Properties

Label 105.3.o.b.74.6
Level 105
Weight 3
Character 105.74
Analytic conductor 2.861
Analytic rank 0
Dimension 40
CM no
Inner twists 8

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.o (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 74.6
Character \(\chi\) \(=\) 105.74
Dual form 105.3.o.b.44.6

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.949639 - 1.64482i) q^{2} +(0.107903 + 2.99806i) q^{3} +(0.196373 - 0.340128i) q^{4} +(-0.399822 + 4.98399i) q^{5} +(4.82880 - 3.02455i) q^{6} +(-4.60961 + 5.26797i) q^{7} -8.34304 q^{8} +(-8.97671 + 0.647002i) q^{9} +O(q^{10})\) \(q+(-0.949639 - 1.64482i) q^{2} +(0.107903 + 2.99806i) q^{3} +(0.196373 - 0.340128i) q^{4} +(-0.399822 + 4.98399i) q^{5} +(4.82880 - 3.02455i) q^{6} +(-4.60961 + 5.26797i) q^{7} -8.34304 q^{8} +(-8.97671 + 0.647002i) q^{9} +(8.57746 - 4.07535i) q^{10} +(8.35863 + 4.82586i) q^{11} +(1.04091 + 0.552037i) q^{12} +16.9521i q^{13} +(13.0423 + 2.57932i) q^{14} +(-14.9854 - 0.660900i) q^{15} +(7.13738 + 12.3623i) q^{16} +(12.1835 - 21.1024i) q^{17} +(9.58884 + 14.1507i) q^{18} +(6.95261 + 12.0423i) q^{19} +(1.61668 + 1.11471i) q^{20} +(-16.2911 - 13.2514i) q^{21} -18.3313i q^{22} +(0.354602 + 0.614188i) q^{23} +(-0.900243 - 25.0129i) q^{24} +(-24.6803 - 3.98542i) q^{25} +(27.8832 - 16.0984i) q^{26} +(-2.90837 - 26.8429i) q^{27} +(0.886581 + 2.60234i) q^{28} +16.5872i q^{29} +(13.1437 + 25.2760i) q^{30} +(7.12320 - 12.3377i) q^{31} +(-3.13021 + 5.42169i) q^{32} +(-13.5663 + 25.5804i) q^{33} -46.2795 q^{34} +(-24.4125 - 25.0805i) q^{35} +(-1.54272 + 3.18028i) q^{36} +(-1.08578 + 0.626873i) q^{37} +(13.2049 - 22.8716i) q^{38} +(-50.8234 + 1.82919i) q^{39} +(3.33573 - 41.5816i) q^{40} -24.1024i q^{41} +(-6.32563 + 39.3800i) q^{42} -57.6214i q^{43} +(3.28282 - 1.89534i) q^{44} +(0.364437 - 44.9985i) q^{45} +(0.673487 - 1.16651i) q^{46} +(16.0840 + 27.8583i) q^{47} +(-36.2928 + 22.7322i) q^{48} +(-6.50303 - 48.5666i) q^{49} +(16.8821 + 44.3794i) q^{50} +(64.5807 + 34.2497i) q^{51} +(5.76588 + 3.32893i) q^{52} +(-8.67882 + 15.0322i) q^{53} +(-41.3899 + 30.2748i) q^{54} +(-27.3940 + 39.7298i) q^{55} +(38.4582 - 43.9509i) q^{56} +(-35.3532 + 22.1437i) q^{57} +(27.2829 - 15.7518i) q^{58} +(75.8739 + 43.8058i) q^{59} +(-3.16752 + 4.96718i) q^{60} +(52.2391 + 90.4808i) q^{61} -27.0578 q^{62} +(37.9707 - 50.2715i) q^{63} +68.9894 q^{64} +(-84.4891 - 6.77782i) q^{65} +(54.9583 - 1.97801i) q^{66} +(86.1690 + 49.7497i) q^{67} +(-4.78500 - 8.28786i) q^{68} +(-1.80311 + 1.12939i) q^{69} +(-18.0699 + 63.9716i) q^{70} -50.7518i q^{71} +(74.8931 - 5.39796i) q^{72} +(-81.5039 - 47.0563i) q^{73} +(2.06219 + 1.19061i) q^{74} +(9.28542 - 74.4230i) q^{75} +5.46122 q^{76} +(-63.9525 + 21.7877i) q^{77} +(51.2726 + 81.8584i) q^{78} +(-3.71265 - 6.43050i) q^{79} +(-64.4673 + 30.6299i) q^{80} +(80.1628 - 11.6159i) q^{81} +(-39.6441 + 22.8885i) q^{82} +69.6382 q^{83} +(-7.70631 + 2.93883i) q^{84} +(100.303 + 69.1594i) q^{85} +(-94.7770 + 54.7196i) q^{86} +(-49.7293 + 1.78981i) q^{87} +(-69.7364 - 40.2623i) q^{88} +(-78.3272 + 45.2223i) q^{89} +(-74.3607 + 42.1329i) q^{90} +(-89.3032 - 78.1425i) q^{91} +0.278537 q^{92} +(37.7579 + 20.0245i) q^{93} +(30.5480 - 52.9107i) q^{94} +(-62.7984 + 29.8370i) q^{95} +(-16.5923 - 8.79955i) q^{96} +90.4517i q^{97} +(-73.7078 + 56.8170i) q^{98} +(-78.1554 - 37.9123i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40q - 44q^{4} + 80q^{6} + 12q^{9} + O(q^{10}) \) \( 40q - 44q^{4} + 80q^{6} + 12q^{9} + 62q^{10} + 84q^{15} - 116q^{16} - 56q^{19} + 36q^{21} - 12q^{24} - 6q^{25} - 20q^{30} - 444q^{31} + 256q^{34} - 688q^{36} + 168q^{39} + 54q^{40} - 40q^{45} + 304q^{46} + 156q^{49} + 156q^{51} - 140q^{54} - 500q^{55} - 130q^{60} + 288q^{61} + 472q^{64} + 340q^{66} - 272q^{69} + 710q^{70} - 524q^{75} + 400q^{76} - 340q^{79} + 496q^{84} + 896q^{85} + 1356q^{90} - 656q^{91} - 560q^{94} + 472q^{96} - 336q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.949639 1.64482i −0.474819 0.822411i 0.524765 0.851247i \(-0.324153\pi\)
−0.999584 + 0.0288361i \(0.990820\pi\)
\(3\) 0.107903 + 2.99806i 0.0359678 + 0.999353i
\(4\) 0.196373 0.340128i 0.0490932 0.0850320i
\(5\) −0.399822 + 4.98399i −0.0799644 + 0.996798i
\(6\) 4.82880 3.02455i 0.804801 0.504092i
\(7\) −4.60961 + 5.26797i −0.658515 + 0.752567i
\(8\) −8.34304 −1.04288
\(9\) −8.97671 + 0.647002i −0.997413 + 0.0718891i
\(10\) 8.57746 4.07535i 0.857746 0.407535i
\(11\) 8.35863 + 4.82586i 0.759876 + 0.438714i 0.829251 0.558876i \(-0.188767\pi\)
−0.0693754 + 0.997591i \(0.522101\pi\)
\(12\) 1.04091 + 0.552037i 0.0867427 + 0.0460031i
\(13\) 16.9521i 1.30401i 0.758216 + 0.652004i \(0.226071\pi\)
−0.758216 + 0.652004i \(0.773929\pi\)
\(14\) 13.0423 + 2.57932i 0.931596 + 0.184237i
\(15\) −14.9854 0.660900i −0.999029 0.0440600i
\(16\) 7.13738 + 12.3623i 0.446086 + 0.772644i
\(17\) 12.1835 21.1024i 0.716674 1.24131i −0.245637 0.969362i \(-0.578997\pi\)
0.962311 0.271953i \(-0.0876696\pi\)
\(18\) 9.58884 + 14.1507i 0.532713 + 0.786149i
\(19\) 6.95261 + 12.0423i 0.365927 + 0.633804i 0.988924 0.148420i \(-0.0474187\pi\)
−0.622997 + 0.782224i \(0.714085\pi\)
\(20\) 1.61668 + 1.11471i 0.0808340 + 0.0557355i
\(21\) −16.2911 13.2514i −0.775766 0.631021i
\(22\) 18.3313i 0.833240i
\(23\) 0.354602 + 0.614188i 0.0154175 + 0.0267038i 0.873631 0.486589i \(-0.161759\pi\)
−0.858214 + 0.513292i \(0.828426\pi\)
\(24\) −0.900243 25.0129i −0.0375101 1.04221i
\(25\) −24.6803 3.98542i −0.987211 0.159417i
\(26\) 27.8832 16.0984i 1.07243 0.619168i
\(27\) −2.90837 26.8429i −0.107717 0.994182i
\(28\) 0.886581 + 2.60234i 0.0316636 + 0.0929408i
\(29\) 16.5872i 0.571971i 0.958234 + 0.285986i \(0.0923209\pi\)
−0.958234 + 0.285986i \(0.907679\pi\)
\(30\) 13.1437 + 25.2760i 0.438123 + 0.842533i
\(31\) 7.12320 12.3377i 0.229781 0.397992i −0.727962 0.685617i \(-0.759532\pi\)
0.957743 + 0.287625i \(0.0928658\pi\)
\(32\) −3.13021 + 5.42169i −0.0978192 + 0.169428i
\(33\) −13.5663 + 25.5804i −0.411100 + 0.775164i
\(34\) −46.2795 −1.36116
\(35\) −24.4125 25.0805i −0.697500 0.716585i
\(36\) −1.54272 + 3.18028i −0.0428533 + 0.0883412i
\(37\) −1.08578 + 0.626873i −0.0293453 + 0.0169425i −0.514601 0.857430i \(-0.672060\pi\)
0.485256 + 0.874372i \(0.338727\pi\)
\(38\) 13.2049 22.8716i 0.347498 0.601885i
\(39\) −50.8234 + 1.82919i −1.30316 + 0.0469023i
\(40\) 3.33573 41.5816i 0.0833933 1.03954i
\(41\) 24.1024i 0.587862i −0.955827 0.293931i \(-0.905036\pi\)
0.955827 0.293931i \(-0.0949637\pi\)
\(42\) −6.32563 + 39.3800i −0.150610 + 0.937619i
\(43\) 57.6214i 1.34003i −0.742346 0.670017i \(-0.766287\pi\)
0.742346 0.670017i \(-0.233713\pi\)
\(44\) 3.28282 1.89534i 0.0746095 0.0430758i
\(45\) 0.364437 44.9985i 0.00809860 0.999967i
\(46\) 0.673487 1.16651i 0.0146410 0.0253590i
\(47\) 16.0840 + 27.8583i 0.342213 + 0.592730i 0.984843 0.173446i \(-0.0554903\pi\)
−0.642630 + 0.766176i \(0.722157\pi\)
\(48\) −36.2928 + 22.7322i −0.756100 + 0.473588i
\(49\) −6.50303 48.5666i −0.132715 0.991154i
\(50\) 16.8821 + 44.3794i 0.337641 + 0.887588i
\(51\) 64.5807 + 34.2497i 1.26629 + 0.671562i
\(52\) 5.76588 + 3.32893i 0.110882 + 0.0640180i
\(53\) −8.67882 + 15.0322i −0.163751 + 0.283625i −0.936211 0.351438i \(-0.885693\pi\)
0.772460 + 0.635064i \(0.219026\pi\)
\(54\) −41.3899 + 30.2748i −0.766480 + 0.560645i
\(55\) −27.3940 + 39.7298i −0.498073 + 0.722361i
\(56\) 38.4582 43.9509i 0.686753 0.784838i
\(57\) −35.3532 + 22.1437i −0.620232 + 0.388487i
\(58\) 27.2829 15.7518i 0.470395 0.271583i
\(59\) 75.8739 + 43.8058i 1.28600 + 0.742471i 0.977938 0.208896i \(-0.0669870\pi\)
0.308060 + 0.951367i \(0.400320\pi\)
\(60\) −3.16752 + 4.96718i −0.0527921 + 0.0827863i
\(61\) 52.2391 + 90.4808i 0.856379 + 1.48329i 0.875359 + 0.483473i \(0.160625\pi\)
−0.0189801 + 0.999820i \(0.506042\pi\)
\(62\) −27.0578 −0.436417
\(63\) 37.9707 50.2715i 0.602710 0.797960i
\(64\) 68.9894 1.07796
\(65\) −84.4891 6.77782i −1.29983 0.104274i
\(66\) 54.9583 1.97801i 0.832701 0.0299698i
\(67\) 86.1690 + 49.7497i 1.28610 + 0.742533i 0.977957 0.208806i \(-0.0669577\pi\)
0.308147 + 0.951339i \(0.400291\pi\)
\(68\) −4.78500 8.28786i −0.0703676 0.121880i
\(69\) −1.80311 + 1.12939i −0.0261320 + 0.0163680i
\(70\) −18.0699 + 63.9716i −0.258141 + 0.913880i
\(71\) 50.7518i 0.714814i −0.933949 0.357407i \(-0.883661\pi\)
0.933949 0.357407i \(-0.116339\pi\)
\(72\) 74.8931 5.39796i 1.04018 0.0749717i
\(73\) −81.5039 47.0563i −1.11649 0.644607i −0.175988 0.984392i \(-0.556312\pi\)
−0.940503 + 0.339786i \(0.889645\pi\)
\(74\) 2.06219 + 1.19061i 0.0278674 + 0.0160893i
\(75\) 9.28542 74.4230i 0.123806 0.992306i
\(76\) 5.46122 0.0718582
\(77\) −63.9525 + 21.7877i −0.830552 + 0.282957i
\(78\) 51.2726 + 81.8584i 0.657340 + 1.04947i
\(79\) −3.71265 6.43050i −0.0469956 0.0813987i 0.841571 0.540147i \(-0.181631\pi\)
−0.888566 + 0.458748i \(0.848298\pi\)
\(80\) −64.4673 + 30.6299i −0.805841 + 0.382874i
\(81\) 80.1628 11.6159i 0.989664 0.143406i
\(82\) −39.6441 + 22.8885i −0.483465 + 0.279128i
\(83\) 69.6382 0.839015 0.419508 0.907752i \(-0.362203\pi\)
0.419508 + 0.907752i \(0.362203\pi\)
\(84\) −7.70631 + 2.93883i −0.0917418 + 0.0349860i
\(85\) 100.303 + 69.1594i 1.18003 + 0.813640i
\(86\) −94.7770 + 54.7196i −1.10206 + 0.636274i
\(87\) −49.7293 + 1.78981i −0.571601 + 0.0205726i
\(88\) −69.7364 40.2623i −0.792459 0.457527i
\(89\) −78.3272 + 45.2223i −0.880081 + 0.508115i −0.870685 0.491841i \(-0.836324\pi\)
−0.00939614 + 0.999956i \(0.502991\pi\)
\(90\) −74.3607 + 42.1329i −0.826230 + 0.468143i
\(91\) −89.3032 78.1425i −0.981354 0.858709i
\(92\) 0.278537 0.00302757
\(93\) 37.7579 + 20.0245i 0.405999 + 0.215317i
\(94\) 30.5480 52.9107i 0.324979 0.562879i
\(95\) −62.7984 + 29.8370i −0.661036 + 0.314073i
\(96\) −16.5923 8.79955i −0.172837 0.0916620i
\(97\) 90.4517i 0.932492i 0.884655 + 0.466246i \(0.154394\pi\)
−0.884655 + 0.466246i \(0.845606\pi\)
\(98\) −73.7078 + 56.8170i −0.752121 + 0.579765i
\(99\) −78.1554 37.9123i −0.789448 0.382953i
\(100\) −6.20209 + 7.61183i −0.0620209 + 0.0761183i
\(101\) −47.1698 27.2335i −0.467028 0.269638i 0.247967 0.968768i \(-0.420238\pi\)
−0.714995 + 0.699130i \(0.753571\pi\)
\(102\) −4.99372 138.749i −0.0489580 1.36028i
\(103\) 94.7932 54.7289i 0.920322 0.531348i 0.0365842 0.999331i \(-0.488352\pi\)
0.883738 + 0.467982i \(0.155019\pi\)
\(104\) 141.432i 1.35992i
\(105\) 72.5586 75.8963i 0.691034 0.722822i
\(106\) 32.9670 0.311009
\(107\) 39.8017 + 68.9385i 0.371978 + 0.644285i 0.989870 0.141978i \(-0.0453462\pi\)
−0.617892 + 0.786263i \(0.712013\pi\)
\(108\) −9.70114 4.28200i −0.0898254 0.0396482i
\(109\) −70.7849 + 122.603i −0.649402 + 1.12480i 0.333864 + 0.942621i \(0.391648\pi\)
−0.983266 + 0.182176i \(0.941686\pi\)
\(110\) 91.3629 + 7.32925i 0.830572 + 0.0666295i
\(111\) −1.99656 3.18758i −0.0179870 0.0287169i
\(112\) −98.0248 19.3859i −0.875222 0.173088i
\(113\) 99.6031 0.881443 0.440722 0.897644i \(-0.354723\pi\)
0.440722 + 0.897644i \(0.354723\pi\)
\(114\) 69.9953 + 37.1213i 0.613994 + 0.325625i
\(115\) −3.20288 + 1.52176i −0.0278512 + 0.0132327i
\(116\) 5.64176 + 3.25727i 0.0486358 + 0.0280799i
\(117\) −10.9680 152.174i −0.0937439 1.30063i
\(118\) 166.399i 1.41016i
\(119\) 55.0057 + 161.456i 0.462232 + 1.35677i
\(120\) 125.024 + 5.51392i 1.04187 + 0.0459493i
\(121\) −13.9222 24.1139i −0.115059 0.199288i
\(122\) 99.2166 171.848i 0.813251 1.40859i
\(123\) 72.2603 2.60073i 0.587482 0.0211441i
\(124\) −2.79761 4.84560i −0.0225613 0.0390774i
\(125\) 29.7310 121.413i 0.237848 0.971302i
\(126\) −118.746 14.7154i −0.942430 0.116789i
\(127\) 89.2383i 0.702663i −0.936251 0.351332i \(-0.885729\pi\)
0.936251 0.351332i \(-0.114271\pi\)
\(128\) −52.9941 91.7885i −0.414016 0.717097i
\(129\) 172.752 6.21755i 1.33917 0.0481981i
\(130\) 69.0858 + 145.406i 0.531429 + 1.11851i
\(131\) −96.9674 + 55.9841i −0.740209 + 0.427360i −0.822145 0.569278i \(-0.807223\pi\)
0.0819364 + 0.996638i \(0.473890\pi\)
\(132\) 6.03656 + 9.63757i 0.0457315 + 0.0730119i
\(133\) −95.4872 18.8840i −0.717949 0.141985i
\(134\) 188.977i 1.41028i
\(135\) 134.948 3.76289i 0.999611 0.0278733i
\(136\) −101.647 + 176.058i −0.747405 + 1.29454i
\(137\) −44.2662 + 76.6714i −0.323111 + 0.559645i −0.981128 0.193358i \(-0.938062\pi\)
0.658017 + 0.753003i \(0.271395\pi\)
\(138\) 3.56995 + 1.89328i 0.0258692 + 0.0137194i
\(139\) −5.87121 −0.0422389 −0.0211195 0.999777i \(-0.506723\pi\)
−0.0211195 + 0.999777i \(0.506723\pi\)
\(140\) −13.3245 + 3.37824i −0.0951752 + 0.0241303i
\(141\) −81.7853 + 51.2268i −0.580038 + 0.363311i
\(142\) −83.4777 + 48.1959i −0.587871 + 0.339408i
\(143\) −81.8085 + 141.696i −0.572087 + 0.990884i
\(144\) −72.0687 106.355i −0.500477 0.738577i
\(145\) −82.6702 6.63191i −0.570139 0.0457373i
\(146\) 178.746i 1.22429i
\(147\) 144.904 24.7370i 0.985739 0.168279i
\(148\) 0.492404i 0.00332705i
\(149\) 4.98359 2.87728i 0.0334469 0.0193106i −0.483183 0.875519i \(-0.660520\pi\)
0.516630 + 0.856209i \(0.327186\pi\)
\(150\) −131.230 + 55.4021i −0.874869 + 0.369347i
\(151\) 131.443 227.666i 0.870482 1.50772i 0.00898406 0.999960i \(-0.497140\pi\)
0.861498 0.507760i \(-0.169526\pi\)
\(152\) −58.0059 100.469i −0.381618 0.660982i
\(153\) −95.7141 + 197.313i −0.625582 + 1.28962i
\(154\) 96.5687 + 84.5001i 0.627069 + 0.548702i
\(155\) 58.6431 + 40.4348i 0.378343 + 0.260870i
\(156\) −9.35818 + 17.6457i −0.0599883 + 0.113113i
\(157\) 135.602 + 78.2900i 0.863709 + 0.498662i 0.865252 0.501336i \(-0.167158\pi\)
−0.00154383 + 0.999999i \(0.500491\pi\)
\(158\) −7.05135 + 12.2133i −0.0446288 + 0.0772994i
\(159\) −46.0037 24.3976i −0.289332 0.153444i
\(160\) −25.7701 17.7687i −0.161063 0.111054i
\(161\) −4.87010 0.963135i −0.0302491 0.00598221i
\(162\) −95.2318 120.823i −0.587850 0.745819i
\(163\) −2.59424 + 1.49779i −0.0159156 + 0.00918887i −0.507937 0.861394i \(-0.669592\pi\)
0.492021 + 0.870583i \(0.336258\pi\)
\(164\) −8.19788 4.73305i −0.0499871 0.0288601i
\(165\) −122.068 77.8418i −0.739808 0.471769i
\(166\) −66.1312 114.543i −0.398381 0.690015i
\(167\) 201.798 1.20837 0.604186 0.796844i \(-0.293499\pi\)
0.604186 + 0.796844i \(0.293499\pi\)
\(168\) 135.917 + 110.557i 0.809031 + 0.658080i
\(169\) −118.374 −0.700436
\(170\) 18.5036 230.656i 0.108844 1.35680i
\(171\) −70.2030 103.602i −0.410544 0.605858i
\(172\) −19.5987 11.3153i −0.113946 0.0657866i
\(173\) −7.78179 13.4785i −0.0449814 0.0779101i 0.842658 0.538449i \(-0.180990\pi\)
−0.887640 + 0.460539i \(0.847656\pi\)
\(174\) 50.1688 + 80.0962i 0.288326 + 0.460323i
\(175\) 134.761 111.644i 0.770066 0.637965i
\(176\) 137.776i 0.782818i
\(177\) −123.145 + 232.201i −0.695736 + 1.31187i
\(178\) 148.765 + 85.8896i 0.835759 + 0.482526i
\(179\) −27.1566 15.6789i −0.151713 0.0875916i 0.422222 0.906493i \(-0.361250\pi\)
−0.573935 + 0.818901i \(0.694584\pi\)
\(180\) −15.2337 8.96045i −0.0846316 0.0497803i
\(181\) 125.301 0.692273 0.346137 0.938184i \(-0.387493\pi\)
0.346137 + 0.938184i \(0.387493\pi\)
\(182\) −43.7249 + 221.095i −0.240246 + 1.21481i
\(183\) −265.630 + 166.379i −1.45153 + 0.909176i
\(184\) −2.95846 5.12420i −0.0160786 0.0278489i
\(185\) −2.69021 5.66213i −0.0145417 0.0306061i
\(186\) −2.91964 81.1210i −0.0156970 0.436135i
\(187\) 203.674 117.591i 1.08917 0.628830i
\(188\) 12.6339 0.0672013
\(189\) 154.814 + 108.414i 0.819122 + 0.573619i
\(190\) 108.712 + 74.9578i 0.572170 + 0.394515i
\(191\) −42.0451 + 24.2747i −0.220131 + 0.127093i −0.606011 0.795456i \(-0.707231\pi\)
0.385880 + 0.922549i \(0.373898\pi\)
\(192\) 7.44419 + 206.834i 0.0387718 + 1.07726i
\(193\) −14.9330 8.62156i −0.0773730 0.0446713i 0.460814 0.887497i \(-0.347557\pi\)
−0.538187 + 0.842825i \(0.680891\pi\)
\(194\) 148.777 85.8964i 0.766891 0.442765i
\(195\) 11.2036 254.035i 0.0574546 1.30274i
\(196\) −17.7959 7.32530i −0.0907952 0.0373740i
\(197\) −354.243 −1.79819 −0.899094 0.437755i \(-0.855774\pi\)
−0.899094 + 0.437755i \(0.855774\pi\)
\(198\) 11.8604 + 164.555i 0.0599009 + 0.831085i
\(199\) 7.75382 13.4300i 0.0389639 0.0674875i −0.845886 0.533364i \(-0.820928\pi\)
0.884850 + 0.465877i \(0.154261\pi\)
\(200\) 205.909 + 33.2505i 1.02954 + 0.166252i
\(201\) −139.855 + 263.708i −0.695794 + 1.31198i
\(202\) 103.448i 0.512118i
\(203\) −87.3807 76.4603i −0.430447 0.376652i
\(204\) 24.3312 15.2400i 0.119270 0.0747059i
\(205\) 120.126 + 9.63665i 0.585980 + 0.0470080i
\(206\) −180.039 103.945i −0.873973 0.504589i
\(207\) −3.58054 5.28396i −0.0172973 0.0255264i
\(208\) −209.567 + 120.994i −1.00753 + 0.581700i
\(209\) 134.209i 0.642150i
\(210\) −193.740 47.2719i −0.922573 0.225104i
\(211\) −355.817 −1.68634 −0.843169 0.537649i \(-0.819313\pi\)
−0.843169 + 0.537649i \(0.819313\pi\)
\(212\) 3.40857 + 5.90381i 0.0160782 + 0.0278482i
\(213\) 152.157 5.47630i 0.714352 0.0257103i
\(214\) 75.5944 130.933i 0.353245 0.611838i
\(215\) 287.185 + 23.0383i 1.33574 + 0.107155i
\(216\) 24.2646 + 223.951i 0.112336 + 1.03681i
\(217\) 32.1597 + 94.3969i 0.148201 + 0.435009i
\(218\) 268.880 1.23340
\(219\) 132.283 249.431i 0.604032 1.13895i
\(220\) 8.13379 + 17.1193i 0.0369718 + 0.0778151i
\(221\) 357.729 + 206.535i 1.61868 + 0.934548i
\(222\) −3.34699 + 6.31104i −0.0150765 + 0.0284281i
\(223\) 125.746i 0.563882i −0.959432 0.281941i \(-0.909022\pi\)
0.959432 0.281941i \(-0.0909782\pi\)
\(224\) −14.1322 41.4817i −0.0630904 0.185186i
\(225\) 224.126 + 19.8077i 0.996117 + 0.0880344i
\(226\) −94.5869 163.829i −0.418526 0.724909i
\(227\) 195.808 339.150i 0.862591 1.49405i −0.00682884 0.999977i \(-0.502174\pi\)
0.869420 0.494074i \(-0.164493\pi\)
\(228\) 0.589284 + 16.3731i 0.00258458 + 0.0718117i
\(229\) 63.3517 + 109.728i 0.276645 + 0.479163i 0.970549 0.240904i \(-0.0774441\pi\)
−0.693904 + 0.720068i \(0.744111\pi\)
\(230\) 5.54461 + 3.82305i 0.0241070 + 0.0166219i
\(231\) −72.2215 189.382i −0.312647 0.819837i
\(232\) 138.387i 0.596497i
\(233\) −187.050 323.979i −0.802788 1.39047i −0.917774 0.397103i \(-0.870016\pi\)
0.114986 0.993367i \(-0.463318\pi\)
\(234\) −239.884 + 162.551i −1.02514 + 0.694662i
\(235\) −145.276 + 69.0241i −0.618197 + 0.293720i
\(236\) 29.7991 17.2045i 0.126268 0.0729006i
\(237\) 18.8784 11.8246i 0.0796557 0.0498929i
\(238\) 213.330 243.799i 0.896346 1.02437i
\(239\) 82.1964i 0.343918i 0.985104 + 0.171959i \(0.0550097\pi\)
−0.985104 + 0.171959i \(0.944990\pi\)
\(240\) −98.7865 189.972i −0.411611 0.791549i
\(241\) −104.237 + 180.543i −0.432517 + 0.749141i −0.997089 0.0762423i \(-0.975708\pi\)
0.564572 + 0.825384i \(0.309041\pi\)
\(242\) −26.4421 + 45.7990i −0.109265 + 0.189252i
\(243\) 43.4750 + 239.079i 0.178909 + 0.983866i
\(244\) 41.0334 0.168170
\(245\) 244.655 12.9930i 0.998593 0.0530328i
\(246\) −72.8989 116.386i −0.296337 0.473112i
\(247\) −204.142 + 117.861i −0.826486 + 0.477172i
\(248\) −59.4291 + 102.934i −0.239634 + 0.415058i
\(249\) 7.51421 + 208.780i 0.0301775 + 0.838472i
\(250\) −227.936 + 66.3961i −0.911745 + 0.265584i
\(251\) 279.326i 1.11285i −0.830897 0.556427i \(-0.812172\pi\)
0.830897 0.556427i \(-0.187828\pi\)
\(252\) −9.64231 22.7869i −0.0382631 0.0904241i
\(253\) 6.84503i 0.0270555i
\(254\) −146.781 + 84.7441i −0.577878 + 0.333638i
\(255\) −196.521 + 308.176i −0.770670 + 1.20853i
\(256\) 37.3282 64.6544i 0.145813 0.252556i
\(257\) 80.6774 + 139.737i 0.313920 + 0.543725i 0.979207 0.202862i \(-0.0650244\pi\)
−0.665288 + 0.746587i \(0.731691\pi\)
\(258\) −174.279 278.243i −0.675501 1.07846i
\(259\) 1.70265 8.60947i 0.00657395 0.0332412i
\(260\) −18.8967 + 27.4061i −0.0726796 + 0.105408i
\(261\) −10.7319 148.898i −0.0411185 0.570491i
\(262\) 184.168 + 106.329i 0.702931 + 0.405837i
\(263\) −15.5086 + 26.8617i −0.0589680 + 0.102136i −0.894002 0.448062i \(-0.852114\pi\)
0.835034 + 0.550198i \(0.185448\pi\)
\(264\) 113.184 213.418i 0.428728 0.808403i
\(265\) −71.4501 49.2653i −0.269623 0.185907i
\(266\) 59.6175 + 174.992i 0.224126 + 0.657866i
\(267\) −144.031 229.950i −0.539441 0.861236i
\(268\) 33.8425 19.5390i 0.126278 0.0729067i
\(269\) −271.904 156.984i −1.01080 0.583583i −0.0993714 0.995050i \(-0.531683\pi\)
−0.911425 + 0.411467i \(0.865017\pi\)
\(270\) −134.341 218.391i −0.497558 0.808857i
\(271\) 128.076 + 221.834i 0.472604 + 0.818574i 0.999508 0.0313506i \(-0.00998084\pi\)
−0.526905 + 0.849924i \(0.676648\pi\)
\(272\) 347.832 1.27879
\(273\) 224.640 276.168i 0.822856 1.01160i
\(274\) 168.148 0.613678
\(275\) −187.060 152.416i −0.680220 0.554241i
\(276\) 0.0300551 + 0.835069i 0.000108895 + 0.00302561i
\(277\) −283.178 163.493i −1.02230 0.590226i −0.107532 0.994202i \(-0.534295\pi\)
−0.914770 + 0.403975i \(0.867628\pi\)
\(278\) 5.57553 + 9.65710i 0.0200559 + 0.0347378i
\(279\) −55.9604 + 115.361i −0.200575 + 0.413481i
\(280\) 203.674 + 209.248i 0.727409 + 0.747313i
\(281\) 405.760i 1.44399i −0.691900 0.721993i \(-0.743226\pi\)
0.691900 0.721993i \(-0.256774\pi\)
\(282\) 161.926 + 85.8754i 0.574204 + 0.304523i
\(283\) −393.833 227.380i −1.39164 0.803462i −0.398140 0.917325i \(-0.630344\pi\)
−0.993496 + 0.113863i \(0.963678\pi\)
\(284\) −17.2621 9.96628i −0.0607821 0.0350926i
\(285\) −96.2292 185.054i −0.337646 0.649311i
\(286\) 310.754 1.08655
\(287\) 126.971 + 111.102i 0.442406 + 0.387116i
\(288\) 24.5912 50.6942i 0.0853861 0.176022i
\(289\) −152.373 263.918i −0.527242 0.913210i
\(290\) 67.5985 + 142.276i 0.233098 + 0.490606i
\(291\) −271.179 + 9.76005i −0.931888 + 0.0335397i
\(292\) −32.0103 + 18.4812i −0.109624 + 0.0632916i
\(293\) 141.910 0.484333 0.242166 0.970235i \(-0.422142\pi\)
0.242166 + 0.970235i \(0.422142\pi\)
\(294\) −178.294 214.850i −0.606442 0.730781i
\(295\) −248.664 + 360.640i −0.842928 + 1.22251i
\(296\) 9.05867 5.23003i 0.0306036 0.0176690i
\(297\) 105.230 238.405i 0.354310 0.802712i
\(298\) −9.46522 5.46474i −0.0317625 0.0183381i
\(299\) −10.4118 + 6.01124i −0.0348220 + 0.0201045i
\(300\) −23.4899 17.7729i −0.0782998 0.0592430i
\(301\) 303.548 + 265.612i 1.00847 + 0.882433i
\(302\) −499.293 −1.65329
\(303\) 76.5578 144.356i 0.252666 0.476424i
\(304\) −99.2469 + 171.901i −0.326470 + 0.565463i
\(305\) −471.842 + 224.183i −1.54702 + 0.735026i
\(306\) 415.438 29.9429i 1.35764 0.0978527i
\(307\) 187.823i 0.611801i −0.952063 0.305901i \(-0.901042\pi\)
0.952063 0.305901i \(-0.0989575\pi\)
\(308\) −5.14793 + 26.0305i −0.0167141 + 0.0845148i
\(309\) 174.309 + 278.290i 0.564106 + 0.900615i
\(310\) 10.8183 134.856i 0.0348978 0.435019i
\(311\) 233.836 + 135.005i 0.751885 + 0.434101i 0.826375 0.563121i \(-0.190399\pi\)
−0.0744894 + 0.997222i \(0.523733\pi\)
\(312\) 424.022 15.2610i 1.35904 0.0489135i
\(313\) −55.2832 + 31.9177i −0.176623 + 0.101974i −0.585705 0.810524i \(-0.699182\pi\)
0.409082 + 0.912498i \(0.365849\pi\)
\(314\) 297.389i 0.947098i
\(315\) 235.371 + 209.345i 0.747209 + 0.664589i
\(316\) −2.91626 −0.00922866
\(317\) −99.2398 171.888i −0.313059 0.542235i 0.665964 0.745984i \(-0.268021\pi\)
−0.979023 + 0.203749i \(0.934687\pi\)
\(318\) 3.55725 + 98.8369i 0.0111863 + 0.310808i
\(319\) −80.0473 + 138.646i −0.250932 + 0.434627i
\(320\) −27.5835 + 343.842i −0.0861983 + 1.07451i
\(321\) −202.387 + 126.766i −0.630489 + 0.394911i
\(322\) 3.04065 + 8.92508i 0.00944301 + 0.0277176i
\(323\) 338.827 1.04900
\(324\) 11.7909 29.5466i 0.0363917 0.0911933i
\(325\) 67.5612 418.383i 0.207880 1.28733i
\(326\) 4.92718 + 2.84471i 0.0151141 + 0.00872611i
\(327\) −375.209 198.988i −1.14743 0.608526i
\(328\) 201.087i 0.613070i
\(329\) −220.898 43.6858i −0.671422 0.132784i
\(330\) −12.1151 + 274.702i −0.0367126 + 0.832431i
\(331\) 27.5811 + 47.7719i 0.0833266 + 0.144326i 0.904677 0.426098i \(-0.140112\pi\)
−0.821350 + 0.570424i \(0.806779\pi\)
\(332\) 13.6751 23.6859i 0.0411900 0.0713431i
\(333\) 9.34111 6.32976i 0.0280514 0.0190083i
\(334\) −191.635 331.922i −0.573758 0.993778i
\(335\) −282.404 + 409.574i −0.842998 + 1.22261i
\(336\) 47.5428 295.976i 0.141496 0.880881i
\(337\) 300.345i 0.891232i 0.895224 + 0.445616i \(0.147015\pi\)
−0.895224 + 0.445616i \(0.852985\pi\)
\(338\) 112.412 + 194.704i 0.332581 + 0.576047i
\(339\) 10.7475 + 298.616i 0.0317036 + 0.880873i
\(340\) 43.2198 20.5347i 0.127117 0.0603962i
\(341\) 119.080 68.7511i 0.349209 0.201616i
\(342\) −103.739 + 213.856i −0.303330 + 0.625309i
\(343\) 285.824 + 189.615i 0.833305 + 0.552814i
\(344\) 480.738i 1.39749i
\(345\) −4.90794 9.43823i −0.0142259 0.0273572i
\(346\) −14.7798 + 25.5993i −0.0427161 + 0.0739865i
\(347\) 71.3734 123.622i 0.205687 0.356260i −0.744664 0.667439i \(-0.767390\pi\)
0.950351 + 0.311179i \(0.100724\pi\)
\(348\) −9.15672 + 17.2658i −0.0263124 + 0.0496143i
\(349\) 46.0748 0.132020 0.0660098 0.997819i \(-0.478973\pi\)
0.0660098 + 0.997819i \(0.478973\pi\)
\(350\) −311.609 115.637i −0.890311 0.330393i
\(351\) 455.044 49.3029i 1.29642 0.140464i
\(352\) −52.3286 + 30.2119i −0.148661 + 0.0858294i
\(353\) −163.141 + 282.568i −0.462155 + 0.800476i −0.999068 0.0431618i \(-0.986257\pi\)
0.536913 + 0.843637i \(0.319590\pi\)
\(354\) 498.873 17.9550i 1.40925 0.0507203i
\(355\) 252.947 + 20.2917i 0.712525 + 0.0571597i
\(356\) 35.5217i 0.0997801i
\(357\) −478.118 + 182.332i −1.33927 + 0.510733i
\(358\) 59.5571i 0.166361i
\(359\) −78.5207 + 45.3340i −0.218721 + 0.126278i −0.605358 0.795954i \(-0.706970\pi\)
0.386637 + 0.922232i \(0.373637\pi\)
\(360\) −3.04051 + 375.425i −0.00844587 + 1.04285i
\(361\) 83.8224 145.185i 0.232195 0.402173i
\(362\) −118.991 206.099i −0.328705 0.569333i
\(363\) 70.7926 44.3414i 0.195021 0.122153i
\(364\) −44.1152 + 15.0294i −0.121196 + 0.0412896i
\(365\) 267.115 387.400i 0.731822 1.06137i
\(366\) 525.917 + 278.914i 1.43693 + 0.762061i
\(367\) 255.238 + 147.362i 0.695471 + 0.401531i 0.805658 0.592380i \(-0.201812\pi\)
−0.110187 + 0.993911i \(0.535145\pi\)
\(368\) −5.06186 + 8.76739i −0.0137550 + 0.0238244i
\(369\) 15.5943 + 216.360i 0.0422609 + 0.586341i
\(370\) −6.75847 + 9.80190i −0.0182661 + 0.0264916i
\(371\) −39.1830 115.012i −0.105615 0.310006i
\(372\) 14.2255 8.91024i 0.0382406 0.0239523i
\(373\) 35.1907 20.3173i 0.0943450 0.0544701i −0.452085 0.891975i \(-0.649320\pi\)
0.546430 + 0.837505i \(0.315986\pi\)
\(374\) −386.833 223.338i −1.03431 0.597161i
\(375\) 367.211 + 76.0344i 0.979229 + 0.202758i
\(376\) −134.190 232.423i −0.356887 0.618147i
\(377\) −281.187 −0.745855
\(378\) 31.3045 357.596i 0.0828160 0.946021i
\(379\) −32.1947 −0.0849463 −0.0424732 0.999098i \(-0.513524\pi\)
−0.0424732 + 0.999098i \(0.513524\pi\)
\(380\) −2.18351 + 27.2187i −0.00574609 + 0.0716280i
\(381\) 267.542 9.62912i 0.702209 0.0252733i
\(382\) 79.8553 + 46.1045i 0.209045 + 0.120692i
\(383\) −125.563 217.482i −0.327841 0.567838i 0.654242 0.756285i \(-0.272988\pi\)
−0.982083 + 0.188448i \(0.939654\pi\)
\(384\) 269.469 168.784i 0.701742 0.439541i
\(385\) −83.0201 327.450i −0.215637 0.850519i
\(386\) 32.7495i 0.0848432i
\(387\) 37.2812 + 517.251i 0.0963338 + 1.33657i
\(388\) 30.7651 + 17.7623i 0.0792916 + 0.0457790i
\(389\) 24.1611 + 13.9494i 0.0621108 + 0.0358597i 0.530734 0.847539i \(-0.321916\pi\)
−0.468623 + 0.883398i \(0.655250\pi\)
\(390\) −428.481 + 222.813i −1.09867 + 0.571316i
\(391\) 17.2811 0.0441971
\(392\) 54.2550 + 405.193i 0.138406 + 1.03366i
\(393\) −178.307 284.673i −0.453707 0.724359i
\(394\) 336.403 + 582.667i 0.853815 + 1.47885i
\(395\) 33.5339 15.9328i 0.0848961 0.0403361i
\(396\) −28.2426 + 19.1379i −0.0713198 + 0.0483280i
\(397\) 281.690 162.634i 0.709546 0.409657i −0.101347 0.994851i \(-0.532315\pi\)
0.810893 + 0.585195i \(0.198982\pi\)
\(398\) −29.4533 −0.0740033
\(399\) 46.3120 288.314i 0.116070 0.722591i
\(400\) −126.884 333.551i −0.317209 0.833877i
\(401\) 324.443 187.317i 0.809084 0.467125i −0.0375536 0.999295i \(-0.511956\pi\)
0.846638 + 0.532170i \(0.178623\pi\)
\(402\) 566.564 20.3913i 1.40936 0.0507245i
\(403\) 209.151 + 120.753i 0.518984 + 0.299636i
\(404\) −18.5257 + 10.6958i −0.0458558 + 0.0264748i
\(405\) 25.8427 + 404.175i 0.0638091 + 0.997962i
\(406\) −42.7836 + 216.335i −0.105378 + 0.532846i
\(407\) −12.1008 −0.0297317
\(408\) −538.800 285.747i −1.32059 0.700359i
\(409\) 210.447 364.506i 0.514541 0.891212i −0.485316 0.874339i \(-0.661296\pi\)
0.999858 0.0168731i \(-0.00537114\pi\)
\(410\) −98.2256 206.737i −0.239575 0.504237i
\(411\) −234.642 124.440i −0.570904 0.302773i
\(412\) 42.9891i 0.104342i
\(413\) −580.516 + 197.774i −1.40561 + 0.478871i
\(414\) −5.29096 + 10.9072i −0.0127801 + 0.0263459i
\(415\) −27.8429 + 347.076i −0.0670913 + 0.836328i
\(416\) −91.9090 53.0637i −0.220935 0.127557i
\(417\) −0.633524 17.6022i −0.00151924 0.0422116i
\(418\) 220.750 127.450i 0.528111 0.304905i
\(419\) 481.407i 1.14894i 0.818524 + 0.574472i \(0.194792\pi\)
−0.818524 + 0.574472i \(0.805208\pi\)
\(420\) −11.5659 39.5832i −0.0275379 0.0942457i
\(421\) −125.377 −0.297807 −0.148904 0.988852i \(-0.547574\pi\)
−0.148904 + 0.988852i \(0.547574\pi\)
\(422\) 337.898 + 585.256i 0.800706 + 1.38686i
\(423\) −162.406 239.670i −0.383938 0.566595i
\(424\) 72.4077 125.414i 0.170773 0.295787i
\(425\) −384.793 + 472.256i −0.905395 + 1.11119i
\(426\) −153.502 245.071i −0.360333 0.575283i
\(427\) −717.452 141.887i −1.68022 0.332288i
\(428\) 31.2639 0.0730465
\(429\) −433.642 229.977i −1.01082 0.536077i
\(430\) −234.828 494.246i −0.546111 1.14941i
\(431\) −294.379 169.960i −0.683013 0.394338i 0.117976 0.993016i \(-0.462359\pi\)
−0.800989 + 0.598678i \(0.795693\pi\)
\(432\) 311.082 227.542i 0.720098 0.526718i
\(433\) 184.329i 0.425703i 0.977085 + 0.212852i \(0.0682751\pi\)
−0.977085 + 0.212852i \(0.931725\pi\)
\(434\) 124.726 142.540i 0.287387 0.328433i
\(435\) 10.9625 248.566i 0.0252010 0.571416i
\(436\) 27.8005 + 48.1518i 0.0637625 + 0.110440i
\(437\) −4.93081 + 8.54042i −0.0112833 + 0.0195433i
\(438\) −535.891 + 19.2873i −1.22349 + 0.0440349i
\(439\) −62.0405 107.457i −0.141322 0.244777i 0.786673 0.617371i \(-0.211802\pi\)
−0.927995 + 0.372593i \(0.878469\pi\)
\(440\) 228.549 331.468i 0.519430 0.753336i
\(441\) 89.7985 + 431.761i 0.203625 + 0.979049i
\(442\) 784.535i 1.77497i
\(443\) 280.029 + 485.025i 0.632121 + 1.09487i 0.987117 + 0.159998i \(0.0511486\pi\)
−0.354997 + 0.934868i \(0.615518\pi\)
\(444\) −1.47625 + 0.0531320i −0.00332490 + 0.000119667i
\(445\) −194.070 408.463i −0.436113 0.917894i
\(446\) −206.829 + 119.413i −0.463742 + 0.267742i
\(447\) 9.16399 + 14.6306i 0.0205011 + 0.0327307i
\(448\) −318.014 + 363.434i −0.709852 + 0.811236i
\(449\) 397.281i 0.884814i −0.896814 0.442407i \(-0.854125\pi\)
0.896814 0.442407i \(-0.145875\pi\)
\(450\) −180.259 387.458i −0.400575 0.861019i
\(451\) 116.315 201.463i 0.257904 0.446702i
\(452\) 19.5593 33.8778i 0.0432729 0.0749508i
\(453\) 696.738 + 369.507i 1.53805 + 0.815690i
\(454\) −743.788 −1.63830
\(455\) 425.167 413.843i 0.934433 0.909545i
\(456\) 294.954 184.746i 0.646828 0.405145i
\(457\) 608.910 351.555i 1.33241 0.769266i 0.346740 0.937961i \(-0.387289\pi\)
0.985668 + 0.168695i \(0.0539554\pi\)
\(458\) 120.322 208.405i 0.262713 0.455032i
\(459\) −601.882 265.666i −1.31129 0.578792i
\(460\) −0.111365 + 1.38822i −0.000242098 + 0.00301788i
\(461\) 780.964i 1.69406i −0.531542 0.847032i \(-0.678387\pi\)
0.531542 0.847032i \(-0.321613\pi\)
\(462\) −242.916 + 298.636i −0.525792 + 0.646399i
\(463\) 880.813i 1.90240i 0.308570 + 0.951202i \(0.400150\pi\)
−0.308570 + 0.951202i \(0.599850\pi\)
\(464\) −205.056 + 118.389i −0.441930 + 0.255149i
\(465\) −114.898 + 180.179i −0.247093 + 0.387481i
\(466\) −355.259 + 615.327i −0.762359 + 1.32044i
\(467\) −25.2777 43.7822i −0.0541278 0.0937521i 0.837692 0.546143i \(-0.183905\pi\)
−0.891820 + 0.452391i \(0.850571\pi\)
\(468\) −53.9125 26.1523i −0.115198 0.0558811i
\(469\) −659.285 + 224.609i −1.40573 + 0.478911i
\(470\) 251.492 + 173.406i 0.535090 + 0.368948i
\(471\) −220.086 + 414.991i −0.467274 + 0.881086i
\(472\) −633.019 365.474i −1.34114 0.774309i
\(473\) 278.073 481.637i 0.587892 1.01826i
\(474\) −37.3771 19.8225i −0.0788546 0.0418197i
\(475\) −123.599 324.916i −0.260208 0.684033i
\(476\) 65.7172 + 12.9966i 0.138061 + 0.0273037i
\(477\) 68.1814 140.555i 0.142938 0.294664i
\(478\) 135.198 78.0569i 0.282842 0.163299i
\(479\) 568.259 + 328.084i 1.18634 + 0.684936i 0.957474 0.288521i \(-0.0931636\pi\)
0.228870 + 0.973457i \(0.426497\pi\)
\(480\) 50.4908 79.1776i 0.105189 0.164953i
\(481\) −10.6268 18.4062i −0.0220932 0.0382665i
\(482\) 395.948 0.821469
\(483\) 2.36204 14.7048i 0.00489034 0.0304447i
\(484\) −10.9357 −0.0225945
\(485\) −450.810 36.1646i −0.929505 0.0745661i
\(486\) 351.957 298.548i 0.724192 0.614295i
\(487\) 701.394 + 404.950i 1.44023 + 0.831520i 0.997865 0.0653129i \(-0.0208045\pi\)
0.442370 + 0.896833i \(0.354138\pi\)
\(488\) −435.833 754.886i −0.893101 1.54690i
\(489\) −4.77038 7.61607i −0.00975537 0.0155748i
\(490\) −253.705 390.076i −0.517766 0.796073i
\(491\) 406.082i 0.827051i 0.910492 + 0.413526i \(0.135703\pi\)
−0.910492 + 0.413526i \(0.864297\pi\)
\(492\) 13.3054 25.0885i 0.0270435 0.0509928i
\(493\) 350.028 + 202.089i 0.709996 + 0.409917i
\(494\) 387.722 + 223.851i 0.784863 + 0.453141i
\(495\) 220.203 374.367i 0.444854 0.756298i
\(496\) 203.364 0.410008
\(497\) 267.359 + 233.946i 0.537946 + 0.470716i
\(498\) 336.270 210.625i 0.675240 0.422941i
\(499\) 341.349 + 591.233i 0.684065 + 1.18484i 0.973730 + 0.227708i \(0.0731230\pi\)
−0.289664 + 0.957128i \(0.593544\pi\)
\(500\) −35.4575 33.9545i −0.0709150 0.0679090i
\(501\) 21.7747 + 605.002i 0.0434625 + 1.20759i
\(502\) −459.442 + 265.259i −0.915223 + 0.528404i
\(503\) −296.107 −0.588682 −0.294341 0.955701i \(-0.595100\pi\)
−0.294341 + 0.955701i \(0.595100\pi\)
\(504\) −316.792 + 419.417i −0.628555 + 0.832177i
\(505\) 154.591 224.205i 0.306121 0.443971i
\(506\) 11.2589 6.50030i 0.0222507 0.0128465i
\(507\) −12.7729 354.891i −0.0251932 0.699983i
\(508\) −30.3524 17.5240i −0.0597489 0.0344960i
\(509\) 722.798 417.308i 1.42004 0.819858i 0.423735 0.905786i \(-0.360719\pi\)
0.996301 + 0.0859284i \(0.0273856\pi\)
\(510\) 693.518 + 30.5861i 1.35984 + 0.0599728i
\(511\) 623.592 212.449i 1.22034 0.415751i
\(512\) −565.746 −1.10497
\(513\) 303.029 221.652i 0.590700 0.432070i
\(514\) 153.229 265.400i 0.298110 0.516342i
\(515\) 234.868 + 494.330i 0.456054 + 0.959864i
\(516\) 31.8091 59.9789i 0.0616456 0.116238i
\(517\) 310.477i 0.600535i
\(518\) −15.7780 + 5.37533i −0.0304594 + 0.0103771i
\(519\) 39.5695 24.7846i 0.0762418 0.0477546i
\(520\) 704.896 + 56.5476i 1.35557 + 0.108745i
\(521\) 619.025 + 357.394i 1.18815 + 0.685977i 0.957885 0.287152i \(-0.0927083\pi\)
0.230262 + 0.973129i \(0.426042\pi\)
\(522\) −234.720 + 159.052i −0.449654 + 0.304697i
\(523\) −195.670 + 112.970i −0.374130 + 0.216004i −0.675261 0.737579i \(-0.735969\pi\)
0.301131 + 0.953583i \(0.402636\pi\)
\(524\) 43.9751i 0.0839219i
\(525\) 349.256 + 391.976i 0.665249 + 0.746621i
\(526\) 58.9102 0.111997
\(527\) −173.570 300.632i −0.329355 0.570460i
\(528\) −413.061 + 14.8665i −0.782312 + 0.0281563i
\(529\) 264.249 457.692i 0.499525 0.865202i
\(530\) −13.1809 + 164.307i −0.0248696 + 0.310013i
\(531\) −709.440 344.142i −1.33605 0.648101i
\(532\) −25.1741 + 28.7695i −0.0473197 + 0.0540781i
\(533\) 408.586 0.766577
\(534\) −241.450 + 455.274i −0.452153 + 0.852574i
\(535\) −359.502 + 170.808i −0.671967 + 0.319267i
\(536\) −718.912 415.064i −1.34125 0.774373i
\(537\) 44.0760 83.1090i 0.0820781 0.154765i
\(538\) 596.312i 1.10839i
\(539\) 180.019 437.333i 0.333987 0.811378i
\(540\) 25.2202 46.6384i 0.0467040 0.0863673i
\(541\) −315.187 545.919i −0.582600 1.00909i −0.995170 0.0981672i \(-0.968702\pi\)
0.412570 0.910926i \(-0.364631\pi\)
\(542\) 243.251 421.323i 0.448803 0.777349i
\(543\) 13.5205 + 375.661i 0.0248996 + 0.691825i
\(544\) 76.2736 + 132.110i 0.140209 + 0.242849i
\(545\) −582.750 401.810i −1.06927 0.737267i
\(546\) −667.574 107.233i −1.22266 0.196397i
\(547\) 300.639i 0.549615i −0.961499 0.274807i \(-0.911386\pi\)
0.961499 0.274807i \(-0.0886141\pi\)
\(548\) 17.3854 + 30.1124i 0.0317251 + 0.0549496i
\(549\) −527.477 778.422i −0.960796 1.41789i
\(550\) −73.0578 + 452.421i −0.132832 + 0.822584i
\(551\) −199.747 + 115.324i −0.362518 + 0.209300i
\(552\) 15.0434 9.42254i 0.0272526 0.0170698i
\(553\) 50.9896 + 10.0839i 0.0922053 + 0.0182350i
\(554\) 621.036i 1.12100i
\(555\) 16.6851 8.67637i 0.0300633 0.0156331i
\(556\) −1.15295 + 1.99696i −0.00207365 + 0.00359166i
\(557\) 217.246 376.281i 0.390028 0.675549i −0.602425 0.798176i \(-0.705799\pi\)
0.992453 + 0.122627i \(0.0391319\pi\)
\(558\) 242.891 17.5065i 0.435288 0.0313736i
\(559\) 976.805 1.74741
\(560\) 135.811 480.804i 0.242521 0.858578i
\(561\) 374.523 + 597.938i 0.667598 + 1.06584i
\(562\) −667.404 + 385.326i −1.18755 + 0.685633i
\(563\) −227.729 + 394.438i −0.404492 + 0.700601i −0.994262 0.106970i \(-0.965885\pi\)
0.589770 + 0.807571i \(0.299218\pi\)
\(564\) 1.36324 + 37.8770i 0.00241709 + 0.0671579i
\(565\) −39.8235 + 496.421i −0.0704840 + 0.878620i
\(566\) 863.714i 1.52600i
\(567\) −308.327 + 475.840i −0.543786 + 0.839224i
\(568\) 423.425i 0.745466i
\(569\) 374.954 216.480i 0.658970 0.380457i −0.132914 0.991128i \(-0.542434\pi\)
0.791884 + 0.610671i \(0.209100\pi\)
\(570\) −212.998 + 334.014i −0.373680 + 0.585990i
\(571\) −107.252 + 185.766i −0.187832 + 0.325335i −0.944527 0.328433i \(-0.893479\pi\)
0.756695 + 0.653768i \(0.226813\pi\)
\(572\) 32.1299 + 55.6507i 0.0561712 + 0.0972914i
\(573\) −77.3139 123.434i −0.134928 0.215418i
\(574\) 62.1676 314.351i 0.108306 0.547650i
\(575\) −6.30387 16.5716i −0.0109633 0.0288201i
\(576\) −619.298 + 44.6362i −1.07517 + 0.0774935i
\(577\) 179.599 + 103.691i 0.311263 + 0.179708i 0.647492 0.762073i \(-0.275818\pi\)
−0.336228 + 0.941780i \(0.609151\pi\)
\(578\) −289.398 + 501.253i −0.500689 + 0.867219i
\(579\) 24.2366 45.7002i 0.0418595 0.0789296i
\(580\) −18.4899 + 26.8161i −0.0318791 + 0.0462347i
\(581\) −321.005 + 366.852i −0.552504 + 0.631415i
\(582\) 273.576 + 436.774i 0.470062 + 0.750470i
\(583\) −145.086 + 83.7655i −0.248861 + 0.143680i
\(584\) 679.990 + 392.593i 1.16437 + 0.672247i
\(585\) 762.820 + 6.17797i 1.30397 + 0.0105606i
\(586\) −134.763 233.416i −0.229971 0.398321i
\(587\) −473.066 −0.805905 −0.402953 0.915221i \(-0.632016\pi\)
−0.402953 + 0.915221i \(0.632016\pi\)
\(588\) 20.0414 54.1435i 0.0340841 0.0920807i
\(589\) 198.099 0.336332
\(590\) 829.329 + 66.5298i 1.40564 + 0.112762i
\(591\) −38.2241 1062.04i −0.0646769 1.79702i
\(592\) −15.4992 8.94847i −0.0261811 0.0151157i
\(593\) 220.683 + 382.234i 0.372146 + 0.644576i 0.989895 0.141799i \(-0.0452887\pi\)
−0.617749 + 0.786375i \(0.711955\pi\)
\(594\) −492.065 + 53.3141i −0.828392 + 0.0897544i
\(595\) −826.686 + 209.594i −1.38939 + 0.352259i
\(596\) 2.26008i 0.00379207i
\(597\) 41.1006 + 21.7973i 0.0688453 + 0.0365113i
\(598\) 19.7749 + 11.4170i 0.0330683 + 0.0190920i
\(599\) −98.8142 57.0504i −0.164965 0.0952427i 0.415244 0.909710i \(-0.363696\pi\)
−0.580210 + 0.814467i \(0.697029\pi\)
\(600\) −77.4687 + 620.914i −0.129114 + 1.03486i
\(601\) −1061.91 −1.76691 −0.883454 0.468518i \(-0.844788\pi\)
−0.883454 + 0.468518i \(0.844788\pi\)
\(602\) 148.624 751.518i 0.246884 1.24837i
\(603\) −805.703 390.837i −1.33616 0.648155i
\(604\) −51.6236 89.4148i −0.0854696 0.148038i
\(605\) 125.750 59.7467i 0.207851 0.0987548i
\(606\) −310.143 + 11.1624i −0.511787 + 0.0184198i
\(607\) −187.998 + 108.541i −0.309716 + 0.178815i −0.646800 0.762660i \(-0.723893\pi\)
0.337083 + 0.941475i \(0.390560\pi\)
\(608\) −87.0527 −0.143179
\(609\) 219.804 270.223i 0.360926 0.443716i
\(610\) 816.821 + 563.203i 1.33905 + 0.923284i
\(611\) −472.257 + 272.658i −0.772925 + 0.446248i
\(612\) 48.3158 + 71.3019i 0.0789474 + 0.116506i
\(613\) 40.6966 + 23.4962i 0.0663893 + 0.0383299i 0.532827 0.846224i \(-0.321130\pi\)
−0.466438 + 0.884554i \(0.654463\pi\)
\(614\) −308.935 + 178.364i −0.503152 + 0.290495i
\(615\) −15.9292 + 361.184i −0.0259012 + 0.587291i
\(616\) 533.558 181.776i 0.866166 0.295091i
\(617\) −140.650 −0.227958 −0.113979 0.993483i \(-0.536360\pi\)
−0.113979 + 0.993483i \(0.536360\pi\)
\(618\) 292.207 550.982i 0.472827 0.891557i
\(619\) 41.4260 71.7519i 0.0669241 0.115916i −0.830622 0.556837i \(-0.812015\pi\)
0.897546 + 0.440921i \(0.145348\pi\)
\(620\) 25.2689 12.0059i 0.0407563 0.0193643i
\(621\) 15.4553 11.3048i 0.0248877 0.0182042i
\(622\) 512.826i 0.824479i
\(623\) 122.828 621.082i 0.197156 0.996922i
\(624\) −385.359 615.239i −0.617563 0.985960i
\(625\) 593.233 + 196.722i 0.949173 + 0.314756i
\(626\) 104.998 + 60.6206i 0.167728 + 0.0968381i
\(627\) −402.367 + 14.4816i −0.641734 + 0.0230967i
\(628\) 53.2572 30.7481i 0.0848045 0.0489619i
\(629\) 30.5499i 0.0485690i
\(630\) 120.819 585.946i 0.191776 0.930073i
\(631\) 243.800 0.386371 0.193186 0.981162i \(-0.438118\pi\)
0.193186 + 0.981162i \(0.438118\pi\)
\(632\) 30.9748 + 53.6499i 0.0490108 + 0.0848891i
\(633\) −38.3939 1066.76i −0.0606539 1.68525i
\(634\) −188.484 + 326.464i −0.297293 + 0.514927i
\(635\) 444.762 + 35.6794i 0.700413 + 0.0561880i
\(636\) −17.3322 + 10.8561i −0.0272519 + 0.0170694i
\(637\) 823.305 110.240i 1.29247 0.173061i
\(638\) 304.064 0.476589
\(639\) 32.8365 + 455.585i 0.0513874 + 0.712965i
\(640\) 478.661 227.423i 0.747908 0.355348i
\(641\) −115.942 66.9392i −0.180877 0.104429i 0.406828 0.913505i \(-0.366635\pi\)
−0.587705 + 0.809076i \(0.699968\pi\)
\(642\) 400.703 + 212.508i 0.624148 + 0.331010i
\(643\) 681.323i 1.05960i −0.848122 0.529801i \(-0.822267\pi\)
0.848122 0.529801i \(-0.177733\pi\)
\(644\) −1.28394 + 1.46732i −0.00199370 + 0.00227845i
\(645\) −38.0820 + 863.482i −0.0590419 + 1.33873i
\(646\) −321.763 557.311i −0.498086 0.862710i
\(647\) −76.8005 + 133.022i −0.118702 + 0.205599i −0.919254 0.393666i \(-0.871207\pi\)
0.800551 + 0.599264i \(0.204540\pi\)
\(648\) −668.801 + 96.9119i −1.03210 + 0.149555i
\(649\) 422.801 + 732.313i 0.651466 + 1.12837i
\(650\) −752.324 + 286.186i −1.15742 + 0.440287i
\(651\) −279.537 + 106.602i −0.429397 + 0.163752i
\(652\) 1.17650i 0.00180445i
\(653\) 122.460 + 212.107i 0.187534 + 0.324819i 0.944428 0.328720i \(-0.106617\pi\)
−0.756893 + 0.653538i \(0.773284\pi\)
\(654\) 29.0131 + 806.118i 0.0443625 + 1.23260i
\(655\) −240.255 505.668i −0.366801 0.772012i
\(656\) 297.961 172.028i 0.454209 0.262237i
\(657\) 762.082 + 369.678i 1.15994 + 0.562675i
\(658\) 137.918 + 404.823i 0.209601 + 0.615233i
\(659\) 758.783i 1.15142i −0.817655 0.575708i \(-0.804727\pi\)
0.817655 0.575708i \(-0.195273\pi\)
\(660\) −50.4471 + 26.2328i −0.0764350 + 0.0397467i
\(661\) −495.701 + 858.579i −0.749926 + 1.29891i 0.197932 + 0.980216i \(0.436578\pi\)
−0.947858 + 0.318694i \(0.896756\pi\)
\(662\) 52.3842 90.7321i 0.0791302 0.137058i
\(663\) −580.604 + 1094.78i −0.875723 + 1.65125i
\(664\) −580.995 −0.874992
\(665\) 132.296 468.357i 0.198941 0.704296i
\(666\) −19.2820 9.35348i −0.0289520 0.0140443i
\(667\) −10.1876 + 5.88183i −0.0152738 + 0.00881834i
\(668\) 39.6277 68.6371i 0.0593228 0.102750i
\(669\) 376.993 13.5684i 0.563517 0.0202816i
\(670\) 941.859 + 75.5571i 1.40576 + 0.112772i
\(671\) 1008.39i 1.50282i
\(672\) 122.840 46.8453i 0.182797 0.0697103i
\(673\) 1101.01i 1.63598i −0.575235 0.817988i \(-0.695089\pi\)
0.575235 0.817988i \(-0.304911\pi\)
\(674\) 494.014 285.219i 0.732959 0.423174i
\(675\) −35.2008 + 674.082i −0.0521493 + 0.998639i
\(676\) −23.2454 + 40.2622i −0.0343867 + 0.0595595i
\(677\) 68.0959 + 117.946i 0.100585 + 0.174218i 0.911926 0.410355i \(-0.134595\pi\)
−0.811341 + 0.584573i \(0.801262\pi\)
\(678\) 480.964 301.255i 0.709386 0.444329i
\(679\) −476.497 416.947i −0.701763 0.614060i
\(680\) −836.830 576.999i −1.23063 0.848529i
\(681\) 1037.92 + 550.449i 1.52411 + 0.808295i
\(682\) −226.167 130.577i −0.331623 0.191462i
\(683\) 607.226 1051.75i 0.889057 1.53989i 0.0480644 0.998844i \(-0.484695\pi\)
0.840992 0.541047i \(-0.181972\pi\)
\(684\) −49.0238 + 3.53342i −0.0716722 + 0.00516582i
\(685\) −364.431 251.277i −0.532015 0.366828i
\(686\) 40.4539 650.195i 0.0589707 0.947806i
\(687\) −322.136 + 201.772i −0.468903 + 0.293700i
\(688\) 712.334 411.266i 1.03537 0.597771i
\(689\) −254.827 147.124i −0.369850 0.213533i
\(690\) −10.8634 + 17.0356i −0.0157441 + 0.0246893i
\(691\) −580.261 1005.04i −0.839741 1.45447i −0.890111 0.455744i \(-0.849373\pi\)
0.0503694 0.998731i \(-0.483960\pi\)
\(692\) −6.11253 −0.00883314
\(693\) 559.987 236.959i 0.808062 0.341933i
\(694\) −271.116 −0.390657
\(695\) 2.34744 29.2621i 0.00337761 0.0421037i
\(696\) 414.894 14.9325i 0.596111 0.0214547i
\(697\) −508.616 293.650i −0.729722 0.421305i
\(698\) −43.7545 75.7849i −0.0626855 0.108574i
\(699\) 951.126 595.744i 1.36070 0.852281i
\(700\) −11.5097 67.7600i −0.0164424 0.0967999i
\(701\) 1106.20i 1.57803i 0.614373 + 0.789016i \(0.289409\pi\)
−0.614373 + 0.789016i \(0.710591\pi\)
\(702\) −513.222 701.646i −0.731085 0.999496i
\(703\) −15.0980 8.71681i −0.0214765 0.0123994i
\(704\) 576.657 + 332.933i 0.819115 + 0.472916i
\(705\) −222.614 428.099i −0.315765 0.607232i
\(706\) 619.699 0.877760
\(707\) 360.899 122.953i 0.510466 0.173909i
\(708\) 54.7957 + 87.4832i 0.0773950 + 0.123564i
\(709\) −400.014 692.845i −0.564195 0.977214i −0.997124 0.0757864i \(-0.975853\pi\)
0.432929 0.901428i \(-0.357480\pi\)
\(710\) −206.832 435.322i −0.291312 0.613129i
\(711\) 37.4880 + 55.3227i 0.0527257 + 0.0778097i
\(712\) 653.488 377.291i 0.917820 0.529903i
\(713\) 10.1036 0.0141705
\(714\) 753.943 + 613.270i 1.05594 + 0.858922i
\(715\) −673.504 464.386i −0.941964 0.649491i
\(716\) −10.6657 + 6.15782i −0.0148962 + 0.00860031i
\(717\) −246.430 + 8.86928i −0.343695 + 0.0123700i
\(718\) 149.133 + 86.1018i 0.207706 + 0.119919i
\(719\) −679.759 + 392.459i −0.945423 + 0.545840i −0.891656 0.452714i \(-0.850456\pi\)
−0.0537665 + 0.998554i \(0.517123\pi\)
\(720\) 558.887 316.666i 0.776232 0.439815i
\(721\) −148.649 + 751.646i −0.206171 + 1.04251i
\(722\) −318.404 −0.441002
\(723\) −552.526 293.026i −0.764213 0.405292i
\(724\) 24.6058 42.6185i 0.0339859 0.0588653i
\(725\) 66.1067 409.376i 0.0911817 0.564656i
\(726\) −140.161 74.3330i −0.193060 0.102387i
\(727\) 579.070i 0.796520i 0.917273 + 0.398260i \(0.130386\pi\)
−0.917273 + 0.398260i \(0.869614\pi\)
\(728\) 745.060 + 651.947i 1.02343 + 0.895531i
\(729\) −712.083 + 156.138i −0.976794 + 0.214181i
\(730\) −890.867 71.4665i −1.22037 0.0978993i
\(731\) −1215.95 702.028i −1.66340 0.960367i
\(732\) 4.42765 + 123.021i 0.00604870 + 0.168061i
\(733\) −590.643 + 341.008i −0.805789 + 0.465223i −0.845491 0.533989i \(-0.820692\pi\)
0.0397023 + 0.999212i \(0.487359\pi\)
\(734\) 559.762i 0.762618i
\(735\) 65.3531 + 732.089i 0.0889157 + 0.996039i
\(736\) −4.43992 −0.00603249
\(737\) 480.170 + 831.679i 0.651520 + 1.12847i
\(738\) 341.065 231.114i 0.462147 0.313162i
\(739\) −439.884 + 761.902i −0.595243 + 1.03099i 0.398270 + 0.917268i \(0.369611\pi\)
−0.993513 + 0.113722i \(0.963723\pi\)
\(740\) −2.45413 0.196874i −0.00331640 0.000266046i
\(741\) −375.383 599.312i −0.506590 0.808788i
\(742\) −151.965 + 173.669i −0.204804 + 0.234055i
\(743\) 77.0002 0.103634 0.0518171 0.998657i \(-0.483499\pi\)
0.0518171 + 0.998657i \(0.483499\pi\)
\(744\) −315.016 167.065i −0.423408 0.224550i
\(745\) 12.3478 + 25.9885i 0.0165742 + 0.0348840i
\(746\) −66.8368 38.5883i −0.0895936 0.0517269i
\(747\) −625.123 + 45.0561i −0.836844 + 0.0603160i
\(748\) 92.3669i 0.123485i
\(749\) −546.636 108.106i −0.729821 0.144333i
\(750\) −223.655 676.202i −0.298206 0.901602i
\(751\) −399.639 692.195i −0.532142 0.921697i −0.999296 0.0375212i \(-0.988054\pi\)
0.467154 0.884176i \(-0.345279\pi\)
\(752\) −229.595 + 397.671i −0.305313 + 0.528818i
\(753\) 837.436 30.1403i 1.11213 0.0400269i
\(754\) 267.026 + 462.503i 0.354146 + 0.613399i
\(755\) 1082.13 + 746.135i 1.43328 + 0.988259i
\(756\) 67.2759 31.3670i 0.0889893 0.0414907i
\(757\) 393.905i 0.520350i −0.965561 0.260175i \(-0.916220\pi\)
0.965561 0.260175i \(-0.0837803\pi\)
\(758\) 30.5733 + 52.9545i 0.0403342 + 0.0698608i
\(759\) −20.5218 + 0.738602i −0.0270379 + 0.000973126i
\(760\) 523.930 248.931i 0.689381 0.327541i
\(761\) 654.465 377.855i 0.860006 0.496525i −0.00400819 0.999992i \(-0.501276\pi\)
0.864014 + 0.503467i \(0.167943\pi\)
\(762\) −269.906 430.914i −0.354207 0.565504i
\(763\) −319.578 938.044i −0.418845 1.22942i
\(764\) 19.0676i 0.0249576i