Properties

Label 105.3.o.b.74.15
Level 105
Weight 3
Character 105.74
Analytic conductor 2.861
Analytic rank 0
Dimension 40
CM no
Inner twists 8

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.o (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 74.15
Character \(\chi\) \(=\) 105.74
Dual form 105.3.o.b.44.15

$q$-expansion

\(f(q)\) \(=\) \(q+(0.949639 + 1.64482i) q^{2} +(-0.107903 - 2.99806i) q^{3} +(0.196373 - 0.340128i) q^{4} +(-4.51617 - 2.14574i) q^{5} +(4.82880 - 3.02455i) q^{6} +(4.60961 - 5.26797i) q^{7} +8.34304 q^{8} +(-8.97671 + 0.647002i) q^{9} +O(q^{10})\) \(q+(0.949639 + 1.64482i) q^{2} +(-0.107903 - 2.99806i) q^{3} +(0.196373 - 0.340128i) q^{4} +(-4.51617 - 2.14574i) q^{5} +(4.82880 - 3.02455i) q^{6} +(4.60961 - 5.26797i) q^{7} +8.34304 q^{8} +(-8.97671 + 0.647002i) q^{9} +(-0.759373 - 9.46598i) q^{10} +(8.35863 + 4.82586i) q^{11} +(-1.04091 - 0.552037i) q^{12} -16.9521i q^{13} +(13.0423 + 2.57932i) q^{14} +(-5.94574 + 13.7713i) q^{15} +(7.13738 + 12.3623i) q^{16} +(-12.1835 + 21.1024i) q^{17} +(-9.58884 - 14.1507i) q^{18} +(6.95261 + 12.0423i) q^{19} +(-1.61668 + 1.11471i) q^{20} +(-16.2911 - 13.2514i) q^{21} +18.3313i q^{22} +(-0.354602 - 0.614188i) q^{23} +(-0.900243 - 25.0129i) q^{24} +(15.7916 + 19.3810i) q^{25} +(27.8832 - 16.0984i) q^{26} +(2.90837 + 26.8429i) q^{27} +(-0.886581 - 2.60234i) q^{28} +16.5872i q^{29} +(-28.2976 + 3.29806i) q^{30} +(7.12320 - 12.3377i) q^{31} +(3.13021 - 5.42169i) q^{32} +(13.5663 - 25.5804i) q^{33} -46.2795 q^{34} +(-32.1215 + 13.9000i) q^{35} +(-1.54272 + 3.18028i) q^{36} +(1.08578 - 0.626873i) q^{37} +(-13.2049 + 22.8716i) q^{38} +(-50.8234 + 1.82919i) q^{39} +(-37.6786 - 17.9020i) q^{40} -24.1024i q^{41} +(6.32563 - 39.3800i) q^{42} +57.6214i q^{43} +(3.28282 - 1.89534i) q^{44} +(41.9287 + 16.3397i) q^{45} +(0.673487 - 1.16651i) q^{46} +(-16.0840 - 27.8583i) q^{47} +(36.2928 - 22.7322i) q^{48} +(-6.50303 - 48.5666i) q^{49} +(-16.8821 + 44.3794i) q^{50} +(64.5807 + 34.2497i) q^{51} +(-5.76588 - 3.32893i) q^{52} +(8.67882 - 15.0322i) q^{53} +(-41.3899 + 30.2748i) q^{54} +(-27.3940 - 39.7298i) q^{55} +(38.4582 - 43.9509i) q^{56} +(35.3532 - 22.1437i) q^{57} +(-27.2829 + 15.7518i) q^{58} +(75.8739 + 43.8058i) q^{59} +(3.51641 + 4.72662i) q^{60} +(52.2391 + 90.4808i) q^{61} +27.0578 q^{62} +(-37.9707 + 50.2715i) q^{63} +68.9894 q^{64} +(-36.3748 + 76.5586i) q^{65} +(54.9583 - 1.97801i) q^{66} +(-86.1690 - 49.7497i) q^{67} +(4.78500 + 8.28786i) q^{68} +(-1.80311 + 1.12939i) q^{69} +(-53.3669 - 39.6341i) q^{70} -50.7518i q^{71} +(-74.8931 + 5.39796i) q^{72} +(81.5039 + 47.0563i) q^{73} +(2.06219 + 1.19061i) q^{74} +(56.4015 - 49.4355i) q^{75} +5.46122 q^{76} +(63.9525 - 21.7877i) q^{77} +(-51.2726 - 81.8584i) q^{78} +(-3.71265 - 6.43050i) q^{79} +(-5.70736 - 71.1453i) q^{80} +(80.1628 - 11.6159i) q^{81} +(39.6441 - 22.8885i) q^{82} -69.6382 q^{83} +(-7.70631 + 2.93883i) q^{84} +(100.303 - 69.1594i) q^{85} +(-94.7770 + 54.7196i) q^{86} +(49.7293 - 1.78981i) q^{87} +(69.7364 + 40.2623i) q^{88} +(-78.3272 + 45.2223i) q^{89} +(12.9412 + 84.4820i) q^{90} +(-89.3032 - 78.1425i) q^{91} -0.278537 q^{92} +(-37.7579 - 20.0245i) q^{93} +(30.5480 - 52.9107i) q^{94} +(-5.55961 - 69.3035i) q^{95} +(-16.5923 - 8.79955i) q^{96} -90.4517i q^{97} +(73.7078 - 56.8170i) q^{98} +(-78.1554 - 37.9123i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40q - 44q^{4} + 80q^{6} + 12q^{9} + O(q^{10}) \) \( 40q - 44q^{4} + 80q^{6} + 12q^{9} + 62q^{10} + 84q^{15} - 116q^{16} - 56q^{19} + 36q^{21} - 12q^{24} - 6q^{25} - 20q^{30} - 444q^{31} + 256q^{34} - 688q^{36} + 168q^{39} + 54q^{40} - 40q^{45} + 304q^{46} + 156q^{49} + 156q^{51} - 140q^{54} - 500q^{55} - 130q^{60} + 288q^{61} + 472q^{64} + 340q^{66} - 272q^{69} + 710q^{70} - 524q^{75} + 400q^{76} - 340q^{79} + 496q^{84} + 896q^{85} + 1356q^{90} - 656q^{91} - 560q^{94} + 472q^{96} - 336q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.949639 + 1.64482i 0.474819 + 0.822411i 0.999584 0.0288361i \(-0.00918008\pi\)
−0.524765 + 0.851247i \(0.675847\pi\)
\(3\) −0.107903 2.99806i −0.0359678 0.999353i
\(4\) 0.196373 0.340128i 0.0490932 0.0850320i
\(5\) −4.51617 2.14574i −0.903234 0.429148i
\(6\) 4.82880 3.02455i 0.804801 0.504092i
\(7\) 4.60961 5.26797i 0.658515 0.752567i
\(8\) 8.34304 1.04288
\(9\) −8.97671 + 0.647002i −0.997413 + 0.0718891i
\(10\) −0.759373 9.46598i −0.0759373 0.946598i
\(11\) 8.35863 + 4.82586i 0.759876 + 0.438714i 0.829251 0.558876i \(-0.188767\pi\)
−0.0693754 + 0.997591i \(0.522101\pi\)
\(12\) −1.04091 0.552037i −0.0867427 0.0460031i
\(13\) 16.9521i 1.30401i −0.758216 0.652004i \(-0.773929\pi\)
0.758216 0.652004i \(-0.226071\pi\)
\(14\) 13.0423 + 2.57932i 0.931596 + 0.184237i
\(15\) −5.94574 + 13.7713i −0.396383 + 0.918085i
\(16\) 7.13738 + 12.3623i 0.446086 + 0.772644i
\(17\) −12.1835 + 21.1024i −0.716674 + 1.24131i 0.245637 + 0.969362i \(0.421003\pi\)
−0.962311 + 0.271953i \(0.912330\pi\)
\(18\) −9.58884 14.1507i −0.532713 0.786149i
\(19\) 6.95261 + 12.0423i 0.365927 + 0.633804i 0.988924 0.148420i \(-0.0474187\pi\)
−0.622997 + 0.782224i \(0.714085\pi\)
\(20\) −1.61668 + 1.11471i −0.0808340 + 0.0557355i
\(21\) −16.2911 13.2514i −0.775766 0.631021i
\(22\) 18.3313i 0.833240i
\(23\) −0.354602 0.614188i −0.0154175 0.0267038i 0.858214 0.513292i \(-0.171574\pi\)
−0.873631 + 0.486589i \(0.838241\pi\)
\(24\) −0.900243 25.0129i −0.0375101 1.04221i
\(25\) 15.7916 + 19.3810i 0.631665 + 0.775242i
\(26\) 27.8832 16.0984i 1.07243 0.619168i
\(27\) 2.90837 + 26.8429i 0.107717 + 0.994182i
\(28\) −0.886581 2.60234i −0.0316636 0.0929408i
\(29\) 16.5872i 0.571971i 0.958234 + 0.285986i \(0.0923209\pi\)
−0.958234 + 0.285986i \(0.907679\pi\)
\(30\) −28.2976 + 3.29806i −0.943254 + 0.109935i
\(31\) 7.12320 12.3377i 0.229781 0.397992i −0.727962 0.685617i \(-0.759532\pi\)
0.957743 + 0.287625i \(0.0928658\pi\)
\(32\) 3.13021 5.42169i 0.0978192 0.169428i
\(33\) 13.5663 25.5804i 0.411100 0.775164i
\(34\) −46.2795 −1.36116
\(35\) −32.1215 + 13.9000i −0.917756 + 0.397144i
\(36\) −1.54272 + 3.18028i −0.0428533 + 0.0883412i
\(37\) 1.08578 0.626873i 0.0293453 0.0169425i −0.485256 0.874372i \(-0.661273\pi\)
0.514601 + 0.857430i \(0.327940\pi\)
\(38\) −13.2049 + 22.8716i −0.347498 + 0.601885i
\(39\) −50.8234 + 1.82919i −1.30316 + 0.0469023i
\(40\) −37.6786 17.9020i −0.941965 0.447550i
\(41\) 24.1024i 0.587862i −0.955827 0.293931i \(-0.905036\pi\)
0.955827 0.293931i \(-0.0949637\pi\)
\(42\) 6.32563 39.3800i 0.150610 0.937619i
\(43\) 57.6214i 1.34003i 0.742346 + 0.670017i \(0.233713\pi\)
−0.742346 + 0.670017i \(0.766287\pi\)
\(44\) 3.28282 1.89534i 0.0746095 0.0430758i
\(45\) 41.9287 + 16.3397i 0.931748 + 0.363105i
\(46\) 0.673487 1.16651i 0.0146410 0.0253590i
\(47\) −16.0840 27.8583i −0.342213 0.592730i 0.642630 0.766176i \(-0.277843\pi\)
−0.984843 + 0.173446i \(0.944510\pi\)
\(48\) 36.2928 22.7322i 0.756100 0.473588i
\(49\) −6.50303 48.5666i −0.132715 0.991154i
\(50\) −16.8821 + 44.3794i −0.337641 + 0.887588i
\(51\) 64.5807 + 34.2497i 1.26629 + 0.671562i
\(52\) −5.76588 3.32893i −0.110882 0.0640180i
\(53\) 8.67882 15.0322i 0.163751 0.283625i −0.772460 0.635064i \(-0.780974\pi\)
0.936211 + 0.351438i \(0.114307\pi\)
\(54\) −41.3899 + 30.2748i −0.766480 + 0.560645i
\(55\) −27.3940 39.7298i −0.498073 0.722361i
\(56\) 38.4582 43.9509i 0.686753 0.784838i
\(57\) 35.3532 22.1437i 0.620232 0.388487i
\(58\) −27.2829 + 15.7518i −0.470395 + 0.271583i
\(59\) 75.8739 + 43.8058i 1.28600 + 0.742471i 0.977938 0.208896i \(-0.0669870\pi\)
0.308060 + 0.951367i \(0.400320\pi\)
\(60\) 3.51641 + 4.72662i 0.0586069 + 0.0787770i
\(61\) 52.2391 + 90.4808i 0.856379 + 1.48329i 0.875359 + 0.483473i \(0.160625\pi\)
−0.0189801 + 0.999820i \(0.506042\pi\)
\(62\) 27.0578 0.436417
\(63\) −37.9707 + 50.2715i −0.602710 + 0.797960i
\(64\) 68.9894 1.07796
\(65\) −36.3748 + 76.5586i −0.559612 + 1.17782i
\(66\) 54.9583 1.97801i 0.832701 0.0299698i
\(67\) −86.1690 49.7497i −1.28610 0.742533i −0.308147 0.951339i \(-0.599709\pi\)
−0.977957 + 0.208806i \(0.933042\pi\)
\(68\) 4.78500 + 8.28786i 0.0703676 + 0.121880i
\(69\) −1.80311 + 1.12939i −0.0261320 + 0.0163680i
\(70\) −53.3669 39.6341i −0.762384 0.566201i
\(71\) 50.7518i 0.714814i −0.933949 0.357407i \(-0.883661\pi\)
0.933949 0.357407i \(-0.116339\pi\)
\(72\) −74.8931 + 5.39796i −1.04018 + 0.0749717i
\(73\) 81.5039 + 47.0563i 1.11649 + 0.644607i 0.940503 0.339786i \(-0.110355\pi\)
0.175988 + 0.984392i \(0.443688\pi\)
\(74\) 2.06219 + 1.19061i 0.0278674 + 0.0160893i
\(75\) 56.4015 49.4355i 0.752021 0.659140i
\(76\) 5.46122 0.0718582
\(77\) 63.9525 21.7877i 0.830552 0.282957i
\(78\) −51.2726 81.8584i −0.657340 1.04947i
\(79\) −3.71265 6.43050i −0.0469956 0.0813987i 0.841571 0.540147i \(-0.181631\pi\)
−0.888566 + 0.458748i \(0.848298\pi\)
\(80\) −5.70736 71.1453i −0.0713420 0.889316i
\(81\) 80.1628 11.6159i 0.989664 0.143406i
\(82\) 39.6441 22.8885i 0.483465 0.279128i
\(83\) −69.6382 −0.839015 −0.419508 0.907752i \(-0.637797\pi\)
−0.419508 + 0.907752i \(0.637797\pi\)
\(84\) −7.70631 + 2.93883i −0.0917418 + 0.0349860i
\(85\) 100.303 69.1594i 1.18003 0.813640i
\(86\) −94.7770 + 54.7196i −1.10206 + 0.636274i
\(87\) 49.7293 1.78981i 0.571601 0.0205726i
\(88\) 69.7364 + 40.2623i 0.792459 + 0.457527i
\(89\) −78.3272 + 45.2223i −0.880081 + 0.508115i −0.870685 0.491841i \(-0.836324\pi\)
−0.00939614 + 0.999956i \(0.502991\pi\)
\(90\) 12.9412 + 84.4820i 0.143791 + 0.938689i
\(91\) −89.3032 78.1425i −0.981354 0.858709i
\(92\) −0.278537 −0.00302757
\(93\) −37.7579 20.0245i −0.405999 0.215317i
\(94\) 30.5480 52.9107i 0.324979 0.562879i
\(95\) −5.55961 69.3035i −0.0585222 0.729510i
\(96\) −16.5923 8.79955i −0.172837 0.0916620i
\(97\) 90.4517i 0.932492i −0.884655 0.466246i \(-0.845606\pi\)
0.884655 0.466246i \(-0.154394\pi\)
\(98\) 73.7078 56.8170i 0.752121 0.579765i
\(99\) −78.1554 37.9123i −0.789448 0.382953i
\(100\) 9.69308 1.56526i 0.0969308 0.0156526i
\(101\) −47.1698 27.2335i −0.467028 0.269638i 0.247967 0.968768i \(-0.420238\pi\)
−0.714995 + 0.699130i \(0.753571\pi\)
\(102\) 4.99372 + 138.749i 0.0489580 + 1.36028i
\(103\) −94.7932 + 54.7289i −0.920322 + 0.531348i −0.883738 0.467982i \(-0.844981\pi\)
−0.0365842 + 0.999331i \(0.511648\pi\)
\(104\) 141.432i 1.35992i
\(105\) 45.1392 + 94.8022i 0.429897 + 0.902878i
\(106\) 32.9670 0.311009
\(107\) −39.8017 68.9385i −0.371978 0.644285i 0.617892 0.786263i \(-0.287987\pi\)
−0.989870 + 0.141978i \(0.954654\pi\)
\(108\) 9.70114 + 4.28200i 0.0898254 + 0.0396482i
\(109\) −70.7849 + 122.603i −0.649402 + 1.12480i 0.333864 + 0.942621i \(0.391648\pi\)
−0.983266 + 0.182176i \(0.941686\pi\)
\(110\) 39.3342 82.7873i 0.357583 0.752611i
\(111\) −1.99656 3.18758i −0.0179870 0.0287169i
\(112\) 98.0248 + 19.3859i 0.875222 + 0.173088i
\(113\) −99.6031 −0.881443 −0.440722 0.897644i \(-0.645277\pi\)
−0.440722 + 0.897644i \(0.645277\pi\)
\(114\) 69.9953 + 37.1213i 0.613994 + 0.325625i
\(115\) 0.283555 + 3.53466i 0.00246570 + 0.0307362i
\(116\) 5.64176 + 3.25727i 0.0486358 + 0.0280799i
\(117\) 10.9680 + 152.174i 0.0937439 + 1.30063i
\(118\) 166.399i 1.41016i
\(119\) 55.0057 + 161.456i 0.462232 + 1.35677i
\(120\) −49.6056 + 114.894i −0.413380 + 0.957453i
\(121\) −13.9222 24.1139i −0.115059 0.199288i
\(122\) −99.2166 + 171.848i −0.813251 + 1.40859i
\(123\) −72.2603 + 2.60073i −0.587482 + 0.0211441i
\(124\) −2.79761 4.84560i −0.0225613 0.0390774i
\(125\) −29.7310 121.413i −0.237848 0.971302i
\(126\) −118.746 14.7154i −0.942430 0.116789i
\(127\) 89.2383i 0.702663i 0.936251 + 0.351332i \(0.114271\pi\)
−0.936251 + 0.351332i \(0.885729\pi\)
\(128\) 52.9941 + 91.7885i 0.414016 + 0.717097i
\(129\) 172.752 6.21755i 1.33917 0.0481981i
\(130\) −160.468 + 12.8730i −1.23437 + 0.0990228i
\(131\) −96.9674 + 55.9841i −0.740209 + 0.427360i −0.822145 0.569278i \(-0.807223\pi\)
0.0819364 + 0.996638i \(0.473890\pi\)
\(132\) −6.03656 9.63757i −0.0457315 0.0730119i
\(133\) 95.4872 + 18.8840i 0.717949 + 0.141985i
\(134\) 188.977i 1.41028i
\(135\) 44.4632 127.468i 0.329357 0.944206i
\(136\) −101.647 + 176.058i −0.747405 + 1.29454i
\(137\) 44.2662 76.6714i 0.323111 0.559645i −0.658017 0.753003i \(-0.728605\pi\)
0.981128 + 0.193358i \(0.0619379\pi\)
\(138\) −3.56995 1.89328i −0.0258692 0.0137194i
\(139\) −5.87121 −0.0422389 −0.0211195 0.999777i \(-0.506723\pi\)
−0.0211195 + 0.999777i \(0.506723\pi\)
\(140\) −1.57999 + 13.6550i −0.0112857 + 0.0975357i
\(141\) −81.7853 + 51.2268i −0.580038 + 0.363311i
\(142\) 83.4777 48.1959i 0.587871 0.339408i
\(143\) 81.8085 141.696i 0.572087 0.990884i
\(144\) −72.0687 106.355i −0.500477 0.738577i
\(145\) 35.5917 74.9105i 0.245460 0.516624i
\(146\) 178.746i 1.22429i
\(147\) −144.904 + 24.7370i −0.985739 + 0.168279i
\(148\) 0.492404i 0.00332705i
\(149\) 4.98359 2.87728i 0.0334469 0.0193106i −0.483183 0.875519i \(-0.660520\pi\)
0.516630 + 0.856209i \(0.327186\pi\)
\(150\) 134.874 + 45.8247i 0.899158 + 0.305498i
\(151\) 131.443 227.666i 0.870482 1.50772i 0.00898406 0.999960i \(-0.497140\pi\)
0.861498 0.507760i \(-0.169526\pi\)
\(152\) 58.0059 + 100.469i 0.381618 + 0.660982i
\(153\) 95.7141 197.313i 0.625582 1.28962i
\(154\) 96.5687 + 84.5001i 0.627069 + 0.548702i
\(155\) −58.6431 + 40.4348i −0.378343 + 0.260870i
\(156\) −9.35818 + 17.6457i −0.0599883 + 0.113113i
\(157\) −135.602 78.2900i −0.863709 0.498662i 0.00154383 0.999999i \(-0.499509\pi\)
−0.865252 + 0.501336i \(0.832842\pi\)
\(158\) 7.05135 12.2133i 0.0446288 0.0772994i
\(159\) −46.0037 24.3976i −0.289332 0.153444i
\(160\) −25.7701 + 17.7687i −0.161063 + 0.111054i
\(161\) −4.87010 0.963135i −0.0302491 0.00598221i
\(162\) 95.2318 + 120.823i 0.587850 + 0.745819i
\(163\) 2.59424 1.49779i 0.0159156 0.00918887i −0.492021 0.870583i \(-0.663742\pi\)
0.507937 + 0.861394i \(0.330408\pi\)
\(164\) −8.19788 4.73305i −0.0499871 0.0288601i
\(165\) −116.157 + 86.4158i −0.703979 + 0.523732i
\(166\) −66.1312 114.543i −0.398381 0.690015i
\(167\) −201.798 −1.20837 −0.604186 0.796844i \(-0.706501\pi\)
−0.604186 + 0.796844i \(0.706501\pi\)
\(168\) −135.917 110.557i −0.809031 0.658080i
\(169\) −118.374 −0.700436
\(170\) 209.006 + 99.3037i 1.22945 + 0.584139i
\(171\) −70.2030 103.602i −0.410544 0.605858i
\(172\) 19.5987 + 11.3153i 0.113946 + 0.0657866i
\(173\) 7.78179 + 13.4785i 0.0449814 + 0.0779101i 0.887640 0.460539i \(-0.152344\pi\)
−0.842658 + 0.538449i \(0.819010\pi\)
\(174\) 50.1688 + 80.0962i 0.288326 + 0.460323i
\(175\) 174.892 + 6.14927i 0.999382 + 0.0351387i
\(176\) 137.776i 0.782818i
\(177\) 123.145 232.201i 0.695736 1.31187i
\(178\) −148.765 85.8896i −0.835759 0.482526i
\(179\) −27.1566 15.6789i −0.151713 0.0875916i 0.422222 0.906493i \(-0.361250\pi\)
−0.573935 + 0.818901i \(0.694584\pi\)
\(180\) 13.7912 11.0524i 0.0766180 0.0614024i
\(181\) 125.301 0.692273 0.346137 0.938184i \(-0.387493\pi\)
0.346137 + 0.938184i \(0.387493\pi\)
\(182\) 43.7249 221.095i 0.240246 1.21481i
\(183\) 265.630 166.379i 1.45153 0.909176i
\(184\) −2.95846 5.12420i −0.0160786 0.0278489i
\(185\) −6.24866 + 0.501275i −0.0337765 + 0.00270959i
\(186\) −2.91964 81.1210i −0.0156970 0.436135i
\(187\) −203.674 + 117.591i −1.08917 + 0.628830i
\(188\) −12.6339 −0.0672013
\(189\) 154.814 + 108.414i 0.819122 + 0.573619i
\(190\) 108.712 74.9578i 0.572170 0.394515i
\(191\) −42.0451 + 24.2747i −0.220131 + 0.127093i −0.606011 0.795456i \(-0.707231\pi\)
0.385880 + 0.922549i \(0.373898\pi\)
\(192\) −7.44419 206.834i −0.0387718 1.07726i
\(193\) 14.9330 + 8.62156i 0.0773730 + 0.0446713i 0.538187 0.842825i \(-0.319109\pi\)
−0.460814 + 0.887497i \(0.652443\pi\)
\(194\) 148.777 85.8964i 0.766891 0.442765i
\(195\) 233.452 + 100.793i 1.19719 + 0.516886i
\(196\) −17.7959 7.32530i −0.0907952 0.0373740i
\(197\) 354.243 1.79819 0.899094 0.437755i \(-0.144226\pi\)
0.899094 + 0.437755i \(0.144226\pi\)
\(198\) −11.8604 164.555i −0.0599009 0.831085i
\(199\) 7.75382 13.4300i 0.0389639 0.0674875i −0.845886 0.533364i \(-0.820928\pi\)
0.884850 + 0.465877i \(0.154261\pi\)
\(200\) 131.750 + 161.697i 0.658750 + 0.808484i
\(201\) −139.855 + 263.708i −0.695794 + 1.31198i
\(202\) 103.448i 0.512118i
\(203\) 87.3807 + 76.4603i 0.430447 + 0.376652i
\(204\) 24.3312 15.2400i 0.119270 0.0747059i
\(205\) −51.7174 + 108.850i −0.252280 + 0.530977i
\(206\) −180.039 103.945i −0.873973 0.504589i
\(207\) 3.58054 + 5.28396i 0.0172973 + 0.0255264i
\(208\) 209.567 120.994i 1.00753 0.581700i
\(209\) 134.209i 0.642150i
\(210\) −113.067 + 164.274i −0.538414 + 0.782256i
\(211\) −355.817 −1.68634 −0.843169 0.537649i \(-0.819313\pi\)
−0.843169 + 0.537649i \(0.819313\pi\)
\(212\) −3.40857 5.90381i −0.0160782 0.0278482i
\(213\) −152.157 + 5.47630i −0.714352 + 0.0257103i
\(214\) 75.5944 130.933i 0.353245 0.611838i
\(215\) 123.641 260.228i 0.575072 1.21036i
\(216\) 24.2646 + 223.951i 0.112336 + 1.03681i
\(217\) −32.1597 94.3969i −0.148201 0.435009i
\(218\) −268.880 −1.23340
\(219\) 132.283 249.431i 0.604032 1.13895i
\(220\) −18.8927 + 1.51559i −0.0858758 + 0.00688906i
\(221\) 357.729 + 206.535i 1.61868 + 0.934548i
\(222\) 3.34699 6.31104i 0.0150765 0.0284281i
\(223\) 125.746i 0.563882i 0.959432 + 0.281941i \(0.0909782\pi\)
−0.959432 + 0.281941i \(0.909022\pi\)
\(224\) −14.1322 41.4817i −0.0630904 0.185186i
\(225\) −154.296 163.761i −0.685762 0.727826i
\(226\) −94.5869 163.829i −0.418526 0.724909i
\(227\) −195.808 + 339.150i −0.862591 + 1.49405i 0.00682884 + 0.999977i \(0.497826\pi\)
−0.869420 + 0.494074i \(0.835507\pi\)
\(228\) −0.589284 16.3731i −0.00258458 0.0718117i
\(229\) 63.3517 + 109.728i 0.276645 + 0.479163i 0.970549 0.240904i \(-0.0774441\pi\)
−0.693904 + 0.720068i \(0.744111\pi\)
\(230\) −5.54461 + 3.82305i −0.0241070 + 0.0166219i
\(231\) −72.2215 189.382i −0.312647 0.819837i
\(232\) 138.387i 0.596497i
\(233\) 187.050 + 323.979i 0.802788 + 1.39047i 0.917774 + 0.397103i \(0.129984\pi\)
−0.114986 + 0.993367i \(0.536682\pi\)
\(234\) −239.884 + 162.551i −1.02514 + 0.694662i
\(235\) 12.8615 + 160.325i 0.0547297 + 0.682234i
\(236\) 29.7991 17.2045i 0.126268 0.0729006i
\(237\) −18.8784 + 11.8246i −0.0796557 + 0.0498929i
\(238\) −213.330 + 243.799i −0.896346 + 1.02437i
\(239\) 82.1964i 0.343918i 0.985104 + 0.171959i \(0.0550097\pi\)
−0.985104 + 0.171959i \(0.944990\pi\)
\(240\) −212.682 + 24.7878i −0.886175 + 0.103283i
\(241\) −104.237 + 180.543i −0.432517 + 0.749141i −0.997089 0.0762423i \(-0.975708\pi\)
0.564572 + 0.825384i \(0.309041\pi\)
\(242\) 26.4421 45.7990i 0.109265 0.189252i
\(243\) −43.4750 239.079i −0.178909 0.983866i
\(244\) 41.0334 0.168170
\(245\) −74.8423 + 233.289i −0.305479 + 0.952199i
\(246\) −72.8989 116.386i −0.296337 0.473112i
\(247\) 204.142 117.861i 0.826486 0.477172i
\(248\) 59.4291 102.934i 0.239634 0.415058i
\(249\) 7.51421 + 208.780i 0.0301775 + 0.838472i
\(250\) 171.469 164.200i 0.685875 0.656802i
\(251\) 279.326i 1.11285i −0.830897 0.556427i \(-0.812172\pi\)
0.830897 0.556427i \(-0.187828\pi\)
\(252\) 9.64231 + 22.7869i 0.0382631 + 0.0904241i
\(253\) 6.84503i 0.0270555i
\(254\) −146.781 + 84.7441i −0.577878 + 0.333638i
\(255\) −218.167 293.251i −0.855556 1.15000i
\(256\) 37.3282 64.6544i 0.145813 0.252556i
\(257\) −80.6774 139.737i −0.313920 0.543725i 0.665288 0.746587i \(-0.268309\pi\)
−0.979207 + 0.202862i \(0.934976\pi\)
\(258\) 174.279 + 278.243i 0.675501 + 1.07846i
\(259\) 1.70265 8.60947i 0.00657395 0.0332412i
\(260\) 18.8967 + 27.4061i 0.0726796 + 0.105408i
\(261\) −10.7319 148.898i −0.0411185 0.570491i
\(262\) −184.168 106.329i −0.702931 0.405837i
\(263\) 15.5086 26.8617i 0.0589680 0.102136i −0.835034 0.550198i \(-0.814552\pi\)
0.894002 + 0.448062i \(0.147886\pi\)
\(264\) 113.184 213.418i 0.428728 0.808403i
\(265\) −71.4501 + 49.2653i −0.269623 + 0.185907i
\(266\) 59.6175 + 174.992i 0.224126 + 0.657866i
\(267\) 144.031 + 229.950i 0.539441 + 0.861236i
\(268\) −33.8425 + 19.5390i −0.126278 + 0.0729067i
\(269\) −271.904 156.984i −1.01080 0.583583i −0.0993714 0.995050i \(-0.531683\pi\)
−0.911425 + 0.411467i \(0.865017\pi\)
\(270\) 251.886 47.9143i 0.932910 0.177460i
\(271\) 128.076 + 221.834i 0.472604 + 0.818574i 0.999508 0.0313506i \(-0.00998084\pi\)
−0.526905 + 0.849924i \(0.676648\pi\)
\(272\) −347.832 −1.27879
\(273\) −224.640 + 276.168i −0.822856 + 1.01160i
\(274\) 168.148 0.613678
\(275\) 38.4661 + 238.207i 0.139877 + 0.866208i
\(276\) 0.0300551 + 0.835069i 0.000108895 + 0.00302561i
\(277\) 283.178 + 163.493i 1.02230 + 0.590226i 0.914770 0.403975i \(-0.132372\pi\)
0.107532 + 0.994202i \(0.465705\pi\)
\(278\) −5.57553 9.65710i −0.0200559 0.0347378i
\(279\) −55.9604 + 115.361i −0.200575 + 0.413481i
\(280\) −267.991 + 115.969i −0.957110 + 0.414174i
\(281\) 405.760i 1.44399i −0.691900 0.721993i \(-0.743226\pi\)
0.691900 0.721993i \(-0.256774\pi\)
\(282\) −161.926 85.8754i −0.574204 0.304523i
\(283\) 393.833 + 227.380i 1.39164 + 0.803462i 0.993496 0.113863i \(-0.0363224\pi\)
0.398140 + 0.917325i \(0.369656\pi\)
\(284\) −17.2621 9.96628i −0.0607821 0.0350926i
\(285\) −207.176 + 24.1461i −0.726933 + 0.0847233i
\(286\) 310.754 1.08655
\(287\) −126.971 111.102i −0.442406 0.387116i
\(288\) −24.5912 + 50.6942i −0.0853861 + 0.176022i
\(289\) −152.373 263.918i −0.527242 0.913210i
\(290\) 157.014 12.5958i 0.541426 0.0434339i
\(291\) −271.179 + 9.76005i −0.931888 + 0.0335397i
\(292\) 32.0103 18.4812i 0.109624 0.0632916i
\(293\) −141.910 −0.484333 −0.242166 0.970235i \(-0.577858\pi\)
−0.242166 + 0.970235i \(0.577858\pi\)
\(294\) −178.294 214.850i −0.606442 0.730781i
\(295\) −248.664 360.640i −0.842928 1.22251i
\(296\) 9.05867 5.23003i 0.0306036 0.0176690i
\(297\) −105.230 + 238.405i −0.354310 + 0.802712i
\(298\) 9.46522 + 5.46474i 0.0317625 + 0.0183381i
\(299\) −10.4118 + 6.01124i −0.0348220 + 0.0201045i
\(300\) −5.73864 28.8915i −0.0191288 0.0963051i
\(301\) 303.548 + 265.612i 1.00847 + 0.882433i
\(302\) 499.293 1.65329
\(303\) −76.5578 + 144.356i −0.252666 + 0.476424i
\(304\) −99.2469 + 171.901i −0.326470 + 0.565463i
\(305\) −41.7727 520.719i −0.136960 1.70727i
\(306\) 415.438 29.9429i 1.35764 0.0978527i
\(307\) 187.823i 0.611801i 0.952063 + 0.305901i \(0.0989575\pi\)
−0.952063 + 0.305901i \(0.901042\pi\)
\(308\) 5.14793 26.0305i 0.0167141 0.0845148i
\(309\) 174.309 + 278.290i 0.564106 + 0.900615i
\(310\) −122.198 58.0591i −0.394187 0.187287i
\(311\) 233.836 + 135.005i 0.751885 + 0.434101i 0.826375 0.563121i \(-0.190399\pi\)
−0.0744894 + 0.997222i \(0.523733\pi\)
\(312\) −424.022 + 15.2610i −1.35904 + 0.0489135i
\(313\) 55.2832 31.9177i 0.176623 0.101974i −0.409082 0.912498i \(-0.634151\pi\)
0.585705 + 0.810524i \(0.300818\pi\)
\(314\) 297.389i 0.947098i
\(315\) 279.352 145.559i 0.886831 0.462093i
\(316\) −2.91626 −0.00922866
\(317\) 99.2398 + 171.888i 0.313059 + 0.542235i 0.979023 0.203749i \(-0.0653128\pi\)
−0.665964 + 0.745984i \(0.731979\pi\)
\(318\) −3.55725 98.8369i −0.0111863 0.310808i
\(319\) −80.0473 + 138.646i −0.250932 + 0.434627i
\(320\) −311.568 148.033i −0.973649 0.462603i
\(321\) −202.387 + 126.766i −0.630489 + 0.394911i
\(322\) −3.04065 8.92508i −0.00944301 0.0277176i
\(323\) −338.827 −1.04900
\(324\) 11.7909 29.5466i 0.0363917 0.0911933i
\(325\) 328.549 267.701i 1.01092 0.823695i
\(326\) 4.92718 + 2.84471i 0.0151141 + 0.00872611i
\(327\) 375.209 + 198.988i 1.14743 + 0.608526i
\(328\) 201.087i 0.613070i
\(329\) −220.898 43.6858i −0.671422 0.132784i
\(330\) −252.445 108.993i −0.764986 0.330282i
\(331\) 27.5811 + 47.7719i 0.0833266 + 0.144326i 0.904677 0.426098i \(-0.140112\pi\)
−0.821350 + 0.570424i \(0.806779\pi\)
\(332\) −13.6751 + 23.6859i −0.0411900 + 0.0713431i
\(333\) −9.34111 + 6.32976i −0.0280514 + 0.0190083i
\(334\) −191.635 331.922i −0.573758 0.993778i
\(335\) 282.404 + 409.574i 0.842998 + 1.22261i
\(336\) 47.5428 295.976i 0.141496 0.880881i
\(337\) 300.345i 0.891232i −0.895224 0.445616i \(-0.852985\pi\)
0.895224 0.445616i \(-0.147015\pi\)
\(338\) −112.412 194.704i −0.332581 0.576047i
\(339\) 10.7475 + 298.616i 0.0317036 + 0.880873i
\(340\) −3.82629 47.6968i −0.0112538 0.140285i
\(341\) 119.080 68.7511i 0.349209 0.201616i
\(342\) 103.739 213.856i 0.303330 0.625309i
\(343\) −285.824 189.615i −0.833305 0.552814i
\(344\) 480.738i 1.39749i
\(345\) 10.5665 1.23152i 0.0306276 0.00356961i
\(346\) −14.7798 + 25.5993i −0.0427161 + 0.0739865i
\(347\) −71.3734 + 123.622i −0.205687 + 0.356260i −0.950351 0.311179i \(-0.899276\pi\)
0.744664 + 0.667439i \(0.232610\pi\)
\(348\) 9.15672 17.2658i 0.0263124 0.0496143i
\(349\) 46.0748 0.132020 0.0660098 0.997819i \(-0.478973\pi\)
0.0660098 + 0.997819i \(0.478973\pi\)
\(350\) 155.970 + 293.506i 0.445628 + 0.838588i
\(351\) 455.044 49.3029i 1.29642 0.140464i
\(352\) 52.3286 30.2119i 0.148661 0.0858294i
\(353\) 163.141 282.568i 0.462155 0.800476i −0.536913 0.843637i \(-0.680410\pi\)
0.999068 + 0.0431618i \(0.0137431\pi\)
\(354\) 498.873 17.9550i 1.40925 0.0507203i
\(355\) −108.900 + 229.204i −0.306761 + 0.645645i
\(356\) 35.5217i 0.0997801i
\(357\) 478.118 182.332i 1.33927 0.510733i
\(358\) 59.5571i 0.166361i
\(359\) −78.5207 + 45.3340i −0.218721 + 0.126278i −0.605358 0.795954i \(-0.706970\pi\)
0.386637 + 0.922232i \(0.373637\pi\)
\(360\) 349.813 + 136.323i 0.971702 + 0.378675i
\(361\) 83.8224 145.185i 0.232195 0.402173i
\(362\) 118.991 + 206.099i 0.328705 + 0.569333i
\(363\) −70.7926 + 44.3414i −0.195021 + 0.122153i
\(364\) −44.1152 + 15.0294i −0.121196 + 0.0412896i
\(365\) −267.115 387.400i −0.731822 1.06137i
\(366\) 525.917 + 278.914i 1.43693 + 0.762061i
\(367\) −255.238 147.362i −0.695471 0.401531i 0.110187 0.993911i \(-0.464855\pi\)
−0.805658 + 0.592380i \(0.798188\pi\)
\(368\) 5.06186 8.76739i 0.0137550 0.0238244i
\(369\) 15.5943 + 216.360i 0.0422609 + 0.586341i
\(370\) −6.75847 9.80190i −0.0182661 0.0264916i
\(371\) −39.1830 115.012i −0.105615 0.310006i
\(372\) −14.2255 + 8.91024i −0.0382406 + 0.0239523i
\(373\) −35.1907 + 20.3173i −0.0943450 + 0.0544701i −0.546430 0.837505i \(-0.684014\pi\)
0.452085 + 0.891975i \(0.350680\pi\)
\(374\) −386.833 223.338i −1.03431 0.597161i
\(375\) −360.795 + 102.236i −0.962119 + 0.272630i
\(376\) −134.190 232.423i −0.356887 0.618147i
\(377\) 281.187 0.745855
\(378\) −31.3045 + 357.596i −0.0828160 + 0.946021i
\(379\) −32.1947 −0.0849463 −0.0424732 0.999098i \(-0.513524\pi\)
−0.0424732 + 0.999098i \(0.513524\pi\)
\(380\) −24.6638 11.7183i −0.0649047 0.0308378i
\(381\) 267.542 9.62912i 0.702209 0.0252733i
\(382\) −79.8553 46.1045i −0.209045 0.120692i
\(383\) 125.563 + 217.482i 0.327841 + 0.567838i 0.982083 0.188448i \(-0.0603456\pi\)
−0.654242 + 0.756285i \(0.727012\pi\)
\(384\) 269.469 168.784i 0.701742 0.439541i
\(385\) −335.571 38.8283i −0.871614 0.100853i
\(386\) 32.7495i 0.0848432i
\(387\) −37.2812 517.251i −0.0963338 1.33657i
\(388\) −30.7651 17.7623i −0.0792916 0.0457790i
\(389\) 24.1611 + 13.9494i 0.0621108 + 0.0358597i 0.530734 0.847539i \(-0.321916\pi\)
−0.468623 + 0.883398i \(0.655250\pi\)
\(390\) 55.9090 + 479.704i 0.143356 + 1.23001i
\(391\) 17.2811 0.0441971
\(392\) −54.2550 405.193i −0.138406 1.03366i
\(393\) 178.307 + 284.673i 0.453707 + 0.724359i
\(394\) 336.403 + 582.667i 0.853815 + 1.47885i
\(395\) 2.96880 + 37.0076i 0.00751594 + 0.0936902i
\(396\) −28.2426 + 19.1379i −0.0713198 + 0.0483280i
\(397\) −281.690 + 162.634i −0.709546 + 0.409657i −0.810893 0.585195i \(-0.801018\pi\)
0.101347 + 0.994851i \(0.467685\pi\)
\(398\) 29.4533 0.0740033
\(399\) 46.3120 288.314i 0.116070 0.722591i
\(400\) −126.884 + 333.551i −0.317209 + 0.833877i
\(401\) 324.443 187.317i 0.809084 0.467125i −0.0375536 0.999295i \(-0.511956\pi\)
0.846638 + 0.532170i \(0.178623\pi\)
\(402\) −566.564 + 20.3913i −1.40936 + 0.0507245i
\(403\) −209.151 120.753i −0.518984 0.299636i
\(404\) −18.5257 + 10.6958i −0.0458558 + 0.0264748i
\(405\) −386.954 119.549i −0.955441 0.295183i
\(406\) −42.7836 + 216.335i −0.105378 + 0.532846i
\(407\) 12.1008 0.0297317
\(408\) 538.800 + 285.747i 1.32059 + 0.700359i
\(409\) 210.447 364.506i 0.514541 0.891212i −0.485316 0.874339i \(-0.661296\pi\)
0.999858 0.0168731i \(-0.00537114\pi\)
\(410\) −228.152 + 18.3027i −0.556469 + 0.0446407i
\(411\) −234.642 124.440i −0.570904 0.302773i
\(412\) 42.9891i 0.104342i
\(413\) 580.516 197.774i 1.40561 0.478871i
\(414\) −5.29096 + 10.9072i −0.0127801 + 0.0263459i
\(415\) 314.498 + 149.425i 0.757827 + 0.360061i
\(416\) −91.9090 53.0637i −0.220935 0.127557i
\(417\) 0.633524 + 17.6022i 0.00151924 + 0.0422116i
\(418\) −220.750 + 127.450i −0.528111 + 0.304905i
\(419\) 481.407i 1.14894i 0.818524 + 0.574472i \(0.194792\pi\)
−0.818524 + 0.574472i \(0.805208\pi\)
\(420\) 41.1090 + 3.26349i 0.0978785 + 0.00777022i
\(421\) −125.377 −0.297807 −0.148904 0.988852i \(-0.547574\pi\)
−0.148904 + 0.988852i \(0.547574\pi\)
\(422\) −337.898 585.256i −0.800706 1.38686i
\(423\) 162.406 + 239.670i 0.383938 + 0.566595i
\(424\) 72.4077 125.414i 0.170773 0.295787i
\(425\) −601.382 + 97.1122i −1.41502 + 0.228499i
\(426\) −153.502 245.071i −0.360333 0.575283i
\(427\) 717.452 + 141.887i 1.68022 + 0.332288i
\(428\) −31.2639 −0.0730465
\(429\) −433.642 229.977i −1.01082 0.536077i
\(430\) 545.443 43.7561i 1.26847 0.101758i
\(431\) −294.379 169.960i −0.683013 0.394338i 0.117976 0.993016i \(-0.462359\pi\)
−0.800989 + 0.598678i \(0.795693\pi\)
\(432\) −311.082 + 227.542i −0.720098 + 0.526718i
\(433\) 184.329i 0.425703i −0.977085 0.212852i \(-0.931725\pi\)
0.977085 0.212852i \(-0.0682751\pi\)
\(434\) 124.726 142.540i 0.287387 0.328433i
\(435\) −228.426 98.6229i −0.525118 0.226719i
\(436\) 27.8005 + 48.1518i 0.0637625 + 0.110440i
\(437\) 4.93081 8.54042i 0.0112833 0.0195433i
\(438\) 535.891 19.2873i 1.22349 0.0440349i
\(439\) −62.0405 107.457i −0.141322 0.244777i 0.786673 0.617371i \(-0.211802\pi\)
−0.927995 + 0.372593i \(0.878469\pi\)
\(440\) −228.549 331.468i −0.519430 0.753336i
\(441\) 89.7985 + 431.761i 0.203625 + 0.979049i
\(442\) 784.535i 1.77497i
\(443\) −280.029 485.025i −0.632121 1.09487i −0.987117 0.159998i \(-0.948851\pi\)
0.354997 0.934868i \(-0.384482\pi\)
\(444\) −1.47625 + 0.0531320i −0.00332490 + 0.000119667i
\(445\) 450.774 36.1617i 1.01298 0.0812622i
\(446\) −206.829 + 119.413i −0.463742 + 0.267742i
\(447\) −9.16399 14.6306i −0.0205011 0.0327307i
\(448\) 318.014 363.434i 0.709852 0.811236i
\(449\) 397.281i 0.884814i −0.896814 0.442407i \(-0.854125\pi\)
0.896814 0.442407i \(-0.145875\pi\)
\(450\) 122.832 409.304i 0.272960 0.909564i
\(451\) 116.315 201.463i 0.257904 0.446702i
\(452\) −19.5593 + 33.8778i −0.0432729 + 0.0749508i
\(453\) −696.738 369.507i −1.53805 0.815690i
\(454\) −743.788 −1.63830
\(455\) 235.635 + 544.526i 0.517879 + 1.19676i
\(456\) 294.954 184.746i 0.646828 0.405145i
\(457\) −608.910 + 351.555i −1.33241 + 0.769266i −0.985668 0.168695i \(-0.946045\pi\)
−0.346740 + 0.937961i \(0.612711\pi\)
\(458\) −120.322 + 208.405i −0.262713 + 0.455032i
\(459\) −601.882 265.666i −1.31129 0.578792i
\(460\) 1.25792 + 0.597667i 0.00273461 + 0.00129928i
\(461\) 780.964i 1.69406i −0.531542 0.847032i \(-0.678387\pi\)
0.531542 0.847032i \(-0.321613\pi\)
\(462\) 242.916 298.636i 0.525792 0.646399i
\(463\) 880.813i 1.90240i −0.308570 0.951202i \(-0.599850\pi\)
0.308570 0.951202i \(-0.400150\pi\)
\(464\) −205.056 + 118.389i −0.441930 + 0.255149i
\(465\) 127.554 + 171.453i 0.274309 + 0.368715i
\(466\) −355.259 + 615.327i −0.762359 + 1.32044i
\(467\) 25.2777 + 43.7822i 0.0541278 + 0.0937521i 0.891820 0.452391i \(-0.149429\pi\)
−0.837692 + 0.546143i \(0.816095\pi\)
\(468\) 53.9125 + 26.1523i 0.115198 + 0.0558811i
\(469\) −659.285 + 224.609i −1.40573 + 0.478911i
\(470\) −251.492 + 173.406i −0.535090 + 0.368948i
\(471\) −220.086 + 414.991i −0.467274 + 0.881086i
\(472\) 633.019 + 365.474i 1.34114 + 0.774309i
\(473\) −278.073 + 481.637i −0.587892 + 1.01826i
\(474\) −37.3771 19.8225i −0.0788546 0.0418197i
\(475\) −123.599 + 324.916i −0.260208 + 0.684033i
\(476\) 65.7172 + 12.9966i 0.138061 + 0.0273037i
\(477\) −68.1814 + 140.555i −0.142938 + 0.294664i
\(478\) −135.198 + 78.0569i −0.282842 + 0.163299i
\(479\) 568.259 + 328.084i 1.18634 + 0.684936i 0.957474 0.288521i \(-0.0931636\pi\)
0.228870 + 0.973457i \(0.426497\pi\)
\(480\) 56.0522 + 75.3430i 0.116775 + 0.156965i
\(481\) −10.6268 18.4062i −0.0220932 0.0382665i
\(482\) −395.948 −0.821469
\(483\) −2.36204 + 14.7048i −0.00489034 + 0.0304447i
\(484\) −10.9357 −0.0225945
\(485\) −194.086 + 408.495i −0.400177 + 0.842258i
\(486\) 351.957 298.548i 0.724192 0.614295i
\(487\) −701.394 404.950i −1.44023 0.831520i −0.442370 0.896833i \(-0.645862\pi\)
−0.997865 + 0.0653129i \(0.979195\pi\)
\(488\) 435.833 + 754.886i 0.893101 + 1.54690i
\(489\) −4.77038 7.61607i −0.00975537 0.0155748i
\(490\) −454.792 + 98.4376i −0.928146 + 0.200893i
\(491\) 406.082i 0.827051i 0.910492 + 0.413526i \(0.135703\pi\)
−0.910492 + 0.413526i \(0.864297\pi\)
\(492\) −13.3054 + 25.0885i −0.0270435 + 0.0509928i
\(493\) −350.028 202.089i −0.709996 0.409917i
\(494\) 387.722 + 223.851i 0.784863 + 0.453141i
\(495\) 271.613 + 338.920i 0.548714 + 0.684686i
\(496\) 203.364 0.410008
\(497\) −267.359 233.946i −0.537946 0.470716i
\(498\) −336.270 + 210.625i −0.675240 + 0.422941i
\(499\) 341.349 + 591.233i 0.684065 + 1.18484i 0.973730 + 0.227708i \(0.0731230\pi\)
−0.289664 + 0.957128i \(0.593544\pi\)
\(500\) −47.1342 13.7299i −0.0942685 0.0274597i
\(501\) 21.7747 + 605.002i 0.0434625 + 1.20759i
\(502\) 459.442 265.259i 0.915223 0.528404i
\(503\) 296.107 0.588682 0.294341 0.955701i \(-0.404900\pi\)
0.294341 + 0.955701i \(0.404900\pi\)
\(504\) −316.792 + 419.417i −0.628555 + 0.832177i
\(505\) 154.591 + 224.205i 0.306121 + 0.443971i
\(506\) 11.2589 6.50030i 0.0222507 0.0128465i
\(507\) 12.7729 + 354.891i 0.0251932 + 0.699983i
\(508\) 30.3524 + 17.5240i 0.0597489 + 0.0344960i
\(509\) 722.798 417.308i 1.42004 0.819858i 0.423735 0.905786i \(-0.360719\pi\)
0.996301 + 0.0859284i \(0.0273856\pi\)
\(510\) 275.166 637.328i 0.539541 1.24966i
\(511\) 623.592 212.449i 1.22034 0.415751i
\(512\) 565.746 1.10497
\(513\) −303.029 + 221.652i −0.590700 + 0.432070i
\(514\) 153.229 265.400i 0.298110 0.516342i
\(515\) 545.536 43.7636i 1.05929 0.0849778i
\(516\) 31.8091 59.9789i 0.0616456 0.116238i
\(517\) 310.477i 0.600535i
\(518\) 15.7780 5.37533i 0.0304594 0.0103771i
\(519\) 39.5695 24.7846i 0.0762418 0.0477546i
\(520\) −303.476 + 638.732i −0.583608 + 1.22833i
\(521\) 619.025 + 357.394i 1.18815 + 0.685977i 0.957885 0.287152i \(-0.0927083\pi\)
0.230262 + 0.973129i \(0.426042\pi\)
\(522\) 234.720 159.052i 0.449654 0.304697i
\(523\) 195.670 112.970i 0.374130 0.216004i −0.301131 0.953583i \(-0.597364\pi\)
0.675261 + 0.737579i \(0.264031\pi\)
\(524\) 43.9751i 0.0839219i
\(525\) −0.435566 525.000i −0.000829650 1.00000i
\(526\) 58.9102 0.111997
\(527\) 173.570 + 300.632i 0.329355 + 0.570460i
\(528\) 413.061 14.8665i 0.782312 0.0281563i
\(529\) 264.249 457.692i 0.499525 0.865202i
\(530\) −148.884 70.7385i −0.280914 0.133469i
\(531\) −709.440 344.142i −1.33605 0.648101i
\(532\) 25.1741 28.7695i 0.0473197 0.0540781i
\(533\) −408.586 −0.766577
\(534\) −241.450 + 455.274i −0.452153 + 0.852574i
\(535\) 31.8272 + 396.742i 0.0594900 + 0.741574i
\(536\) −718.912 415.064i −1.34125 0.774373i
\(537\) −44.0760 + 83.1090i −0.0820781 + 0.154765i
\(538\) 596.312i 1.10839i
\(539\) 180.019 437.333i 0.333987 0.811378i
\(540\) −34.6240 40.1544i −0.0641185 0.0743600i
\(541\) −315.187 545.919i −0.582600 1.00909i −0.995170 0.0981672i \(-0.968702\pi\)
0.412570 0.910926i \(-0.364631\pi\)
\(542\) −243.251 + 421.323i −0.448803 + 0.777349i
\(543\) −13.5205 375.661i −0.0248996 0.691825i
\(544\) 76.2736 + 132.110i 0.140209 + 0.242849i
\(545\) 582.750 401.810i 1.06927 0.737267i
\(546\) −667.574 107.233i −1.22266 0.196397i
\(547\) 300.639i 0.549615i 0.961499 + 0.274807i \(0.0886141\pi\)
−0.961499 + 0.274807i \(0.911386\pi\)
\(548\) −17.3854 30.1124i −0.0317251 0.0549496i
\(549\) −527.477 778.422i −0.960796 1.41789i
\(550\) −355.280 + 289.481i −0.645963 + 0.526328i
\(551\) −199.747 + 115.324i −0.362518 + 0.209300i
\(552\) −15.0434 + 9.42254i −0.0272526 + 0.0170698i
\(553\) −50.9896 10.0839i −0.0922053 0.0182350i
\(554\) 621.036i 1.12100i
\(555\) 2.17710 + 18.6797i 0.00392271 + 0.0336572i
\(556\) −1.15295 + 1.99696i −0.00207365 + 0.00359166i
\(557\) −217.246 + 376.281i −0.390028 + 0.675549i −0.992453 0.122627i \(-0.960868\pi\)
0.602425 + 0.798176i \(0.294201\pi\)
\(558\) −242.891 + 17.5065i −0.435288 + 0.0313736i
\(559\) 976.805 1.74741
\(560\) −401.100 297.886i −0.716250 0.531939i
\(561\) 374.523 + 597.938i 0.667598 + 1.06584i
\(562\) 667.404 385.326i 1.18755 0.685633i
\(563\) 227.729 394.438i 0.404492 0.700601i −0.589770 0.807571i \(-0.700782\pi\)
0.994262 + 0.106970i \(0.0341150\pi\)
\(564\) 1.36324 + 37.8770i 0.00241709 + 0.0671579i
\(565\) 449.825 + 213.722i 0.796150 + 0.378269i
\(566\) 863.714i 1.52600i
\(567\) 308.327 475.840i 0.543786 0.839224i
\(568\) 423.425i 0.745466i
\(569\) 374.954 216.480i 0.658970 0.380457i −0.132914 0.991128i \(-0.542434\pi\)
0.791884 + 0.610671i \(0.209100\pi\)
\(570\) −236.458 317.838i −0.414839 0.557610i
\(571\) −107.252 + 185.766i −0.187832 + 0.325335i −0.944527 0.328433i \(-0.893479\pi\)
0.756695 + 0.653768i \(0.226813\pi\)
\(572\) −32.1299 55.6507i −0.0561712 0.0972914i
\(573\) 77.3139 + 123.434i 0.134928 + 0.215418i
\(574\) 62.1676 314.351i 0.108306 0.547650i
\(575\) 6.30387 16.5716i 0.0109633 0.0288201i
\(576\) −619.298 + 44.6362i −1.07517 + 0.0774935i
\(577\) −179.599 103.691i −0.311263 0.179708i 0.336228 0.941780i \(-0.390849\pi\)
−0.647492 + 0.762073i \(0.724182\pi\)
\(578\) 289.398 501.253i 0.500689 0.867219i
\(579\) 24.2366 45.7002i 0.0418595 0.0789296i
\(580\) −18.4899 26.8161i −0.0318791 0.0462347i
\(581\) −321.005 + 366.852i −0.552504 + 0.631415i
\(582\) −273.576 436.774i −0.470062 0.750470i
\(583\) 145.086 83.7655i 0.248861 0.143680i
\(584\) 679.990 + 392.593i 1.16437 + 0.672247i
\(585\) 276.992 710.779i 0.473491 1.21501i
\(586\) −134.763 233.416i −0.229971 0.398321i
\(587\) 473.066 0.805905 0.402953 0.915221i \(-0.367984\pi\)
0.402953 + 0.915221i \(0.367984\pi\)
\(588\) −20.0414 + 54.1435i −0.0340841 + 0.0920807i
\(589\) 198.099 0.336332
\(590\) 357.048 751.485i 0.605166 1.27370i
\(591\) −38.2241 1062.04i −0.0646769 1.79702i
\(592\) 15.4992 + 8.94847i 0.0261811 + 0.0151157i
\(593\) −220.683 382.234i −0.372146 0.644576i 0.617749 0.786375i \(-0.288045\pi\)
−0.989895 + 0.141799i \(0.954711\pi\)
\(594\) −492.065 + 53.3141i −0.828392 + 0.0897544i
\(595\) 98.0266 847.189i 0.164751 1.42385i
\(596\) 2.26008i 0.00379207i
\(597\) −41.1006 21.7973i −0.0688453 0.0365113i
\(598\) −19.7749 11.4170i −0.0330683 0.0190920i
\(599\) −98.8142 57.0504i −0.164965 0.0952427i 0.415244 0.909710i \(-0.363696\pi\)
−0.580210 + 0.814467i \(0.697029\pi\)
\(600\) 470.560 412.442i 0.784267 0.687404i
\(601\) −1061.91 −1.76691 −0.883454 0.468518i \(-0.844788\pi\)
−0.883454 + 0.468518i \(0.844788\pi\)
\(602\) −148.624 + 751.518i −0.246884 + 1.24837i
\(603\) 805.703 + 390.837i 1.33616 + 0.648155i
\(604\) −51.6236 89.4148i −0.0854696 0.148038i
\(605\) 11.1328 + 138.776i 0.0184013 + 0.229382i
\(606\) −310.143 + 11.1624i −0.511787 + 0.0184198i
\(607\) 187.998 108.541i 0.309716 0.178815i −0.337083 0.941475i \(-0.609440\pi\)
0.646800 + 0.762660i \(0.276107\pi\)
\(608\) 87.0527 0.143179
\(609\) 219.804 270.223i 0.360926 0.443716i
\(610\) 816.821 563.203i 1.33905 0.923284i
\(611\) −472.257 + 272.658i −0.772925 + 0.446248i
\(612\) −48.3158 71.3019i −0.0789474 0.116506i
\(613\) −40.6966 23.4962i −0.0663893 0.0383299i 0.466438 0.884554i \(-0.345537\pi\)
−0.532827 + 0.846224i \(0.678870\pi\)
\(614\) −308.935 + 178.364i −0.503152 + 0.290495i
\(615\) 331.920 + 143.306i 0.539708 + 0.233018i
\(616\) 533.558 181.776i 0.866166 0.295091i
\(617\) 140.650 0.227958 0.113979 0.993483i \(-0.463640\pi\)
0.113979 + 0.993483i \(0.463640\pi\)
\(618\) −292.207 + 550.982i −0.472827 + 0.891557i
\(619\) 41.4260 71.7519i 0.0669241 0.115916i −0.830622 0.556837i \(-0.812015\pi\)
0.897546 + 0.440921i \(0.145348\pi\)
\(620\) 2.23709 + 27.8865i 0.00360821 + 0.0449782i
\(621\) 15.4553 11.3048i 0.0248877 0.0182042i
\(622\) 512.826i 0.824479i
\(623\) −122.828 + 621.082i −0.197156 + 0.996922i
\(624\) −385.359 615.239i −0.617563 0.985960i
\(625\) −126.250 + 612.116i −0.202000 + 0.979386i
\(626\) 104.998 + 60.6206i 0.167728 + 0.0968381i
\(627\) 402.367 14.4816i 0.641734 0.0230967i
\(628\) −53.2572 + 30.7481i −0.0848045 + 0.0489619i
\(629\) 30.5499i 0.0485690i
\(630\) 504.703 + 321.255i 0.801115 + 0.509929i
\(631\) 243.800 0.386371 0.193186 0.981162i \(-0.438118\pi\)
0.193186 + 0.981162i \(0.438118\pi\)
\(632\) −30.9748 53.6499i −0.0490108 0.0848891i
\(633\) 38.3939 + 1066.76i 0.0606539 + 1.68525i
\(634\) −188.484 + 326.464i −0.297293 + 0.514927i
\(635\) 191.482 403.015i 0.301546 0.634670i
\(636\) −17.3322 + 10.8561i −0.0272519 + 0.0170694i
\(637\) −823.305 + 110.240i −1.29247 + 0.173061i
\(638\) −304.064 −0.476589
\(639\) 32.8365 + 455.585i 0.0513874 + 0.712965i
\(640\) −42.3764 528.244i −0.0662131 0.825381i
\(641\) −115.942 66.9392i −0.180877 0.104429i 0.406828 0.913505i \(-0.366635\pi\)
−0.587705 + 0.809076i \(0.699968\pi\)
\(642\) −400.703 212.508i −0.624148 0.331010i
\(643\) 681.323i 1.05960i 0.848122 + 0.529801i \(0.177733\pi\)
−0.848122 + 0.529801i \(0.822267\pi\)
\(644\) −1.28394 + 1.46732i −0.00199370 + 0.00227845i
\(645\) −793.521 342.602i −1.23027 0.531166i
\(646\) −321.763 557.311i −0.498086 0.862710i
\(647\) 76.8005 133.022i 0.118702 0.205599i −0.800551 0.599264i \(-0.795460\pi\)
0.919254 + 0.393666i \(0.128793\pi\)
\(648\) 668.801 96.9119i 1.03210 0.149555i
\(649\) 422.801 + 732.313i 0.651466 + 1.12837i
\(650\) 752.324 + 286.186i 1.15742 + 0.440287i
\(651\) −279.537 + 106.602i −0.429397 + 0.163752i
\(652\) 1.17650i 0.00180445i
\(653\) −122.460 212.107i −0.187534 0.324819i 0.756893 0.653538i \(-0.226716\pi\)
−0.944428 + 0.328720i \(0.893383\pi\)
\(654\) 29.0131 + 806.118i 0.0443625 + 1.23260i
\(655\) 558.049 44.7674i 0.851983 0.0683471i
\(656\) 297.961 172.028i 0.454209 0.262237i
\(657\) −762.082 369.678i −1.15994 0.562675i
\(658\) −137.918 404.823i −0.209601 0.615233i
\(659\) 758.783i 1.15142i −0.817655 0.575708i \(-0.804727\pi\)
0.817655 0.575708i \(-0.195273\pi\)
\(660\) 6.58242 + 56.4778i 0.00997337 + 0.0855724i
\(661\) −495.701 + 858.579i −0.749926 + 1.29891i 0.197932 + 0.980216i \(0.436578\pi\)
−0.947858 + 0.318694i \(0.896756\pi\)
\(662\) −52.3842 + 90.7321i −0.0791302 + 0.137058i
\(663\) 580.604 1094.78i 0.875723 1.65125i
\(664\) −580.995 −0.874992
\(665\) −390.716 290.174i −0.587543 0.436352i
\(666\) −19.2820 9.35348i −0.0289520 0.0140443i
\(667\) 10.1876 5.88183i 0.0152738 0.00881834i
\(668\) −39.6277 + 68.6371i −0.0593228 + 0.102750i
\(669\) 376.993 13.5684i 0.563517 0.0202816i
\(670\) −405.495 + 853.452i −0.605217 + 1.27381i
\(671\) 1008.39i 1.50282i
\(672\) −122.840 + 46.8453i −0.182797 + 0.0697103i
\(673\) 1101.01i 1.63598i 0.575235 + 0.817988i \(0.304911\pi\)
−0.575235 + 0.817988i \(0.695089\pi\)
\(674\) 494.014 285.219i 0.732959 0.423174i
\(675\) −474.316 + 480.260i −0.702690 + 0.711496i
\(676\) −23.2454 + 40.2622i −0.0343867 + 0.0595595i
\(677\) −68.0959 117.946i −0.100585 0.174218i 0.811341 0.584573i \(-0.198738\pi\)
−0.911926 + 0.410355i \(0.865405\pi\)
\(678\) −480.964 + 301.255i −0.709386 + 0.444329i
\(679\) −476.497 416.947i −0.701763 0.614060i
\(680\) 836.830 576.999i 1.23063 0.848529i
\(681\) 1037.92 + 550.449i 1.52411 + 0.808295i
\(682\) 226.167 + 130.577i 0.331623 + 0.191462i
\(683\) −607.226 + 1051.75i −0.889057 + 1.53989i −0.0480644 + 0.998844i \(0.515305\pi\)
−0.840992 + 0.541047i \(0.818028\pi\)
\(684\) −49.0238 + 3.53342i −0.0716722 + 0.00516582i
\(685\) −364.431 + 251.277i −0.532015 + 0.366828i
\(686\) 40.4539 650.195i 0.0589707 0.947806i
\(687\) 322.136 201.772i 0.468903 0.293700i
\(688\) −712.334 + 411.266i −1.03537 + 0.597771i
\(689\) −254.827 147.124i −0.369850 0.213533i
\(690\) 12.0600 + 16.2106i 0.0174783 + 0.0234936i
\(691\) −580.261 1005.04i −0.839741 1.45447i −0.890111 0.455744i \(-0.849373\pi\)
0.0503694 0.998731i \(-0.483960\pi\)
\(692\) 6.11253 0.00883314
\(693\) −559.987 + 236.959i −0.808062 + 0.341933i
\(694\) −271.116 −0.390657
\(695\) 26.5154 + 12.5981i 0.0381517 + 0.0181267i
\(696\) 414.894 14.9325i 0.596111 0.0214547i
\(697\) 508.616 + 293.650i 0.729722 + 0.421305i
\(698\) 43.7545 + 75.7849i 0.0626855 + 0.108574i
\(699\) 951.126 595.744i 1.36070 0.852281i
\(700\) 36.4356 58.2781i 0.0520508 0.0832544i
\(701\) 1106.20i 1.57803i 0.614373 + 0.789016i \(0.289409\pi\)
−0.614373 + 0.789016i \(0.710591\pi\)
\(702\) 513.222 + 701.646i 0.731085 + 0.999496i
\(703\) 15.0980 + 8.71681i 0.0214765 + 0.0123994i
\(704\) 576.657 + 332.933i 0.819115 + 0.472916i
\(705\) 479.276 55.8591i 0.679824 0.0792327i
\(706\) 619.699 0.877760
\(707\) −360.899 + 122.953i −0.510466 + 0.173909i
\(708\) −54.7957 87.4832i −0.0773950 0.123564i
\(709\) −400.014 692.845i −0.564195 0.977214i −0.997124 0.0757864i \(-0.975853\pi\)
0.432929 0.901428i \(-0.357480\pi\)
\(710\) −480.416 + 38.5395i −0.676642 + 0.0542810i
\(711\) 37.4880 + 55.3227i 0.0527257 + 0.0778097i
\(712\) −653.488 + 377.291i −0.917820 + 0.529903i
\(713\) −10.1036 −0.0141705
\(714\) 753.943 + 613.270i 1.05594 + 0.858922i
\(715\) −673.504 + 464.386i −0.941964 + 0.649491i
\(716\) −10.6657 + 6.15782i −0.0148962 + 0.00860031i
\(717\) 246.430 8.86928i 0.343695 0.0123700i
\(718\) −149.133 86.1018i −0.207706 0.119919i
\(719\) −679.759 + 392.459i −0.945423 + 0.545840i −0.891656 0.452714i \(-0.850456\pi\)
−0.0537665 + 0.998554i \(0.517123\pi\)
\(720\) 97.2645 + 634.958i 0.135090 + 0.881886i
\(721\) −148.649 + 751.646i −0.206171 + 1.04251i
\(722\) 318.404 0.441002
\(723\) 552.526 + 293.026i 0.764213 + 0.405292i
\(724\) 24.6058 42.6185i 0.0339859 0.0588653i
\(725\) −321.477 + 261.938i −0.443416 + 0.361294i
\(726\) −140.161 74.3330i −0.193060 0.102387i
\(727\) 579.070i 0.796520i −0.917273 0.398260i \(-0.869614\pi\)
0.917273 0.398260i \(-0.130386\pi\)
\(728\) −745.060 651.947i −1.02343 0.895531i
\(729\) −712.083 + 156.138i −0.976794 + 0.214181i
\(730\) 383.542 807.247i 0.525400 1.10582i
\(731\) −1215.95 702.028i −1.66340 0.960367i
\(732\) −4.42765 123.021i −0.00604870 0.168061i
\(733\) 590.643 341.008i 0.805789 0.465223i −0.0397023 0.999212i \(-0.512641\pi\)
0.845491 + 0.533989i \(0.179308\pi\)
\(734\) 559.762i 0.762618i
\(735\) 707.489 + 199.209i 0.962570 + 0.271033i
\(736\) −4.43992 −0.00603249
\(737\) −480.170 831.679i −0.651520 1.12847i
\(738\) −341.065 + 231.114i −0.462147 + 0.313162i
\(739\) −439.884 + 761.902i −0.595243 + 1.03099i 0.398270 + 0.917268i \(0.369611\pi\)
−0.993513 + 0.113722i \(0.963723\pi\)
\(740\) −1.05657 + 2.22378i −0.00142780 + 0.00300511i
\(741\) −375.383 599.312i −0.506590 0.808788i
\(742\) 151.965 173.669i 0.204804 0.234055i
\(743\) −77.0002 −0.103634 −0.0518171 0.998657i \(-0.516501\pi\)
−0.0518171 + 0.998657i \(0.516501\pi\)
\(744\) −315.016 167.065i −0.423408 0.224550i
\(745\) −28.6806 + 2.30080i −0.0384975 + 0.00308832i
\(746\) −66.8368 38.5883i −0.0895936 0.0517269i
\(747\) 625.123 45.0561i 0.836844 0.0603160i
\(748\) 92.3669i 0.123485i
\(749\) −546.636 108.106i −0.729821 0.144333i
\(750\) −510.785 496.356i −0.681046 0.661808i
\(751\) −399.639 692.195i −0.532142 0.921697i −0.999296 0.0375212i \(-0.988054\pi\)
0.467154 0.884176i \(-0.345279\pi\)
\(752\) 229.595 397.671i 0.305313 0.528818i
\(753\) −837.436 + 30.1403i −1.11213 + 0.0400269i
\(754\) 267.026 + 462.503i 0.354146 + 0.613399i
\(755\) −1082.13 + 746.135i −1.43328 + 0.988259i
\(756\) 67.2759 31.3670i 0.0889893 0.0414907i
\(757\) 393.905i 0.520350i 0.965561 + 0.260175i \(0.0837803\pi\)
−0.965561 + 0.260175i \(0.916220\pi\)
\(758\) −30.5733 52.9545i −0.0403342 0.0698608i
\(759\) −20.5218 + 0.738602i −0.0270379 + 0.000973126i
\(760\) −46.3841 578.202i −0.0610317 0.760792i
\(761\) 654.465 377.855i 0.860006 0.496525i −0.00400819 0.999992i \(-0.501276\pi\)
0.864014 + 0.503467i \(0.167943\pi\)
\(762\) 269.906 + 430.914i 0.354207 + 0.565504i
\(763\) 319.578 + 938.044i 0.418845 + 1.22942i
\(764\) 19.0676i 0.0249576i