Properties

Label 105.3.o.b.74.13
Level 105
Weight 3
Character 105.74
Analytic conductor 2.861
Analytic rank 0
Dimension 40
CM no
Inner twists 8

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.o (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 74.13
Character \(\chi\) \(=\) 105.74
Dual form 105.3.o.b.44.13

$q$-expansion

\(f(q)\) \(=\) \(q+(0.897800 + 1.55504i) q^{2} +(-2.91099 - 0.725349i) q^{3} +(0.387909 - 0.671879i) q^{4} +(3.31295 - 3.74491i) q^{5} +(-1.48554 - 5.17791i) q^{6} +(-1.39571 - 6.85945i) q^{7} +8.57546 q^{8} +(7.94774 + 4.22297i) q^{9} +O(q^{10})\) \(q+(0.897800 + 1.55504i) q^{2} +(-2.91099 - 0.725349i) q^{3} +(0.387909 - 0.671879i) q^{4} +(3.31295 - 3.74491i) q^{5} +(-1.48554 - 5.17791i) q^{6} +(-1.39571 - 6.85945i) q^{7} +8.57546 q^{8} +(7.94774 + 4.22297i) q^{9} +(8.79784 + 1.78957i) q^{10} +(-1.00783 - 0.581870i) q^{11} +(-1.61655 + 1.67446i) q^{12} +12.4799i q^{13} +(9.41362 - 8.32879i) q^{14} +(-12.3603 + 8.49836i) q^{15} +(6.14742 + 10.6476i) q^{16} +(9.31485 - 16.1338i) q^{17} +(0.568609 + 16.1504i) q^{18} +(-15.2033 - 26.3329i) q^{19} +(-1.23100 - 3.67859i) q^{20} +(-0.912610 + 20.9802i) q^{21} -2.08961i q^{22} +(13.7201 + 23.7640i) q^{23} +(-24.9631 - 6.22021i) q^{24} +(-3.04875 - 24.8134i) q^{25} +(-19.4067 + 11.2045i) q^{26} +(-20.0727 - 18.0579i) q^{27} +(-5.15012 - 1.72310i) q^{28} +52.6691i q^{29} +(-24.3124 - 11.5909i) q^{30} +(-17.2838 + 29.9364i) q^{31} +(6.11262 - 10.5874i) q^{32} +(2.51172 + 2.42485i) q^{33} +33.4515 q^{34} +(-30.3119 - 17.4982i) q^{35} +(5.92032 - 3.70178i) q^{36} +(0.357210 - 0.206235i) q^{37} +(27.2991 - 47.2834i) q^{38} +(9.05229 - 36.3289i) q^{39} +(28.4101 - 32.1144i) q^{40} +17.2132i q^{41} +(-33.4442 + 17.4169i) q^{42} -7.86972i q^{43} +(-0.781892 + 0.451426i) q^{44} +(42.1451 - 15.7731i) q^{45} +(-24.6359 + 42.6706i) q^{46} +(17.4089 + 30.1530i) q^{47} +(-10.1718 - 35.4542i) q^{48} +(-45.1040 + 19.1475i) q^{49} +(35.8486 - 27.0184i) q^{50} +(-38.8181 + 40.2088i) q^{51} +(8.38498 + 4.84107i) q^{52} +(-17.8667 + 30.9460i) q^{53} +(10.0595 - 47.4261i) q^{54} +(-5.51794 + 1.84653i) q^{55} +(-11.9688 - 58.8229i) q^{56} +(25.1561 + 87.6825i) q^{57} +(-81.9023 + 47.2863i) q^{58} +(32.3428 + 18.6731i) q^{59} +(0.915180 + 11.6012i) q^{60} +(25.4414 + 44.0659i) q^{61} -62.0697 q^{62} +(17.8745 - 60.4111i) q^{63} +71.1310 q^{64} +(46.7362 + 41.3453i) q^{65} +(-1.51570 + 6.08285i) q^{66} +(24.9784 + 14.4213i) q^{67} +(-7.22664 - 12.5169i) q^{68} +(-22.7020 - 79.1285i) q^{69} +(-0.00374100 - 62.8460i) q^{70} -66.8477i q^{71} +(68.1555 + 36.2139i) q^{72} +(46.7701 + 27.0027i) q^{73} +(0.641406 + 0.370316i) q^{74} +(-9.12351 + 74.4430i) q^{75} -23.5900 q^{76} +(-2.58468 + 7.72527i) q^{77} +(64.6199 - 18.5395i) q^{78} +(-16.6402 - 28.8216i) q^{79} +(60.2405 + 12.2535i) q^{80} +(45.3330 + 67.1261i) q^{81} +(-26.7672 + 15.4540i) q^{82} -72.0714 q^{83} +(13.7421 + 8.75156i) q^{84} +(-29.5601 - 88.3338i) q^{85} +(12.2377 - 7.06544i) q^{86} +(38.2035 - 153.319i) q^{87} +(-8.64260 - 4.98981i) q^{88} +(41.4850 - 23.9513i) q^{89} +(62.3656 + 51.3760i) q^{90} +(85.6053 - 17.4183i) q^{91} +21.2887 q^{92} +(72.0274 - 74.6079i) q^{93} +(-31.2594 + 54.1428i) q^{94} +(-148.982 - 30.3045i) q^{95} +(-25.4733 + 26.3860i) q^{96} -66.7480i q^{97} +(-70.2695 - 52.9477i) q^{98} +(-5.55274 - 8.88059i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40q - 44q^{4} + 80q^{6} + 12q^{9} + O(q^{10}) \) \( 40q - 44q^{4} + 80q^{6} + 12q^{9} + 62q^{10} + 84q^{15} - 116q^{16} - 56q^{19} + 36q^{21} - 12q^{24} - 6q^{25} - 20q^{30} - 444q^{31} + 256q^{34} - 688q^{36} + 168q^{39} + 54q^{40} - 40q^{45} + 304q^{46} + 156q^{49} + 156q^{51} - 140q^{54} - 500q^{55} - 130q^{60} + 288q^{61} + 472q^{64} + 340q^{66} - 272q^{69} + 710q^{70} - 524q^{75} + 400q^{76} - 340q^{79} + 496q^{84} + 896q^{85} + 1356q^{90} - 656q^{91} - 560q^{94} + 472q^{96} - 336q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.897800 + 1.55504i 0.448900 + 0.777518i 0.998315 0.0580320i \(-0.0184826\pi\)
−0.549415 + 0.835550i \(0.685149\pi\)
\(3\) −2.91099 0.725349i −0.970330 0.241783i
\(4\) 0.387909 0.671879i 0.0969773 0.167970i
\(5\) 3.31295 3.74491i 0.662590 0.748983i
\(6\) −1.48554 5.17791i −0.247591 0.862986i
\(7\) −1.39571 6.85945i −0.199386 0.979921i
\(8\) 8.57546 1.07193
\(9\) 7.94774 + 4.22297i 0.883082 + 0.469219i
\(10\) 8.79784 + 1.78957i 0.879784 + 0.178957i
\(11\) −1.00783 0.581870i −0.0916208 0.0528973i 0.453490 0.891262i \(-0.350179\pi\)
−0.545110 + 0.838364i \(0.683512\pi\)
\(12\) −1.61655 + 1.67446i −0.134712 + 0.139539i
\(13\) 12.4799i 0.959993i 0.877270 + 0.479996i \(0.159362\pi\)
−0.877270 + 0.479996i \(0.840638\pi\)
\(14\) 9.41362 8.32879i 0.672401 0.594913i
\(15\) −12.3603 + 8.49836i −0.824022 + 0.566558i
\(16\) 6.14742 + 10.6476i 0.384213 + 0.665477i
\(17\) 9.31485 16.1338i 0.547933 0.949047i −0.450483 0.892785i \(-0.648748\pi\)
0.998416 0.0562623i \(-0.0179183\pi\)
\(18\) 0.568609 + 16.1504i 0.0315894 + 0.897244i
\(19\) −15.2033 26.3329i −0.800174 1.38594i −0.919501 0.393087i \(-0.871407\pi\)
0.119327 0.992855i \(-0.461926\pi\)
\(20\) −1.23100 3.67859i −0.0615502 0.183929i
\(21\) −0.912610 + 20.9802i −0.0434576 + 0.999055i
\(22\) 2.08961i 0.0949824i
\(23\) 13.7201 + 23.7640i 0.596527 + 1.03322i 0.993329 + 0.115311i \(0.0367865\pi\)
−0.396802 + 0.917904i \(0.629880\pi\)
\(24\) −24.9631 6.22021i −1.04013 0.259175i
\(25\) −3.04875 24.8134i −0.121950 0.992536i
\(26\) −19.4067 + 11.2045i −0.746412 + 0.430941i
\(27\) −20.0727 18.0579i −0.743432 0.668812i
\(28\) −5.15012 1.72310i −0.183933 0.0615392i
\(29\) 52.6691i 1.81617i 0.418781 + 0.908087i \(0.362457\pi\)
−0.418781 + 0.908087i \(0.637543\pi\)
\(30\) −24.3124 11.5909i −0.810412 0.386364i
\(31\) −17.2838 + 29.9364i −0.557542 + 0.965692i 0.440158 + 0.897920i \(0.354922\pi\)
−0.997701 + 0.0677718i \(0.978411\pi\)
\(32\) 6.11262 10.5874i 0.191019 0.330855i
\(33\) 2.51172 + 2.42485i 0.0761128 + 0.0734802i
\(34\) 33.4515 0.983868
\(35\) −30.3119 17.4982i −0.866055 0.499948i
\(36\) 5.92032 3.70178i 0.164453 0.102827i
\(37\) 0.357210 0.206235i 0.00965431 0.00557392i −0.495165 0.868799i \(-0.664892\pi\)
0.504819 + 0.863225i \(0.331559\pi\)
\(38\) 27.2991 47.2834i 0.718396 1.24430i
\(39\) 9.05229 36.3289i 0.232110 0.931510i
\(40\) 28.4101 32.1144i 0.710252 0.802859i
\(41\) 17.2132i 0.419835i 0.977719 + 0.209918i \(0.0673195\pi\)
−0.977719 + 0.209918i \(0.932680\pi\)
\(42\) −33.4442 + 17.4169i −0.796291 + 0.414687i
\(43\) 7.86972i 0.183017i −0.995804 0.0915084i \(-0.970831\pi\)
0.995804 0.0915084i \(-0.0291688\pi\)
\(44\) −0.781892 + 0.451426i −0.0177703 + 0.0102597i
\(45\) 42.1451 15.7731i 0.936558 0.350513i
\(46\) −24.6359 + 42.6706i −0.535562 + 0.927621i
\(47\) 17.4089 + 30.1530i 0.370401 + 0.641554i 0.989627 0.143659i \(-0.0458868\pi\)
−0.619226 + 0.785213i \(0.712553\pi\)
\(48\) −10.1718 35.4542i −0.211913 0.738629i
\(49\) −45.1040 + 19.1475i −0.920490 + 0.390766i
\(50\) 35.8486 27.0184i 0.716971 0.540368i
\(51\) −38.8181 + 40.2088i −0.761139 + 0.788408i
\(52\) 8.38498 + 4.84107i 0.161250 + 0.0930975i
\(53\) −17.8667 + 30.9460i −0.337107 + 0.583886i −0.983887 0.178790i \(-0.942782\pi\)
0.646780 + 0.762676i \(0.276115\pi\)
\(54\) 10.0595 47.4261i 0.186286 0.878261i
\(55\) −5.51794 + 1.84653i −0.100326 + 0.0335732i
\(56\) −11.9688 58.8229i −0.213729 1.05041i
\(57\) 25.1561 + 87.6825i 0.441336 + 1.53829i
\(58\) −81.9023 + 47.2863i −1.41211 + 0.815281i
\(59\) 32.3428 + 18.6731i 0.548184 + 0.316494i 0.748389 0.663260i \(-0.230828\pi\)
−0.200205 + 0.979754i \(0.564161\pi\)
\(60\) 0.915180 + 11.6012i 0.0152530 + 0.193354i
\(61\) 25.4414 + 44.0659i 0.417073 + 0.722391i 0.995644 0.0932408i \(-0.0297226\pi\)
−0.578571 + 0.815632i \(0.696389\pi\)
\(62\) −62.0697 −1.00112
\(63\) 17.8745 60.4111i 0.283723 0.958906i
\(64\) 71.1310 1.11142
\(65\) 46.7362 + 41.3453i 0.719018 + 0.636081i
\(66\) −1.51570 + 6.08285i −0.0229652 + 0.0921643i
\(67\) 24.9784 + 14.4213i 0.372812 + 0.215243i 0.674686 0.738105i \(-0.264279\pi\)
−0.301874 + 0.953348i \(0.597612\pi\)
\(68\) −7.22664 12.5169i −0.106274 0.184072i
\(69\) −22.7020 79.1285i −0.329014 1.14679i
\(70\) −0.00374100 62.8460i −5.34428e−5 0.897800i
\(71\) 66.8477i 0.941518i −0.882262 0.470759i \(-0.843980\pi\)
0.882262 0.470759i \(-0.156020\pi\)
\(72\) 68.1555 + 36.2139i 0.946604 + 0.502971i
\(73\) 46.7701 + 27.0027i 0.640686 + 0.369900i 0.784879 0.619649i \(-0.212725\pi\)
−0.144192 + 0.989550i \(0.546058\pi\)
\(74\) 0.641406 + 0.370316i 0.00866765 + 0.00500427i
\(75\) −9.12351 + 74.4430i −0.121647 + 0.992573i
\(76\) −23.5900 −0.310395
\(77\) −2.58468 + 7.72527i −0.0335672 + 0.100328i
\(78\) 64.6199 18.5395i 0.828460 0.237685i
\(79\) −16.6402 28.8216i −0.210635 0.364831i 0.741278 0.671198i \(-0.234220\pi\)
−0.951914 + 0.306367i \(0.900887\pi\)
\(80\) 60.2405 + 12.2535i 0.753007 + 0.153169i
\(81\) 45.3330 + 67.1261i 0.559667 + 0.828718i
\(82\) −26.7672 + 15.4540i −0.326429 + 0.188464i
\(83\) −72.0714 −0.868330 −0.434165 0.900833i \(-0.642957\pi\)
−0.434165 + 0.900833i \(0.642957\pi\)
\(84\) 13.7421 + 8.75156i 0.163597 + 0.104185i
\(85\) −29.5601 88.3338i −0.347765 1.03922i
\(86\) 12.2377 7.06544i 0.142299 0.0821562i
\(87\) 38.2035 153.319i 0.439120 1.76229i
\(88\) −8.64260 4.98981i −0.0982114 0.0567024i
\(89\) 41.4850 23.9513i 0.466123 0.269116i −0.248492 0.968634i \(-0.579935\pi\)
0.714615 + 0.699518i \(0.246602\pi\)
\(90\) 62.3656 + 51.3760i 0.692951 + 0.570845i
\(91\) 85.6053 17.4183i 0.940717 0.191410i
\(92\) 21.2887 0.231398
\(93\) 72.0274 74.6079i 0.774488 0.802236i
\(94\) −31.2594 + 54.1428i −0.332546 + 0.575987i
\(95\) −148.982 30.3045i −1.56823 0.318994i
\(96\) −25.4733 + 26.3860i −0.265347 + 0.274854i
\(97\) 66.7480i 0.688124i −0.938947 0.344062i \(-0.888197\pi\)
0.938947 0.344062i \(-0.111803\pi\)
\(98\) −70.2695 52.9477i −0.717036 0.540283i
\(99\) −5.55274 8.88059i −0.0560883 0.0897029i
\(100\) −17.8542 7.57696i −0.178542 0.0757696i
\(101\) 19.3539 + 11.1740i 0.191623 + 0.110633i 0.592742 0.805392i \(-0.298045\pi\)
−0.401119 + 0.916026i \(0.631379\pi\)
\(102\) −97.3771 24.2640i −0.954677 0.237883i
\(103\) −12.8487 + 7.41823i −0.124745 + 0.0720216i −0.561074 0.827766i \(-0.689612\pi\)
0.436329 + 0.899787i \(0.356278\pi\)
\(104\) 107.021i 1.02905i
\(105\) 75.5454 + 72.9238i 0.719480 + 0.694513i
\(106\) −64.1628 −0.605309
\(107\) 16.9958 + 29.4376i 0.158840 + 0.275118i 0.934450 0.356093i \(-0.115891\pi\)
−0.775611 + 0.631211i \(0.782558\pi\)
\(108\) −19.9191 + 6.48156i −0.184436 + 0.0600144i
\(109\) 45.3155 78.4888i 0.415739 0.720081i −0.579767 0.814782i \(-0.696856\pi\)
0.995506 + 0.0947015i \(0.0301897\pi\)
\(110\) −7.82542 6.92278i −0.0711402 0.0629344i
\(111\) −1.18943 + 0.341247i −0.0107156 + 0.00307429i
\(112\) 64.4569 57.0288i 0.575508 0.509186i
\(113\) −76.2557 −0.674830 −0.337415 0.941356i \(-0.609552\pi\)
−0.337415 + 0.941356i \(0.609552\pi\)
\(114\) −113.764 + 117.840i −0.997932 + 1.03368i
\(115\) 134.448 + 27.3481i 1.16911 + 0.237809i
\(116\) 35.3872 + 20.4308i 0.305062 + 0.176128i
\(117\) −52.7023 + 99.1870i −0.450447 + 0.847752i
\(118\) 67.0590i 0.568297i
\(119\) −123.670 41.3767i −1.03924 0.347703i
\(120\) −105.996 + 72.8774i −0.883296 + 0.607312i
\(121\) −59.8229 103.616i −0.494404 0.856332i
\(122\) −45.6827 + 79.1247i −0.374448 + 0.648563i
\(123\) 12.4856 50.1076i 0.101509 0.407379i
\(124\) 13.4091 + 23.2253i 0.108138 + 0.187300i
\(125\) −103.024 70.7882i −0.824195 0.566306i
\(126\) 109.989 26.4415i 0.872930 0.209854i
\(127\) 0.573646i 0.00451690i 0.999997 + 0.00225845i \(0.000718888\pi\)
−0.999997 + 0.00225845i \(0.999281\pi\)
\(128\) 39.4109 + 68.2617i 0.307898 + 0.533295i
\(129\) −5.70830 + 22.9087i −0.0442504 + 0.177587i
\(130\) −22.3337 + 109.796i −0.171797 + 0.844586i
\(131\) −199.680 + 115.285i −1.52427 + 0.880039i −0.524686 + 0.851296i \(0.675817\pi\)
−0.999587 + 0.0287429i \(0.990850\pi\)
\(132\) 2.60352 0.746951i 0.0197237 0.00565872i
\(133\) −159.410 + 141.039i −1.19857 + 1.06045i
\(134\) 51.7898i 0.386491i
\(135\) −134.125 + 15.3454i −0.993519 + 0.113670i
\(136\) 79.8792 138.355i 0.587347 1.01731i
\(137\) 13.9490 24.1603i 0.101817 0.176353i −0.810616 0.585578i \(-0.800868\pi\)
0.912433 + 0.409225i \(0.134201\pi\)
\(138\) 102.666 106.344i 0.743955 0.770609i
\(139\) −130.478 −0.938693 −0.469346 0.883014i \(-0.655510\pi\)
−0.469346 + 0.883014i \(0.655510\pi\)
\(140\) −23.5149 + 13.5782i −0.167964 + 0.0969873i
\(141\) −28.8056 100.403i −0.204295 0.712076i
\(142\) 103.951 60.0159i 0.732047 0.422647i
\(143\) 7.26169 12.5776i 0.0507810 0.0879553i
\(144\) 3.89338 + 110.585i 0.0270373 + 0.767951i
\(145\) 197.241 + 174.490i 1.36028 + 1.20338i
\(146\) 96.9723i 0.664194i
\(147\) 145.186 23.0221i 0.987660 0.156613i
\(148\) 0.320002i 0.00216218i
\(149\) 137.529 79.4024i 0.923013 0.532902i 0.0384179 0.999262i \(-0.487768\pi\)
0.884595 + 0.466360i \(0.154435\pi\)
\(150\) −123.953 + 52.6476i −0.826351 + 0.350984i
\(151\) 24.0390 41.6367i 0.159198 0.275740i −0.775381 0.631493i \(-0.782442\pi\)
0.934580 + 0.355753i \(0.115776\pi\)
\(152\) −130.375 225.817i −0.857733 1.48564i
\(153\) 142.165 88.8908i 0.929180 0.580986i
\(154\) −14.3336 + 2.91649i −0.0930753 + 0.0189382i
\(155\) 54.8490 + 163.904i 0.353865 + 1.05745i
\(156\) −20.8971 20.1744i −0.133956 0.129323i
\(157\) −112.848 65.1528i −0.718777 0.414986i 0.0955254 0.995427i \(-0.469547\pi\)
−0.814302 + 0.580441i \(0.802880\pi\)
\(158\) 29.8791 51.7522i 0.189108 0.327545i
\(159\) 74.4564 77.1239i 0.468279 0.485056i
\(160\) −19.3980 57.9666i −0.121237 0.362292i
\(161\) 143.858 127.280i 0.893530 0.790559i
\(162\) −63.6835 + 130.760i −0.393108 + 0.807163i
\(163\) −121.121 + 69.9292i −0.743073 + 0.429013i −0.823185 0.567773i \(-0.807805\pi\)
0.0801127 + 0.996786i \(0.474472\pi\)
\(164\) 11.5652 + 6.67717i 0.0705195 + 0.0407145i
\(165\) 17.4020 1.37279i 0.105467 0.00831991i
\(166\) −64.7057 112.074i −0.389794 0.675142i
\(167\) 224.419 1.34383 0.671915 0.740629i \(-0.265472\pi\)
0.671915 + 0.740629i \(0.265472\pi\)
\(168\) −7.82605 + 179.915i −0.0465836 + 1.07092i
\(169\) 13.2519 0.0784136
\(170\) 110.823 125.273i 0.651901 0.736900i
\(171\) −9.62879 273.490i −0.0563087 1.59936i
\(172\) −5.28750 3.05274i −0.0307413 0.0177485i
\(173\) 146.827 + 254.312i 0.848711 + 1.47001i 0.882359 + 0.470577i \(0.155954\pi\)
−0.0336474 + 0.999434i \(0.510712\pi\)
\(174\) 272.716 78.2422i 1.56733 0.449668i
\(175\) −165.951 + 55.5449i −0.948292 + 0.317400i
\(176\) 14.3080i 0.0812954i
\(177\) −80.6051 77.8172i −0.455396 0.439645i
\(178\) 74.4904 + 43.0071i 0.418485 + 0.241613i
\(179\) −211.424 122.066i −1.18114 0.681933i −0.224863 0.974390i \(-0.572194\pi\)
−0.956278 + 0.292458i \(0.905527\pi\)
\(180\) 5.75087 34.4349i 0.0319493 0.191305i
\(181\) 81.3669 0.449541 0.224771 0.974412i \(-0.427837\pi\)
0.224771 + 0.974412i \(0.427837\pi\)
\(182\) 103.942 + 117.481i 0.571112 + 0.645501i
\(183\) −42.0967 146.729i −0.230036 0.801799i
\(184\) 117.656 + 203.787i 0.639437 + 1.10754i
\(185\) 0.411085 2.02096i 0.00222208 0.0109241i
\(186\) 180.684 + 45.0222i 0.971421 + 0.242055i
\(187\) −18.7756 + 10.8401i −0.100404 + 0.0579683i
\(188\) 27.0122 0.143682
\(189\) −95.8518 + 162.891i −0.507152 + 0.861856i
\(190\) −86.6317 258.880i −0.455956 1.36253i
\(191\) 207.381 119.732i 1.08577 0.626867i 0.153319 0.988177i \(-0.451004\pi\)
0.932446 + 0.361310i \(0.117670\pi\)
\(192\) −207.062 51.5948i −1.07845 0.268723i
\(193\) −1.39114 0.803175i −0.00720798 0.00416153i 0.496392 0.868099i \(-0.334658\pi\)
−0.503600 + 0.863937i \(0.667991\pi\)
\(194\) 103.796 59.9264i 0.535029 0.308899i
\(195\) −106.059 154.256i −0.543891 0.791055i
\(196\) −4.63145 + 37.7319i −0.0236298 + 0.192510i
\(197\) −286.325 −1.45343 −0.726713 0.686941i \(-0.758953\pi\)
−0.726713 + 0.686941i \(0.758953\pi\)
\(198\) 8.82438 16.6077i 0.0445676 0.0838773i
\(199\) −44.6292 + 77.3000i −0.224267 + 0.388442i −0.956099 0.293043i \(-0.905332\pi\)
0.731832 + 0.681485i \(0.238665\pi\)
\(200\) −26.1444 212.786i −0.130722 1.06393i
\(201\) −62.2515 60.0983i −0.309709 0.298997i
\(202\) 40.1280i 0.198653i
\(203\) 361.281 73.5105i 1.77971 0.362121i
\(204\) 11.9575 + 41.6784i 0.0586154 + 0.204306i
\(205\) 64.4621 + 57.0266i 0.314449 + 0.278178i
\(206\) −23.0712 13.3202i −0.111996 0.0646610i
\(207\) 8.68944 + 246.809i 0.0419780 + 1.19232i
\(208\) −132.882 + 76.7192i −0.638853 + 0.368842i
\(209\) 35.3854i 0.169308i
\(210\) −45.5744 + 182.947i −0.217021 + 0.871176i
\(211\) 174.205 0.825617 0.412808 0.910818i \(-0.364548\pi\)
0.412808 + 0.910818i \(0.364548\pi\)
\(212\) 13.8613 + 24.0085i 0.0653835 + 0.113247i
\(213\) −48.4880 + 194.593i −0.227643 + 0.913583i
\(214\) −30.5177 + 52.8582i −0.142606 + 0.247001i
\(215\) −29.4714 26.0720i −0.137076 0.121265i
\(216\) −172.132 154.855i −0.796909 0.716921i
\(217\) 229.471 + 76.7750i 1.05747 + 0.353802i
\(218\) 162.737 0.746501
\(219\) −116.561 112.529i −0.532242 0.513833i
\(220\) −0.899819 + 4.42367i −0.00409009 + 0.0201076i
\(221\) 201.348 + 116.249i 0.911078 + 0.526011i
\(222\) −1.59852 1.54323i −0.00720053 0.00695148i
\(223\) 149.196i 0.669041i 0.942388 + 0.334521i \(0.108574\pi\)
−0.942388 + 0.334521i \(0.891426\pi\)
\(224\) −81.1549 27.1523i −0.362299 0.121216i
\(225\) 80.5557 210.085i 0.358025 0.933712i
\(226\) −68.4624 118.580i −0.302931 0.524692i
\(227\) −46.1279 + 79.8959i −0.203207 + 0.351964i −0.949560 0.313586i \(-0.898470\pi\)
0.746353 + 0.665550i \(0.231803\pi\)
\(228\) 68.6703 + 17.1110i 0.301186 + 0.0750482i
\(229\) −74.0138 128.196i −0.323205 0.559807i 0.657943 0.753068i \(-0.271427\pi\)
−0.981147 + 0.193261i \(0.938094\pi\)
\(230\) 78.1802 + 233.625i 0.339914 + 1.01576i
\(231\) 13.1275 20.6134i 0.0568290 0.0892355i
\(232\) 451.661i 1.94682i
\(233\) −201.616 349.210i −0.865306 1.49875i −0.866743 0.498755i \(-0.833791\pi\)
0.00143686 0.999999i \(-0.499543\pi\)
\(234\) −201.555 + 7.09619i −0.861348 + 0.0303256i
\(235\) 170.595 + 34.7008i 0.725937 + 0.147663i
\(236\) 25.0922 14.4870i 0.106323 0.0613855i
\(237\) 27.5337 + 95.9695i 0.116176 + 0.404935i
\(238\) −46.6885 229.459i −0.196170 0.964113i
\(239\) 42.1167i 0.176220i −0.996111 0.0881102i \(-0.971917\pi\)
0.996111 0.0881102i \(-0.0280828\pi\)
\(240\) −166.472 79.3654i −0.693632 0.330689i
\(241\) −133.166 + 230.650i −0.552554 + 0.957052i 0.445535 + 0.895265i \(0.353014\pi\)
−0.998089 + 0.0617877i \(0.980320\pi\)
\(242\) 107.418 186.053i 0.443876 0.768815i
\(243\) −83.2741 228.286i −0.342692 0.939448i
\(244\) 39.4759 0.161786
\(245\) −77.7214 + 232.345i −0.317230 + 0.948349i
\(246\) 89.1286 25.5710i 0.362312 0.103947i
\(247\) 328.632 189.736i 1.33049 0.768161i
\(248\) −148.217 + 256.719i −0.597648 + 1.03516i
\(249\) 209.799 + 52.2770i 0.842567 + 0.209948i
\(250\) 17.5829 223.760i 0.0703316 0.895041i
\(251\) 426.902i 1.70081i 0.526133 + 0.850403i \(0.323642\pi\)
−0.526133 + 0.850403i \(0.676358\pi\)
\(252\) −33.6552 35.4435i −0.133552 0.140649i
\(253\) 31.9333i 0.126219i
\(254\) −0.892041 + 0.515020i −0.00351197 + 0.00202764i
\(255\) 21.9762 + 278.580i 0.0861811 + 1.09247i
\(256\) 71.4957 123.834i 0.279280 0.483727i
\(257\) −8.35527 14.4718i −0.0325108 0.0563103i 0.849312 0.527891i \(-0.177017\pi\)
−0.881823 + 0.471581i \(0.843684\pi\)
\(258\) −40.7487 + 11.6908i −0.157941 + 0.0453132i
\(259\) −1.91322 2.16242i −0.00738694 0.00834910i
\(260\) 45.9084 15.3628i 0.176571 0.0590877i
\(261\) −222.420 + 418.600i −0.852183 + 1.60383i
\(262\) −358.545 207.006i −1.36849 0.790099i
\(263\) 0.756335 1.31001i 0.00287580 0.00498103i −0.864584 0.502488i \(-0.832418\pi\)
0.867460 + 0.497507i \(0.165751\pi\)
\(264\) 21.5392 + 20.7942i 0.0815878 + 0.0787659i
\(265\) 56.6986 + 169.432i 0.213957 + 0.639364i
\(266\) −362.439 121.263i −1.36255 0.455875i
\(267\) −138.135 + 39.6311i −0.517361 + 0.148431i
\(268\) 19.3787 11.1883i 0.0723087 0.0417474i
\(269\) −10.5890 6.11353i −0.0393641 0.0227269i 0.480189 0.877165i \(-0.340568\pi\)
−0.519553 + 0.854438i \(0.673901\pi\)
\(270\) −144.280 194.792i −0.534371 0.721452i
\(271\) −117.307 203.182i −0.432868 0.749749i 0.564251 0.825603i \(-0.309165\pi\)
−0.997119 + 0.0758540i \(0.975832\pi\)
\(272\) 229.049 0.842092
\(273\) −261.830 11.3893i −0.959086 0.0417190i
\(274\) 50.0935 0.182823
\(275\) −11.3656 + 26.7816i −0.0413293 + 0.0973878i
\(276\) −61.9711 15.4417i −0.224533 0.0559482i
\(277\) −427.929 247.065i −1.54487 0.891930i −0.998521 0.0543719i \(-0.982684\pi\)
−0.546348 0.837558i \(-0.683982\pi\)
\(278\) −117.143 202.898i −0.421379 0.729850i
\(279\) −263.788 + 164.938i −0.945477 + 0.591175i
\(280\) −259.939 150.055i −0.928353 0.535911i
\(281\) 67.0586i 0.238643i −0.992856 0.119321i \(-0.961928\pi\)
0.992856 0.119321i \(-0.0380719\pi\)
\(282\) 130.268 134.935i 0.461944 0.478494i
\(283\) −118.530 68.4334i −0.418834 0.241814i 0.275744 0.961231i \(-0.411076\pi\)
−0.694579 + 0.719417i \(0.744409\pi\)
\(284\) −44.9136 25.9309i −0.158146 0.0913058i
\(285\) 411.704 + 196.280i 1.44458 + 0.688702i
\(286\) 26.0782 0.0911825
\(287\) 118.073 24.0246i 0.411405 0.0837094i
\(288\) 93.2917 58.3322i 0.323929 0.202542i
\(289\) −29.0330 50.2867i −0.100460 0.174002i
\(290\) −94.2549 + 463.374i −0.325017 + 1.59784i
\(291\) −48.4156 + 194.303i −0.166377 + 0.667707i
\(292\) 36.2851 20.9492i 0.124264 0.0717439i
\(293\) −98.9599 −0.337747 −0.168874 0.985638i \(-0.554013\pi\)
−0.168874 + 0.985638i \(0.554013\pi\)
\(294\) 166.148 + 205.100i 0.565130 + 0.697620i
\(295\) 177.079 59.2579i 0.600269 0.200874i
\(296\) 3.06324 1.76856i 0.0103488 0.00597487i
\(297\) 9.72244 + 29.8790i 0.0327355 + 0.100603i
\(298\) 246.947 + 142.575i 0.828681 + 0.478439i
\(299\) −296.572 + 171.226i −0.991879 + 0.572662i
\(300\) 46.4776 + 35.0070i 0.154925 + 0.116690i
\(301\) −53.9819 + 10.9838i −0.179342 + 0.0364911i
\(302\) 86.3287 0.285857
\(303\) −48.2339 46.5657i −0.159188 0.153682i
\(304\) 186.922 323.759i 0.614875 1.06500i
\(305\) 249.309 + 50.7120i 0.817407 + 0.166269i
\(306\) 265.864 + 141.265i 0.868836 + 0.461650i
\(307\) 441.330i 1.43756i −0.695239 0.718778i \(-0.744702\pi\)
0.695239 0.718778i \(-0.255298\pi\)
\(308\) 4.18782 + 4.73329i 0.0135968 + 0.0153678i
\(309\) 42.7834 12.2746i 0.138458 0.0397235i
\(310\) −205.634 + 232.445i −0.663334 + 0.749824i
\(311\) −19.4380 11.2225i −0.0625015 0.0360853i 0.468424 0.883504i \(-0.344822\pi\)
−0.530925 + 0.847419i \(0.678155\pi\)
\(312\) 77.6276 311.537i 0.248806 0.998516i
\(313\) 217.506 125.577i 0.694908 0.401206i −0.110540 0.993872i \(-0.535258\pi\)
0.805448 + 0.592666i \(0.201925\pi\)
\(314\) 233.977i 0.745149i
\(315\) −167.017 267.077i −0.530212 0.847865i
\(316\) −25.8195 −0.0817074
\(317\) 17.4496 + 30.2237i 0.0550462 + 0.0953428i 0.892235 0.451570i \(-0.149136\pi\)
−0.837189 + 0.546913i \(0.815803\pi\)
\(318\) 186.777 + 46.5405i 0.587350 + 0.146354i
\(319\) 30.6466 53.0814i 0.0960707 0.166399i
\(320\) 235.653 266.379i 0.736416 0.832435i
\(321\) −28.1221 98.0206i −0.0876079 0.305360i
\(322\) 327.081 + 109.433i 1.01578 + 0.339854i
\(323\) −566.466 −1.75377
\(324\) 62.6857 4.41944i 0.193474 0.0136403i
\(325\) 309.669 38.0481i 0.952828 0.117071i
\(326\) −217.485 125.565i −0.667131 0.385168i
\(327\) −188.845 + 195.611i −0.577508 + 0.598198i
\(328\) 147.611i 0.450035i
\(329\) 182.535 161.500i 0.554819 0.490881i
\(330\) 17.7583 + 25.8283i 0.0538130 + 0.0782676i
\(331\) 136.010 + 235.577i 0.410908 + 0.711713i 0.994989 0.0999821i \(-0.0318786\pi\)
−0.584082 + 0.811695i \(0.698545\pi\)
\(332\) −27.9572 + 48.4232i −0.0842083 + 0.145853i
\(333\) 3.70993 0.130616i 0.0111409 0.000392240i
\(334\) 201.484 + 348.980i 0.603245 + 1.04485i
\(335\) 136.759 45.7650i 0.408235 0.136612i
\(336\) −228.999 + 119.257i −0.681546 + 0.354930i
\(337\) 600.523i 1.78197i 0.454036 + 0.890983i \(0.349984\pi\)
−0.454036 + 0.890983i \(0.650016\pi\)
\(338\) 11.8976 + 20.6072i 0.0351999 + 0.0609680i
\(339\) 221.980 + 55.3121i 0.654808 + 0.163162i
\(340\) −70.8162 14.4047i −0.208283 0.0423668i
\(341\) 34.8383 20.1139i 0.102165 0.0589850i
\(342\) 416.642 260.513i 1.21825 0.761733i
\(343\) 194.293 + 282.664i 0.566453 + 0.824094i
\(344\) 67.4865i 0.196182i
\(345\) −371.540 177.132i −1.07693 0.513425i
\(346\) −263.643 + 456.643i −0.761973 + 1.31978i
\(347\) −77.0212 + 133.405i −0.221963 + 0.384451i −0.955404 0.295302i \(-0.904580\pi\)
0.733441 + 0.679753i \(0.237913\pi\)
\(348\) −88.1924 85.1420i −0.253426 0.244661i
\(349\) −20.2324 −0.0579726 −0.0289863 0.999580i \(-0.509228\pi\)
−0.0289863 + 0.999580i \(0.509228\pi\)
\(350\) −235.365 208.192i −0.672472 0.594833i
\(351\) 225.361 250.505i 0.642055 0.713689i
\(352\) −12.3210 + 7.11351i −0.0350027 + 0.0202088i
\(353\) 162.715 281.830i 0.460948 0.798386i −0.538060 0.842907i \(-0.680843\pi\)
0.999008 + 0.0445203i \(0.0141760\pi\)
\(354\) 48.6412 195.208i 0.137405 0.551436i
\(355\) −250.339 221.463i −0.705180 0.623840i
\(356\) 37.1638i 0.104393i
\(357\) 329.989 + 210.151i 0.924339 + 0.588658i
\(358\) 438.363i 1.22448i
\(359\) 499.939 288.640i 1.39259 0.804011i 0.398987 0.916957i \(-0.369362\pi\)
0.993601 + 0.112945i \(0.0360285\pi\)
\(360\) 361.414 135.262i 1.00393 0.375727i
\(361\) −281.781 + 488.059i −0.780556 + 1.35196i
\(362\) 73.0513 + 126.528i 0.201799 + 0.349526i
\(363\) 98.9858 + 345.018i 0.272688 + 0.950464i
\(364\) 21.5041 64.2730i 0.0590772 0.176574i
\(365\) 256.070 85.6913i 0.701561 0.234771i
\(366\) 190.375 197.195i 0.520150 0.538785i
\(367\) −435.739 251.574i −1.18730 0.685487i −0.229607 0.973283i \(-0.573744\pi\)
−0.957692 + 0.287796i \(0.907077\pi\)
\(368\) −168.687 + 292.174i −0.458388 + 0.793950i
\(369\) −72.6910 + 136.806i −0.196995 + 0.370749i
\(370\) 3.51174 1.17517i 0.00949120 0.00317614i
\(371\) 237.209 + 79.3640i 0.639377 + 0.213919i
\(372\) −22.1874 77.3348i −0.0596434 0.207889i
\(373\) 185.731 107.232i 0.497938 0.287484i −0.229924 0.973209i \(-0.573848\pi\)
0.727861 + 0.685724i \(0.240514\pi\)
\(374\) −33.7134 19.4644i −0.0901428 0.0520440i
\(375\) 248.557 + 280.793i 0.662818 + 0.748780i
\(376\) 149.289 + 258.576i 0.397045 + 0.687703i
\(377\) −657.305 −1.74351
\(378\) −339.357 2.80951i −0.897770 0.00743255i
\(379\) −505.361 −1.33341 −0.666704 0.745323i \(-0.732295\pi\)
−0.666704 + 0.745323i \(0.732295\pi\)
\(380\) −78.1525 + 88.3425i −0.205664 + 0.232480i
\(381\) 0.416094 1.66988i 0.00109211 0.00438289i
\(382\) 372.374 + 214.990i 0.974800 + 0.562801i
\(383\) 202.429 + 350.617i 0.528535 + 0.915449i 0.999446 + 0.0332689i \(0.0105918\pi\)
−0.470912 + 0.882180i \(0.656075\pi\)
\(384\) −65.2112 227.296i −0.169821 0.591917i
\(385\) 20.3676 + 35.2728i 0.0529028 + 0.0916177i
\(386\) 2.88436i 0.00747244i
\(387\) 33.2336 62.5465i 0.0858749 0.161619i
\(388\) −44.8466 25.8922i −0.115584 0.0667324i
\(389\) −168.810 97.4627i −0.433960 0.250547i 0.267072 0.963676i \(-0.413944\pi\)
−0.701032 + 0.713130i \(0.747277\pi\)
\(390\) 144.654 303.416i 0.370907 0.777990i
\(391\) 511.204 1.30743
\(392\) −386.788 + 164.199i −0.986703 + 0.418875i
\(393\) 664.888 190.756i 1.69183 0.485385i
\(394\) −257.063 445.245i −0.652443 1.13006i
\(395\) −163.063 33.1686i −0.412817 0.0839711i
\(396\) −8.12063 + 0.285904i −0.0205067 + 0.000721980i
\(397\) −500.171 + 288.774i −1.25988 + 0.727390i −0.973050 0.230593i \(-0.925933\pi\)
−0.286826 + 0.957983i \(0.592600\pi\)
\(398\) −160.272 −0.402694
\(399\) 566.343 294.936i 1.41941 0.739188i
\(400\) 245.462 185.000i 0.613656 0.462501i
\(401\) −199.268 + 115.047i −0.496927 + 0.286901i −0.727443 0.686168i \(-0.759292\pi\)
0.230517 + 0.973068i \(0.425958\pi\)
\(402\) 37.5657 150.760i 0.0934470 0.375024i
\(403\) −373.604 215.700i −0.927057 0.535237i
\(404\) 15.0151 8.66897i 0.0371661 0.0214579i
\(405\) 401.567 + 52.6171i 0.991525 + 0.129919i
\(406\) 438.669 + 495.806i 1.08047 + 1.22120i
\(407\) −0.480008 −0.00117938
\(408\) −332.883 + 344.809i −0.815890 + 0.845121i
\(409\) 290.480 503.125i 0.710219 1.23014i −0.254556 0.967058i \(-0.581929\pi\)
0.964775 0.263077i \(-0.0847375\pi\)
\(410\) −30.8043 + 151.439i −0.0751324 + 0.369364i
\(411\) −58.1300 + 60.2126i −0.141435 + 0.146503i
\(412\) 11.5104i 0.0279378i
\(413\) 82.9464 247.916i 0.200839 0.600281i
\(414\) −375.996 + 235.098i −0.908203 + 0.567869i
\(415\) −238.769 + 269.901i −0.575347 + 0.650364i
\(416\) 132.129 + 76.2850i 0.317619 + 0.183377i
\(417\) 379.821 + 94.6424i 0.910842 + 0.226960i
\(418\) −55.0256 + 31.7690i −0.131640 + 0.0760025i
\(419\) 220.813i 0.527000i 0.964659 + 0.263500i \(0.0848769\pi\)
−0.964659 + 0.263500i \(0.915123\pi\)
\(420\) 78.3007 22.4695i 0.186430 0.0534989i
\(421\) −747.852 −1.77637 −0.888185 0.459486i \(-0.848033\pi\)
−0.888185 + 0.459486i \(0.848033\pi\)
\(422\) 156.401 + 270.895i 0.370620 + 0.641932i
\(423\) 11.0257 + 313.166i 0.0260654 + 0.740344i
\(424\) −153.215 + 265.376i −0.361356 + 0.625887i
\(425\) −428.733 181.945i −1.00878 0.428107i
\(426\) −346.132 + 99.3053i −0.812516 + 0.233111i
\(427\) 266.759 236.017i 0.624728 0.552734i
\(428\) 26.3714 0.0616153
\(429\) −30.2619 + 31.3461i −0.0705405 + 0.0730677i
\(430\) 14.0834 69.2365i 0.0327521 0.161015i
\(431\) −310.115 179.045i −0.719523 0.415417i 0.0950539 0.995472i \(-0.469698\pi\)
−0.814577 + 0.580055i \(0.803031\pi\)
\(432\) 68.8792 324.736i 0.159443 0.751703i
\(433\) 622.750i 1.43822i −0.694896 0.719110i \(-0.744550\pi\)
0.694896 0.719110i \(-0.255450\pi\)
\(434\) 86.6310 + 425.764i 0.199611 + 0.981022i
\(435\) −447.601 651.007i −1.02897 1.49657i
\(436\) −35.1566 60.8931i −0.0806345 0.139663i
\(437\) 417.182 722.581i 0.954651 1.65350i
\(438\) 70.3388 282.285i 0.160591 0.644487i
\(439\) 194.411 + 336.729i 0.442849 + 0.767036i 0.997900 0.0647799i \(-0.0206345\pi\)
−0.555051 + 0.831816i \(0.687301\pi\)
\(440\) −47.3189 + 15.8348i −0.107543 + 0.0359882i
\(441\) −439.334 38.2934i −0.996223 0.0868331i
\(442\) 417.472i 0.944506i
\(443\) 192.113 + 332.750i 0.433664 + 0.751128i 0.997186 0.0749733i \(-0.0238872\pi\)
−0.563522 + 0.826101i \(0.690554\pi\)
\(444\) −0.232113 + 0.931523i −0.000522778 + 0.00209802i
\(445\) 47.7418 234.707i 0.107285 0.527432i
\(446\) −232.005 + 133.948i −0.520191 + 0.300333i
\(447\) −457.940 + 131.383i −1.02447 + 0.293922i
\(448\) −99.2779 487.919i −0.221602 1.08911i
\(449\) 33.9684i 0.0756535i 0.999284 + 0.0378267i \(0.0120435\pi\)
−0.999284 + 0.0378267i \(0.987957\pi\)
\(450\) 399.013 63.3476i 0.886695 0.140772i
\(451\) 10.0159 17.3480i 0.0222081 0.0384656i
\(452\) −29.5803 + 51.2346i −0.0654432 + 0.113351i
\(453\) −100.178 + 103.767i −0.221144 + 0.229067i
\(454\) −165.655 −0.364878
\(455\) 218.376 378.290i 0.479947 0.831407i
\(456\) 215.725 + 751.918i 0.473082 + 1.64894i
\(457\) 432.197 249.529i 0.945726 0.546015i 0.0539752 0.998542i \(-0.482811\pi\)
0.891751 + 0.452527i \(0.149477\pi\)
\(458\) 132.899 230.188i 0.290173 0.502595i
\(459\) −478.317 + 155.641i −1.04208 + 0.339088i
\(460\) 70.5282 79.7241i 0.153322 0.173313i
\(461\) 816.492i 1.77113i −0.464513 0.885566i \(-0.653771\pi\)
0.464513 0.885566i \(-0.346229\pi\)
\(462\) 43.8404 + 1.90700i 0.0948927 + 0.00412771i
\(463\) 353.851i 0.764258i 0.924109 + 0.382129i \(0.124809\pi\)
−0.924109 + 0.382129i \(0.875191\pi\)
\(464\) −560.801 + 323.779i −1.20862 + 0.697799i
\(465\) −40.7771 516.909i −0.0876926 1.11163i
\(466\) 362.022 627.041i 0.776872 1.34558i
\(467\) −127.057 220.068i −0.272070 0.471238i 0.697322 0.716758i \(-0.254375\pi\)
−0.969392 + 0.245520i \(0.921041\pi\)
\(468\) 46.1979 + 73.8851i 0.0987135 + 0.157874i
\(469\) 64.0596 191.466i 0.136588 0.408243i
\(470\) 99.1994 + 296.436i 0.211063 + 0.630715i
\(471\) 281.241 + 271.513i 0.597114 + 0.576462i
\(472\) 277.355 + 160.131i 0.587616 + 0.339260i
\(473\) −4.57916 + 7.93133i −0.00968109 + 0.0167681i
\(474\) −124.516 + 128.977i −0.262693 + 0.272104i
\(475\) −607.058 + 457.528i −1.27802 + 0.963217i
\(476\) −75.7728 + 67.0406i −0.159186 + 0.140842i
\(477\) −272.684 + 170.500i −0.571664 + 0.357442i
\(478\) 65.4930 37.8124i 0.137015 0.0791054i
\(479\) 220.662 + 127.400i 0.460673 + 0.265970i 0.712327 0.701847i \(-0.247641\pi\)
−0.251654 + 0.967817i \(0.580975\pi\)
\(480\) 14.4213 + 182.811i 0.0300443 + 0.380856i
\(481\) 2.57379 + 4.45794i 0.00535092 + 0.00926807i
\(482\) −478.224 −0.992167
\(483\) −511.093 + 266.163i −1.05816 + 0.551062i
\(484\) −92.8234 −0.191784
\(485\) −249.966 221.133i −0.515393 0.455944i
\(486\) 280.229 334.449i 0.576603 0.688167i
\(487\) −144.819 83.6115i −0.297370 0.171687i 0.343891 0.939010i \(-0.388255\pi\)
−0.641261 + 0.767323i \(0.721588\pi\)
\(488\) 218.172 + 377.885i 0.447074 + 0.774355i
\(489\) 403.305 115.708i 0.824754 0.236622i
\(490\) −431.084 + 87.7402i −0.879763 + 0.179062i
\(491\) 663.001i 1.35031i 0.737677 + 0.675154i \(0.235923\pi\)
−0.737677 + 0.675154i \(0.764077\pi\)
\(492\) −28.8229 27.8260i −0.0585832 0.0565569i
\(493\) 849.752 + 490.605i 1.72363 + 0.995141i
\(494\) 590.092 + 340.690i 1.19452 + 0.689655i
\(495\) −51.6530 8.62640i −0.104349 0.0174271i
\(496\) −425.003 −0.856861
\(497\) −458.539 + 93.2998i −0.922613 + 0.187726i
\(498\) 107.065 + 373.180i 0.214991 + 0.749357i
\(499\) 213.627 + 370.012i 0.428109 + 0.741507i 0.996705 0.0811099i \(-0.0258465\pi\)
−0.568596 + 0.822617i \(0.692513\pi\)
\(500\) −87.5252 + 41.7605i −0.175050 + 0.0835209i
\(501\) −653.283 162.783i −1.30396 0.324915i
\(502\) −663.848 + 383.273i −1.32241 + 0.763492i
\(503\) 503.059 1.00012 0.500059 0.865991i \(-0.333312\pi\)
0.500059 + 0.865991i \(0.333312\pi\)
\(504\) 153.283 518.053i 0.304132 1.02788i
\(505\) 105.964 35.4598i 0.209830 0.0702175i
\(506\) 49.6575 28.6698i 0.0981373 0.0566596i
\(507\) −38.5762 9.61226i −0.0760871 0.0189591i
\(508\) 0.385421 + 0.222523i 0.000758702 + 0.000438037i
\(509\) −481.244 + 277.846i −0.945469 + 0.545867i −0.891670 0.452685i \(-0.850466\pi\)
−0.0537984 + 0.998552i \(0.517133\pi\)
\(510\) −413.472 + 284.283i −0.810729 + 0.557418i
\(511\) 119.947 358.505i 0.234729 0.701575i
\(512\) 572.043 1.11727
\(513\) −170.347 + 803.111i −0.332059 + 1.56552i
\(514\) 15.0027 25.9855i 0.0291882 0.0505554i
\(515\) −14.7866 + 72.6936i −0.0287119 + 0.141153i
\(516\) 13.1776 + 12.7218i 0.0255379 + 0.0246546i
\(517\) 40.5188i 0.0783729i
\(518\) 1.64495 4.91654i 0.00317557 0.00949139i
\(519\) −242.947 846.801i −0.468106 1.63160i
\(520\) 400.784 + 354.555i 0.770739 + 0.681836i
\(521\) −209.107 120.728i −0.401358 0.231724i 0.285712 0.958316i \(-0.407770\pi\)
−0.687070 + 0.726591i \(0.741103\pi\)
\(522\) −850.626 + 29.9481i −1.62955 + 0.0573718i
\(523\) 683.792 394.788i 1.30744 0.754852i 0.325773 0.945448i \(-0.394375\pi\)
0.981669 + 0.190596i \(0.0610421\pi\)
\(524\) 178.881i 0.341375i
\(525\) 523.372 41.3183i 0.996898 0.0787014i
\(526\) 2.71615 0.00516379
\(527\) 321.992 + 557.707i 0.610991 + 1.05827i
\(528\) −10.3783 + 41.6505i −0.0196559 + 0.0788834i
\(529\) −111.984 + 193.961i −0.211689 + 0.366656i
\(530\) −212.568 + 240.284i −0.401072 + 0.453366i
\(531\) 178.196 + 284.992i 0.335586 + 0.536708i
\(532\) 32.9247 + 161.814i 0.0618885 + 0.304162i
\(533\) −214.820 −0.403039
\(534\) −185.646 179.225i −0.347651 0.335627i
\(535\) 166.548 + 33.8775i 0.311304 + 0.0633224i
\(536\) 214.202 + 123.669i 0.399630 + 0.230726i
\(537\) 526.914 + 508.689i 0.981218 + 0.947280i
\(538\) 21.9549i 0.0408084i
\(539\) 56.5985 + 6.94725i 0.105007 + 0.0128891i
\(540\) −41.7181 + 96.0683i −0.0772557 + 0.177904i
\(541\) −394.171 682.723i −0.728596 1.26197i −0.957477 0.288511i \(-0.906840\pi\)
0.228880 0.973455i \(-0.426494\pi\)
\(542\) 210.637 364.834i 0.388629 0.673125i
\(543\) −236.858 59.0195i −0.436203 0.108691i
\(544\) −113.876 197.240i −0.209332 0.362573i
\(545\) −143.806 429.732i −0.263864 0.788499i
\(546\) −217.361 417.381i −0.398097 0.764434i
\(547\) 2.30392i 0.00421191i 0.999998 + 0.00210596i \(0.000670347\pi\)
−0.999998 + 0.00210596i \(0.999330\pi\)
\(548\) −10.8219 18.7440i −0.0197479 0.0342044i
\(549\) 16.1130 + 457.662i 0.0293497 + 0.833629i
\(550\) −51.8504 + 6.37070i −0.0942735 + 0.0115831i
\(551\) 1386.93 800.744i 2.51711 1.45326i
\(552\) −194.680 678.564i −0.352681 1.22928i
\(553\) −174.476 + 154.369i −0.315508 + 0.279148i
\(554\) 887.259i 1.60155i
\(555\) −2.66257 + 5.58483i −0.00479742 + 0.0100628i
\(556\) −50.6137 + 87.6656i −0.0910319 + 0.157672i
\(557\) 178.710 309.535i 0.320844 0.555718i −0.659819 0.751425i \(-0.729367\pi\)
0.980662 + 0.195707i \(0.0627003\pi\)
\(558\) −493.313 262.118i −0.884074 0.469746i
\(559\) 98.2134 0.175695
\(560\) −0.0256154 430.319i −4.57417e−5 0.768427i
\(561\) 62.5183 17.9365i 0.111441 0.0319724i
\(562\) 104.279 60.2052i 0.185549 0.107127i
\(563\) 331.223 573.695i 0.588318 1.01900i −0.406135 0.913813i \(-0.633124\pi\)
0.994453 0.105183i \(-0.0335430\pi\)
\(564\) −78.6324 19.5933i −0.139419 0.0347399i
\(565\) −252.631 + 285.571i −0.447135 + 0.505436i
\(566\) 245.758i 0.434202i
\(567\) 397.177 404.648i 0.700488 0.713665i
\(568\) 573.250i 1.00924i
\(569\) −286.622 + 165.481i −0.503729 + 0.290828i −0.730252 0.683178i \(-0.760597\pi\)
0.226523 + 0.974006i \(0.427264\pi\)
\(570\) 64.4057 + 816.435i 0.112992 + 1.43234i
\(571\) 420.825 728.890i 0.736996 1.27651i −0.216846 0.976206i \(-0.569577\pi\)
0.953842 0.300309i \(-0.0970897\pi\)
\(572\) −5.63375 9.75795i −0.00984922 0.0170593i
\(573\) −690.532 + 198.114i −1.20512 + 0.345748i
\(574\) 143.365 + 162.039i 0.249765 + 0.282298i
\(575\) 547.835 412.893i 0.952757 0.718075i
\(576\) 565.330 + 300.384i 0.981476 + 0.521500i
\(577\) −446.025 257.513i −0.773007 0.446296i 0.0609390 0.998141i \(-0.480590\pi\)
−0.833946 + 0.551845i \(0.813924\pi\)
\(578\) 52.1317 90.2948i 0.0901933 0.156219i
\(579\) 3.46701 + 3.34710i 0.00598793 + 0.00578082i
\(580\) 193.748 64.8358i 0.334048 0.111786i
\(581\) 100.590 + 494.370i 0.173133 + 0.850895i
\(582\) −345.615 + 99.1571i −0.593841 + 0.170373i
\(583\) 36.0131 20.7922i 0.0617720 0.0356641i
\(584\) 401.075 + 231.561i 0.686773 + 0.396508i
\(585\) 196.847 + 525.967i 0.336490 + 0.899089i
\(586\) −88.8462 153.886i −0.151615 0.262604i
\(587\) 935.242 1.59326 0.796629 0.604469i \(-0.206615\pi\)
0.796629 + 0.604469i \(0.206615\pi\)
\(588\) 40.8509 106.478i 0.0694744 0.181085i
\(589\) 1051.08 1.78452
\(590\) 251.130 + 222.163i 0.425644 + 0.376548i
\(591\) 833.489 + 207.686i 1.41030 + 0.351414i
\(592\) 4.39183 + 2.53563i 0.00741863 + 0.00428315i
\(593\) 244.872 + 424.131i 0.412938 + 0.715229i 0.995210 0.0977651i \(-0.0311694\pi\)
−0.582272 + 0.812994i \(0.697836\pi\)
\(594\) −37.7341 + 41.9441i −0.0635254 + 0.0706130i
\(595\) −564.664 + 326.054i −0.949015 + 0.547989i
\(596\) 123.204i 0.206718i
\(597\) 185.985 192.648i 0.311532 0.322693i
\(598\) −532.525 307.453i −0.890510 0.514136i
\(599\) 406.061 + 234.439i 0.677898 + 0.391384i 0.799063 0.601248i \(-0.205330\pi\)
−0.121165 + 0.992632i \(0.538663\pi\)
\(600\) −78.2384 + 638.383i −0.130397 + 1.06397i
\(601\) 679.264 1.13022 0.565112 0.825014i \(-0.308833\pi\)
0.565112 + 0.825014i \(0.308833\pi\)
\(602\) −65.5452 74.0825i −0.108879 0.123061i
\(603\) 137.621 + 220.100i 0.228227 + 0.365008i
\(604\) −18.6499 32.3025i −0.0308773 0.0534810i
\(605\) −586.224 119.244i −0.968965 0.197097i
\(606\) 29.1068 116.812i 0.0480310 0.192759i
\(607\) 530.707 306.404i 0.874312 0.504784i 0.00553303 0.999985i \(-0.498239\pi\)
0.868779 + 0.495201i \(0.164905\pi\)
\(608\) −371.728 −0.611395
\(609\) −1105.01 48.0663i −1.81446 0.0789266i
\(610\) 144.971 + 433.214i 0.237657 + 0.710186i
\(611\) −376.307 + 217.261i −0.615887 + 0.355583i
\(612\) −4.57689 129.999i −0.00747857 0.212417i
\(613\) 173.001 + 99.8821i 0.282220 + 0.162940i 0.634428 0.772982i \(-0.281236\pi\)
−0.352208 + 0.935922i \(0.614569\pi\)
\(614\) 686.284 396.226i 1.11773 0.645319i
\(615\) −146.284 212.761i −0.237861 0.345953i
\(616\) −22.1648 + 66.2478i −0.0359818 + 0.107545i
\(617\) 530.227 0.859363 0.429682 0.902980i \(-0.358626\pi\)
0.429682 + 0.902980i \(0.358626\pi\)
\(618\) 57.4983 + 55.5096i 0.0930393 + 0.0898213i
\(619\) −410.628 + 711.228i −0.663373 + 1.14900i 0.316351 + 0.948642i \(0.397542\pi\)
−0.979724 + 0.200353i \(0.935791\pi\)
\(620\) 131.400 + 26.7281i 0.211936 + 0.0431099i
\(621\) 153.728 724.763i 0.247549 1.16709i
\(622\) 40.3023i 0.0647947i
\(623\) −222.194 251.135i −0.356651 0.403106i
\(624\) 442.465 126.943i 0.709079 0.203435i
\(625\) −606.410 + 151.300i −0.970256 + 0.242079i
\(626\) 390.555 + 225.487i 0.623889 + 0.360202i
\(627\) 25.6668 103.007i 0.0409359 0.164285i
\(628\) −87.5496 + 50.5468i −0.139410 + 0.0804885i
\(629\) 7.68420i 0.0122165i
\(630\) 265.367 499.499i 0.421218 0.792856i
\(631\) 314.044 0.497692 0.248846 0.968543i \(-0.419949\pi\)
0.248846 + 0.968543i \(0.419949\pi\)
\(632\) −142.697 247.159i −0.225787 0.391074i
\(633\) −507.110 126.360i −0.801121 0.199620i
\(634\) −31.3326 + 54.2697i −0.0494205 + 0.0855988i
\(635\) 2.14826 + 1.90046i 0.00338308 + 0.00299285i
\(636\) −22.9356 79.9427i −0.0360622 0.125696i
\(637\) −238.959 562.894i −0.375133 0.883664i
\(638\) 110.058 0.172505
\(639\) 282.296 531.288i 0.441778 0.831437i
\(640\) 386.201 + 78.5571i 0.603438 + 0.122745i
\(641\) −633.511 365.758i −0.988317 0.570605i −0.0835460 0.996504i \(-0.526625\pi\)
−0.904771 + 0.425899i \(0.859958\pi\)
\(642\) 127.177 131.734i 0.198096 0.205193i
\(643\) 326.029i 0.507044i −0.967330 0.253522i \(-0.918411\pi\)
0.967330 0.253522i \(-0.0815890\pi\)
\(644\) −29.7127 146.028i −0.0461377 0.226752i
\(645\) 66.8797 + 97.2724i 0.103690 + 0.150810i
\(646\) −508.574 880.875i −0.787266 1.36358i
\(647\) −286.539 + 496.301i −0.442874 + 0.767080i −0.997901 0.0647521i \(-0.979374\pi\)
0.555028 + 0.831832i \(0.312708\pi\)
\(648\) 388.752 + 575.638i 0.599925 + 0.888330i
\(649\) −21.7307 37.6387i −0.0334834 0.0579949i
\(650\) 337.187 + 447.387i 0.518749 + 0.688287i
\(651\) −612.298 389.938i −0.940550 0.598982i
\(652\) 108.505i 0.166418i
\(653\) −451.271 781.625i −0.691074 1.19698i −0.971486 0.237096i \(-0.923804\pi\)
0.280412 0.959880i \(-0.409529\pi\)
\(654\) −473.727 118.041i −0.724353 0.180491i
\(655\) −229.796 + 1129.72i −0.350833 + 1.72476i
\(656\) −183.280 + 105.817i −0.279391 + 0.161306i
\(657\) 257.685 + 412.119i 0.392214 + 0.627275i
\(658\) 415.019 + 138.855i 0.630727 + 0.211025i
\(659\) 1144.56i 1.73681i 0.495855 + 0.868405i \(0.334855\pi\)
−0.495855 + 0.868405i \(0.665145\pi\)
\(660\) 5.82807 12.2246i 0.00883041 0.0185221i
\(661\) −374.330 + 648.358i −0.566308 + 0.980875i 0.430618 + 0.902534i \(0.358296\pi\)
−0.996927 + 0.0783407i \(0.975038\pi\)
\(662\) −244.220 + 423.002i −0.368913 + 0.638976i
\(663\) −501.802 484.446i −0.756866 0.730688i
\(664\) −618.046 −0.930792
\(665\) 0.0633499 + 1064.23i 9.52630e−5 + 1.60035i
\(666\) 3.53389 + 5.65181i 0.00530614 + 0.00848620i
\(667\) −1251.62 + 722.626i −1.87650 + 1.08340i
\(668\) 87.0544 150.783i 0.130321 0.225723i
\(669\) 108.219 434.309i 0.161763 0.649191i
\(670\) 193.948 + 171.577i 0.289475 + 0.256085i
\(671\) 59.2145i 0.0882481i
\(672\) 216.546 + 137.906i 0.322242 + 0.205217i
\(673\) 351.912i 0.522900i −0.965217 0.261450i \(-0.915799\pi\)
0.965217 0.261450i \(-0.0842007\pi\)
\(674\) −933.834 + 539.149i −1.38551 + 0.799925i
\(675\) −386.882 + 553.125i −0.573158 + 0.819445i
\(676\) 5.14054 8.90367i 0.00760434 0.0131711i
\(677\) −284.770 493.237i −0.420636 0.728562i 0.575366 0.817896i \(-0.304860\pi\)
−0.996002 + 0.0893336i \(0.971526\pi\)
\(678\) 113.281 + 394.846i 0.167082 + 0.582368i
\(679\) −457.854 + 93.1606i −0.674307 + 0.137203i
\(680\) −253.491 757.503i −0.372781 1.11397i
\(681\) 192.230 199.117i 0.282277 0.292390i
\(682\) 62.5556 + 36.1165i 0.0917238 + 0.0529567i
\(683\) −390.284 + 675.992i −0.571426 + 0.989740i 0.424993 + 0.905196i \(0.360276\pi\)
−0.996420 + 0.0845432i \(0.973057\pi\)
\(684\) −187.487 99.6199i −0.274104 0.145643i
\(685\) −44.2661 132.280i −0.0646220 0.193109i
\(686\) −265.116 + 555.909i −0.386467 + 0.810363i
\(687\) 122.467 + 426.863i 0.178263 + 0.621343i
\(688\) 83.7939 48.3784i 0.121793 0.0703175i
\(689\) −386.203 222.974i −0.560527 0.323620i
\(690\) −58.1225 736.787i −0.0842355 1.06781i
\(691\) −237.246 410.922i −0.343337 0.594678i 0.641713 0.766945i \(-0.278224\pi\)
−0.985050 + 0.172267i \(0.944891\pi\)
\(692\) 227.822 0.329223
\(693\) −53.1659 + 50.4834i −0.0767185 + 0.0728476i
\(694\) −276.599 −0.398557
\(695\) −432.268 + 488.630i −0.621968 + 0.703065i
\(696\) 327.612 1314.78i 0.470707 1.88906i
\(697\) 277.715 + 160.339i 0.398443 + 0.230041i
\(698\) −18.1647 31.4621i −0.0260239 0.0450747i
\(699\) 333.604 + 1162.79i 0.477259 + 1.66350i
\(700\) −27.0545 + 133.045i −0.0386493 + 0.190065i
\(701\) 319.674i 0.456025i 0.973658 + 0.228013i \(0.0732227\pi\)
−0.973658 + 0.228013i \(0.926777\pi\)
\(702\) 591.873 + 125.541i 0.843125 + 0.178834i
\(703\) −10.8615 6.27091i −0.0154503 0.00892021i
\(704\) −71.6879 41.3890i −0.101829 0.0587912i
\(705\) −471.431 224.755i −0.668696 0.318801i
\(706\) 584.342 0.827679
\(707\) 49.6349 148.353i 0.0702050 0.209834i
\(708\) −83.5512 + 23.9709i −0.118010 + 0.0338571i
\(709\) 679.847 + 1177.53i 0.958882 + 1.66083i 0.725225 + 0.688512i \(0.241736\pi\)
0.233657 + 0.972319i \(0.424931\pi\)
\(710\) 119.629 588.116i 0.168491 0.828332i
\(711\) −10.5388 299.338i −0.0148225 0.421010i
\(712\) 355.753 205.394i 0.499653 0.288475i
\(713\) −948.544 −1.33036
\(714\) −30.5282 + 701.818i −0.0427566 + 0.982939i
\(715\) −23.0445 68.8634i −0.0322300 0.0963124i
\(716\) −164.027 + 94.7010i −0.229088 + 0.132264i
\(717\) −30.5493 + 122.601i −0.0426071 + 0.170992i
\(718\) 897.691 + 518.282i 1.25027 + 0.721842i
\(719\) −10.4725 + 6.04630i −0.0145654 + 0.00840932i −0.507265 0.861790i \(-0.669343\pi\)
0.492700 + 0.870199i \(0.336010\pi\)
\(720\) 427.030 + 351.782i 0.593097 + 0.488586i
\(721\) 68.8180 + 77.7816i 0.0954480 + 0.107880i
\(722\) −1011.93 −1.40157
\(723\) 554.945 574.827i 0.767559 0.795059i
\(724\) 31.5630 54.6687i 0.0435953 0.0755092i
\(725\) 1306.90 160.575i 1.80262 0.221482i
\(726\) −447.646 + 463.684i −0.616593 + 0.638683i
\(727\) 806.023i 1.10870i 0.832284 + 0.554349i \(0.187033\pi\)
−0.832284 + 0.554349i \(0.812967\pi\)
\(728\) 734.105 149.370i 1.00839 0.205178i
\(729\) 76.8232 + 724.941i 0.105382 + 0.994432i
\(730\) 363.153 + 321.264i 0.497469 + 0.440088i
\(731\) −126.968 73.3053i −0.173692 0.100281i
\(732\) −114.914 28.6338i −0.156986 0.0391172i
\(733\) 229.808 132.680i 0.313517 0.181009i −0.334982 0.942224i \(-0.608730\pi\)
0.648499 + 0.761215i \(0.275397\pi\)
\(734\) 903.452i 1.23086i
\(735\) 394.778 619.980i 0.537113 0.843510i
\(736\) 335.464 0.455793
\(737\) −16.7827 29.0684i −0.0227716 0.0394415i
\(738\) −278.001 + 9.78760i −0.376695 + 0.0132623i
\(739\) 288.214 499.201i 0.390005 0.675509i −0.602444 0.798161i \(-0.705807\pi\)
0.992450 + 0.122652i \(0.0391398\pi\)
\(740\) −1.19838 1.06015i −0.00161943 0.00143263i
\(741\) −1094.27 + 313.946i −1.47675 + 0.423679i
\(742\) 89.5524 + 440.121i 0.120691 + 0.593155i
\(743\) −142.356 −0.191596 −0.0957979 0.995401i \(-0.530540\pi\)
−0.0957979 + 0.995401i \(0.530540\pi\)
\(744\) 617.668 639.797i 0.830200 0.859943i
\(745\) 158.271 778.090i 0.212445 1.04442i
\(746\) 333.498 + 192.545i 0.447049 + 0.258104i
\(747\) −572.805 304.356i −0.766807 0.407437i
\(748\) 16.8199i 0.0224864i
\(749\) 178.205 157.668i 0.237924 0.210505i
\(750\) −213.488 + 638.610i −0.284651 + 0.851481i
\(751\) −39.6817 68.7308i −0.0528385 0.0915190i 0.838396 0.545061i \(-0.183494\pi\)
−0.891235 + 0.453542i \(0.850160\pi\)
\(752\) −214.039 + 370.726i −0.284626 + 0.492987i
\(753\) 309.653 1242.71i 0.411226 1.65034i
\(754\) −590.129 1022.13i −0.782664 1.35561i
\(755\) −76.2860 227.964i −0.101041 0.301939i
\(756\) 72.2611 + 127.588i 0.0955834 + 0.168767i
\(757\) 1310.05i 1.73058i −0.501268 0.865292i \(-0.667133\pi\)
0.501268 0.865292i \(-0.332867\pi\)
\(758\) −453.714 785.855i −0.598567 1.03675i
\(759\) −23.1628 + 92.9576i −0.0305176 + 0.122474i
\(760\) −1277.59 259.875i −1.68104 0.341941i
\(761\) −363.973 + 210.140i −0.478283 + 0.276137i −0.719701 0.694284i \(-0.755721\pi\)
0.241418 + 0.970421i \(0.422388\pi\)
\(762\) 2.97029 0.852177i 0.00389802 0.00111834i
\(763\) −601.637 201.292i −0.788515 0.263817i
\(764\) 185.780i 0.243167i