} - 36\nu ) / 27 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{6} + 2\beta_{3} - 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{7} - \beta_{5} + 3\beta_{4} - \beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{3} + 4\beta_{2} \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -5\beta_{7} + 7\beta_{5} \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -7\beta_{6} - 7\beta_{2} - 22 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -21\beta_{5} - 21\beta_{4} - 29\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(1\) \(-\beta_{3}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
11.1
−1.40294 1.01575i
1.40294 + 1.01575i
0.178197 + 1.72286i
−0.178197 1.72286i
−1.40294 + 1.01575i
1.40294 1.01575i
0.178197 1.72286i
−0.178197 + 1.72286i
−3.16124 + 1.82514i −2.61469 + 1.47085i 4.66228 8.07530i 1.93649 1.11803i 5.58114 9.42188i 7.00000 19.4361i 4.67319 7.69164i −4.08114 + 7.06874i
11.2 −0.711747 + 0.410927i −2.25829 1.97487i −1.66228 + 2.87915i 1.93649 1.11803i 2.41886 + 0.477612i 7.00000 6.01972i 1.19979 + 8.91967i −0.918861 + 1.59151i
11.3 0.711747 0.410927i 2.83943 + 0.968306i −1.66228 + 2.87915i −1.93649 + 1.11803i 2.41886 0.477612i 7.00000 6.01972i 7.12477 + 5.49888i −0.918861 + 1.59151i
11.4 3.16124 1.82514i 0.0335498 + 2.99981i 4.66228 8.07530i −1.93649 + 1.11803i 5.58114 + 9.42188i 7.00000 19.4361i −8.99775 + 0.201286i −4.08114 + 7.06874i
86.1 −3.16124 1.82514i −2.61469 1.47085i 4.66228 + 8.07530i 1.93649 + 1.11803i 5.58114 + 9.42188i 7.00000 19.4361i 4.67319 + 7.69164i −4.08114 7.06874i
86.2 −0.711747 0.410927i −2.25829 + 1.97487i −1.66228 2.87915i 1.93649 + 1.11803i 2.41886 0.477612i 7.00000 6.01972i 1.19979 8.91967i −0.918861 1.59151i
86.3 0.711747 + 0.410927i 2.83943 0.968306i −1.66228 2.87915i −1.93649 1.11803i 2.41886 + 0.477612i 7.00000 6.01972i 7.12477 5.49888i −0.918861 1.59151i
86.4 3.16124 + 1.82514i 0.0335498 2.99981i 4.66228 + 8.07530i −1.93649 1.11803i 5.58114 9.42188i 7.00000 19.4361i −8.99775 0.201286i −4.08114 7.06874i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 11.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.c even 3 1 inner
21.h odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 105.3.t.a 8
3.b odd 2 1 inner 105.3.t.a 8
7.c even 3 1 inner 105.3.t.a 8
21.h odd 6 1 inner 105.3.t.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.3.t.a 8 1.a even 1 1 trivial
105.3.t.a 8 3.b odd 2 1 inner
105.3.t.a 8 7.c even 3 1 inner
105.3.t.a 8 21.h odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{8} - 14T_{2}^{6} + 187T_{2}^{4} - 126T_{2}^{2} + 81 \) acting on \(S_{3}^{\mathrm{new}}(105, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - 14 T^{6} + \cdots + 81 \) Copy content Toggle raw display
$3$ \( T^{8} + 4 T^{7} + \cdots + 6561 \) Copy content Toggle raw display
$5$ \( (T^{4} - 5 T^{2} + 25)^{2} \) Copy content Toggle raw display
$7$ \( (T - 7)^{8} \) Copy content Toggle raw display
$11$ \( T^{8} - 126 T^{6} + \cdots + 531441 \) Copy content Toggle raw display
$13$ \( (T^{2} - 2 T - 249)^{4} \) Copy content Toggle raw display
$17$ \( T^{8} + \cdots + 10226063376 \) Copy content Toggle raw display
$19$ \( (T^{4} - 18 T^{3} + \cdots + 167281)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} + \cdots + 66074188401 \) Copy content Toggle raw display
$29$ \( (T^{4} + 740 T^{2} + 72900)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} - 12 T^{3} + \cdots + 206116)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + 6 T^{3} + \cdots + 2825761)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 405)^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} - 12 T - 214)^{4} \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots + 66074188401 \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 3154956561 \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots + 20\!\cdots\!96 \) Copy content Toggle raw display
$61$ \( (T^{4} - 132 T^{3} + \cdots + 5740816)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} - 144 T^{3} + \cdots + 25240576)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} + 2340 T^{2} + 72900)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} + 144 T^{3} + \cdots + 22033636)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} + 172 T^{3} + \cdots + 53377636)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} + 13160 T^{2} + 32400)^{2} \) Copy content Toggle raw display
$89$ \( T^{8} - 2736 T^{6} + \cdots + 26873856 \) Copy content Toggle raw display
$97$ \( (T^{2} + 112 T + 2886)^{4} \) Copy content Toggle raw display
show more
show less