Properties

Label 105.3.o.b.44.8
Level 105
Weight 3
Character 105.44
Analytic conductor 2.861
Analytic rank 0
Dimension 40
CM no
Inner twists 8

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.o (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 44.8
Character \(\chi\) \(=\) 105.44
Dual form 105.3.o.b.74.8

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.897800 + 1.55504i) q^{2} +(2.91099 - 0.725349i) q^{3} +(0.387909 + 0.671879i) q^{4} +(4.89966 + 0.996641i) q^{5} +(-1.48554 + 5.17791i) q^{6} +(1.39571 - 6.85945i) q^{7} -8.57546 q^{8} +(7.94774 - 4.22297i) q^{9} +O(q^{10})\) \(q+(-0.897800 + 1.55504i) q^{2} +(2.91099 - 0.725349i) q^{3} +(0.387909 + 0.671879i) q^{4} +(4.89966 + 0.996641i) q^{5} +(-1.48554 + 5.17791i) q^{6} +(1.39571 - 6.85945i) q^{7} -8.57546 q^{8} +(7.94774 - 4.22297i) q^{9} +(-5.94873 + 6.72437i) q^{10} +(-1.00783 + 0.581870i) q^{11} +(1.61655 + 1.67446i) q^{12} +12.4799i q^{13} +(9.41362 + 8.32879i) q^{14} +(14.9858 - 0.652756i) q^{15} +(6.14742 - 10.6476i) q^{16} +(-9.31485 - 16.1338i) q^{17} +(-0.568609 + 16.1504i) q^{18} +(-15.2033 + 26.3329i) q^{19} +(1.23100 + 3.67859i) q^{20} +(-0.912610 - 20.9802i) q^{21} -2.08961i q^{22} +(-13.7201 + 23.7640i) q^{23} +(-24.9631 + 6.22021i) q^{24} +(23.0134 + 9.76641i) q^{25} +(-19.4067 - 11.2045i) q^{26} +(20.0727 - 18.0579i) q^{27} +(5.15012 - 1.72310i) q^{28} -52.6691i q^{29} +(-12.4392 + 23.8895i) q^{30} +(-17.2838 - 29.9364i) q^{31} +(-6.11262 - 10.5874i) q^{32} +(-2.51172 + 2.42485i) q^{33} +33.4515 q^{34} +(13.6749 - 32.2180i) q^{35} +(5.92032 + 3.70178i) q^{36} +(-0.357210 - 0.206235i) q^{37} +(-27.2991 - 47.2834i) q^{38} +(9.05229 + 36.3289i) q^{39} +(-42.0169 - 8.54666i) q^{40} -17.2132i q^{41} +(33.4442 + 17.4169i) q^{42} -7.86972i q^{43} +(-0.781892 - 0.451426i) q^{44} +(43.1500 - 12.7701i) q^{45} +(-24.6359 - 42.6706i) q^{46} +(-17.4089 + 30.1530i) q^{47} +(10.1718 - 35.4542i) q^{48} +(-45.1040 - 19.1475i) q^{49} +(-35.8486 + 27.0184i) q^{50} +(-38.8181 - 40.2088i) q^{51} +(-8.38498 + 4.84107i) q^{52} +(17.8667 + 30.9460i) q^{53} +(10.0595 + 47.4261i) q^{54} +(-5.51794 + 1.84653i) q^{55} +(-11.9688 + 58.8229i) q^{56} +(-25.1561 + 87.6825i) q^{57} +(81.9023 + 47.2863i) q^{58} +(32.3428 - 18.6731i) q^{59} +(6.25170 + 9.81542i) q^{60} +(25.4414 - 44.0659i) q^{61} +62.0697 q^{62} +(-17.8745 - 60.4111i) q^{63} +71.1310 q^{64} +(-12.4380 + 61.1474i) q^{65} +(-1.51570 - 6.08285i) q^{66} +(-24.9784 + 14.4213i) q^{67} +(7.22664 - 12.5169i) q^{68} +(-22.7020 + 79.1285i) q^{69} +(37.8228 + 50.1902i) q^{70} +66.8477i q^{71} +(-68.1555 + 36.2139i) q^{72} +(-46.7701 + 27.0027i) q^{73} +(0.641406 - 0.370316i) q^{74} +(74.0759 + 11.7372i) q^{75} -23.5900 q^{76} +(2.58468 + 7.72527i) q^{77} +(-64.6199 - 18.5395i) q^{78} +(-16.6402 + 28.8216i) q^{79} +(40.7321 - 46.0431i) q^{80} +(45.3330 - 67.1261i) q^{81} +(26.7672 + 15.4540i) q^{82} +72.0714 q^{83} +(13.7421 - 8.75156i) q^{84} +(-29.5601 - 88.3338i) q^{85} +(12.2377 + 7.06544i) q^{86} +(-38.2035 - 153.319i) q^{87} +(8.64260 - 4.98981i) q^{88} +(41.4850 + 23.9513i) q^{89} +(-18.8821 + 78.5648i) q^{90} +(85.6053 + 17.4183i) q^{91} -21.2887 q^{92} +(-72.0274 - 74.6079i) q^{93} +(-31.2594 - 54.1428i) q^{94} +(-100.736 + 113.870i) q^{95} +(-25.4733 - 26.3860i) q^{96} -66.7480i q^{97} +(70.2695 - 52.9477i) q^{98} +(-5.55274 + 8.88059i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40q - 44q^{4} + 80q^{6} + 12q^{9} + O(q^{10}) \) \( 40q - 44q^{4} + 80q^{6} + 12q^{9} + 62q^{10} + 84q^{15} - 116q^{16} - 56q^{19} + 36q^{21} - 12q^{24} - 6q^{25} - 20q^{30} - 444q^{31} + 256q^{34} - 688q^{36} + 168q^{39} + 54q^{40} - 40q^{45} + 304q^{46} + 156q^{49} + 156q^{51} - 140q^{54} - 500q^{55} - 130q^{60} + 288q^{61} + 472q^{64} + 340q^{66} - 272q^{69} + 710q^{70} - 524q^{75} + 400q^{76} - 340q^{79} + 496q^{84} + 896q^{85} + 1356q^{90} - 656q^{91} - 560q^{94} + 472q^{96} - 336q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.897800 + 1.55504i −0.448900 + 0.777518i −0.998315 0.0580320i \(-0.981517\pi\)
0.549415 + 0.835550i \(0.314851\pi\)
\(3\) 2.91099 0.725349i 0.970330 0.241783i
\(4\) 0.387909 + 0.671879i 0.0969773 + 0.167970i
\(5\) 4.89966 + 0.996641i 0.979933 + 0.199328i
\(6\) −1.48554 + 5.17791i −0.247591 + 0.862986i
\(7\) 1.39571 6.85945i 0.199386 0.979921i
\(8\) −8.57546 −1.07193
\(9\) 7.94774 4.22297i 0.883082 0.469219i
\(10\) −5.94873 + 6.72437i −0.594873 + 0.672437i
\(11\) −1.00783 + 0.581870i −0.0916208 + 0.0528973i −0.545110 0.838364i \(-0.683512\pi\)
0.453490 + 0.891262i \(0.350179\pi\)
\(12\) 1.61655 + 1.67446i 0.134712 + 0.139539i
\(13\) 12.4799i 0.959993i 0.877270 + 0.479996i \(0.159362\pi\)
−0.877270 + 0.479996i \(0.840638\pi\)
\(14\) 9.41362 + 8.32879i 0.672401 + 0.594913i
\(15\) 14.9858 0.652756i 0.999053 0.0435171i
\(16\) 6.14742 10.6476i 0.384213 0.665477i
\(17\) −9.31485 16.1338i −0.547933 0.949047i −0.998416 0.0562623i \(-0.982082\pi\)
0.450483 0.892785i \(-0.351252\pi\)
\(18\) −0.568609 + 16.1504i −0.0315894 + 0.897244i
\(19\) −15.2033 + 26.3329i −0.800174 + 1.38594i 0.119327 + 0.992855i \(0.461926\pi\)
−0.919501 + 0.393087i \(0.871407\pi\)
\(20\) 1.23100 + 3.67859i 0.0615502 + 0.183929i
\(21\) −0.912610 20.9802i −0.0434576 0.999055i
\(22\) 2.08961i 0.0949824i
\(23\) −13.7201 + 23.7640i −0.596527 + 1.03322i 0.396802 + 0.917904i \(0.370120\pi\)
−0.993329 + 0.115311i \(0.963213\pi\)
\(24\) −24.9631 + 6.22021i −1.04013 + 0.259175i
\(25\) 23.0134 + 9.76641i 0.920537 + 0.390656i
\(26\) −19.4067 11.2045i −0.746412 0.430941i
\(27\) 20.0727 18.0579i 0.743432 0.668812i
\(28\) 5.15012 1.72310i 0.183933 0.0615392i
\(29\) 52.6691i 1.81617i −0.418781 0.908087i \(-0.637543\pi\)
0.418781 0.908087i \(-0.362457\pi\)
\(30\) −12.4392 + 23.8895i −0.414640 + 0.796316i
\(31\) −17.2838 29.9364i −0.557542 0.965692i −0.997701 0.0677718i \(-0.978411\pi\)
0.440158 0.897920i \(-0.354922\pi\)
\(32\) −6.11262 10.5874i −0.191019 0.330855i
\(33\) −2.51172 + 2.42485i −0.0761128 + 0.0734802i
\(34\) 33.4515 0.983868
\(35\) 13.6749 32.2180i 0.390711 0.920513i
\(36\) 5.92032 + 3.70178i 0.164453 + 0.102827i
\(37\) −0.357210 0.206235i −0.00965431 0.00557392i 0.495165 0.868799i \(-0.335108\pi\)
−0.504819 + 0.863225i \(0.668441\pi\)
\(38\) −27.2991 47.2834i −0.718396 1.24430i
\(39\) 9.05229 + 36.3289i 0.232110 + 0.931510i
\(40\) −42.0169 8.54666i −1.05042 0.213666i
\(41\) 17.2132i 0.419835i −0.977719 0.209918i \(-0.932680\pi\)
0.977719 0.209918i \(-0.0673195\pi\)
\(42\) 33.4442 + 17.4169i 0.796291 + 0.414687i
\(43\) 7.86972i 0.183017i −0.995804 0.0915084i \(-0.970831\pi\)
0.995804 0.0915084i \(-0.0291688\pi\)
\(44\) −0.781892 0.451426i −0.0177703 0.0102597i
\(45\) 43.1500 12.7701i 0.958889 0.283780i
\(46\) −24.6359 42.6706i −0.535562 0.927621i
\(47\) −17.4089 + 30.1530i −0.370401 + 0.641554i −0.989627 0.143659i \(-0.954113\pi\)
0.619226 + 0.785213i \(0.287447\pi\)
\(48\) 10.1718 35.4542i 0.211913 0.738629i
\(49\) −45.1040 19.1475i −0.920490 0.390766i
\(50\) −35.8486 + 27.0184i −0.716971 + 0.540368i
\(51\) −38.8181 40.2088i −0.761139 0.788408i
\(52\) −8.38498 + 4.84107i −0.161250 + 0.0930975i
\(53\) 17.8667 + 30.9460i 0.337107 + 0.583886i 0.983887 0.178790i \(-0.0572183\pi\)
−0.646780 + 0.762676i \(0.723885\pi\)
\(54\) 10.0595 + 47.4261i 0.186286 + 0.878261i
\(55\) −5.51794 + 1.84653i −0.100326 + 0.0335732i
\(56\) −11.9688 + 58.8229i −0.213729 + 1.05041i
\(57\) −25.1561 + 87.6825i −0.441336 + 1.53829i
\(58\) 81.9023 + 47.2863i 1.41211 + 0.815281i
\(59\) 32.3428 18.6731i 0.548184 0.316494i −0.200205 0.979754i \(-0.564161\pi\)
0.748389 + 0.663260i \(0.230828\pi\)
\(60\) 6.25170 + 9.81542i 0.104195 + 0.163590i
\(61\) 25.4414 44.0659i 0.417073 0.722391i −0.578571 0.815632i \(-0.696389\pi\)
0.995644 + 0.0932408i \(0.0297226\pi\)
\(62\) 62.0697 1.00112
\(63\) −17.8745 60.4111i −0.283723 0.958906i
\(64\) 71.1310 1.11142
\(65\) −12.4380 + 61.1474i −0.191354 + 0.940729i
\(66\) −1.51570 6.08285i −0.0229652 0.0921643i
\(67\) −24.9784 + 14.4213i −0.372812 + 0.215243i −0.674686 0.738105i \(-0.735721\pi\)
0.301874 + 0.953348i \(0.402388\pi\)
\(68\) 7.22664 12.5169i 0.106274 0.184072i
\(69\) −22.7020 + 79.1285i −0.329014 + 1.14679i
\(70\) 37.8228 + 50.1902i 0.540325 + 0.717004i
\(71\) 66.8477i 0.941518i 0.882262 + 0.470759i \(0.156020\pi\)
−0.882262 + 0.470759i \(0.843980\pi\)
\(72\) −68.1555 + 36.2139i −0.946604 + 0.502971i
\(73\) −46.7701 + 27.0027i −0.640686 + 0.369900i −0.784879 0.619649i \(-0.787275\pi\)
0.144192 + 0.989550i \(0.453942\pi\)
\(74\) 0.641406 0.370316i 0.00866765 0.00500427i
\(75\) 74.0759 + 11.7372i 0.987679 + 0.156496i
\(76\) −23.5900 −0.310395
\(77\) 2.58468 + 7.72527i 0.0335672 + 0.100328i
\(78\) −64.6199 18.5395i −0.828460 0.237685i
\(79\) −16.6402 + 28.8216i −0.210635 + 0.364831i −0.951914 0.306367i \(-0.900887\pi\)
0.741278 + 0.671198i \(0.234220\pi\)
\(80\) 40.7321 46.0431i 0.509152 0.575538i
\(81\) 45.3330 67.1261i 0.559667 0.828718i
\(82\) 26.7672 + 15.4540i 0.326429 + 0.188464i
\(83\) 72.0714 0.868330 0.434165 0.900833i \(-0.357043\pi\)
0.434165 + 0.900833i \(0.357043\pi\)
\(84\) 13.7421 8.75156i 0.163597 0.104185i
\(85\) −29.5601 88.3338i −0.347765 1.03922i
\(86\) 12.2377 + 7.06544i 0.142299 + 0.0821562i
\(87\) −38.2035 153.319i −0.439120 1.76229i
\(88\) 8.64260 4.98981i 0.0982114 0.0567024i
\(89\) 41.4850 + 23.9513i 0.466123 + 0.269116i 0.714615 0.699518i \(-0.246602\pi\)
−0.248492 + 0.968634i \(0.579935\pi\)
\(90\) −18.8821 + 78.5648i −0.209802 + 0.872943i
\(91\) 85.6053 + 17.4183i 0.940717 + 0.191410i
\(92\) −21.2887 −0.231398
\(93\) −72.0274 74.6079i −0.774488 0.802236i
\(94\) −31.2594 54.1428i −0.332546 0.575987i
\(95\) −100.736 + 113.870i −1.06037 + 1.19863i
\(96\) −25.4733 26.3860i −0.265347 0.274854i
\(97\) 66.7480i 0.688124i −0.938947 0.344062i \(-0.888197\pi\)
0.938947 0.344062i \(-0.111803\pi\)
\(98\) 70.2695 52.9477i 0.717036 0.540283i
\(99\) −5.55274 + 8.88059i −0.0560883 + 0.0897029i
\(100\) 2.36527 + 19.2507i 0.0236527 + 0.192507i
\(101\) 19.3539 11.1740i 0.191623 0.110633i −0.401119 0.916026i \(-0.631379\pi\)
0.592742 + 0.805392i \(0.298045\pi\)
\(102\) 97.3771 24.2640i 0.954677 0.237883i
\(103\) 12.8487 + 7.41823i 0.124745 + 0.0720216i 0.561074 0.827766i \(-0.310388\pi\)
−0.436329 + 0.899787i \(0.643722\pi\)
\(104\) 107.021i 1.02905i
\(105\) 16.4382 103.705i 0.156554 0.987669i
\(106\) −64.1628 −0.605309
\(107\) −16.9958 + 29.4376i −0.158840 + 0.275118i −0.934450 0.356093i \(-0.884109\pi\)
0.775611 + 0.631211i \(0.217442\pi\)
\(108\) 19.9191 + 6.48156i 0.184436 + 0.0600144i
\(109\) 45.3155 + 78.4888i 0.415739 + 0.720081i 0.995506 0.0947015i \(-0.0301897\pi\)
−0.579767 + 0.814782i \(0.696856\pi\)
\(110\) 2.08259 10.2384i 0.0189327 0.0930764i
\(111\) −1.18943 0.341247i −0.0107156 0.00307429i
\(112\) −64.4569 57.0288i −0.575508 0.509186i
\(113\) 76.2557 0.674830 0.337415 0.941356i \(-0.390448\pi\)
0.337415 + 0.941356i \(0.390448\pi\)
\(114\) −113.764 117.840i −0.997932 1.03368i
\(115\) −90.9081 + 102.761i −0.790505 + 0.893577i
\(116\) 35.3872 20.4308i 0.305062 0.176128i
\(117\) 52.7023 + 99.1870i 0.450447 + 0.847752i
\(118\) 67.0590i 0.568297i
\(119\) −123.670 + 41.3767i −1.03924 + 0.347703i
\(120\) −128.510 + 5.59769i −1.07092 + 0.0466474i
\(121\) −59.8229 + 103.616i −0.494404 + 0.856332i
\(122\) 45.6827 + 79.1247i 0.374448 + 0.648563i
\(123\) −12.4856 50.1076i −0.101509 0.407379i
\(124\) 13.4091 23.2253i 0.108138 0.187300i
\(125\) 103.024 + 70.7882i 0.824195 + 0.566306i
\(126\) 109.989 + 26.4415i 0.872930 + 0.209854i
\(127\) 0.573646i 0.00451690i 0.999997 + 0.00225845i \(0.000718888\pi\)
−0.999997 + 0.00225845i \(0.999281\pi\)
\(128\) −39.4109 + 68.2617i −0.307898 + 0.533295i
\(129\) −5.70830 22.9087i −0.0442504 0.177587i
\(130\) −83.9195 74.2396i −0.645535 0.571074i
\(131\) −199.680 115.285i −1.52427 0.880039i −0.999587 0.0287429i \(-0.990850\pi\)
−0.524686 0.851296i \(-0.675817\pi\)
\(132\) −2.60352 0.746951i −0.0197237 0.00565872i
\(133\) 159.410 + 141.039i 1.19857 + 1.06045i
\(134\) 51.7898i 0.386491i
\(135\) 116.347 68.4725i 0.861826 0.507204i
\(136\) 79.8792 + 138.355i 0.587347 + 1.01731i
\(137\) −13.9490 24.1603i −0.101817 0.176353i 0.810616 0.585578i \(-0.199132\pi\)
−0.912433 + 0.409225i \(0.865799\pi\)
\(138\) −102.666 106.344i −0.743955 0.770609i
\(139\) −130.478 −0.938693 −0.469346 0.883014i \(-0.655510\pi\)
−0.469346 + 0.883014i \(0.655510\pi\)
\(140\) 26.9512 3.30978i 0.192508 0.0236413i
\(141\) −28.8056 + 100.403i −0.204295 + 0.712076i
\(142\) −103.951 60.0159i −0.732047 0.422647i
\(143\) −7.26169 12.5776i −0.0507810 0.0879553i
\(144\) 3.89338 110.585i 0.0270373 0.767951i
\(145\) 52.4921 258.061i 0.362015 1.77973i
\(146\) 96.9723i 0.664194i
\(147\) −145.186 23.0221i −0.987660 0.156613i
\(148\) 0.320002i 0.00216218i
\(149\) 137.529 + 79.4024i 0.923013 + 0.532902i 0.884595 0.466360i \(-0.154435\pi\)
0.0384179 + 0.999262i \(0.487768\pi\)
\(150\) −84.7571 + 104.653i −0.565047 + 0.697687i
\(151\) 24.0390 + 41.6367i 0.159198 + 0.275740i 0.934580 0.355753i \(-0.115776\pi\)
−0.775381 + 0.631493i \(0.782442\pi\)
\(152\) 130.375 225.817i 0.857733 1.48564i
\(153\) −142.165 88.8908i −0.929180 0.580986i
\(154\) −14.3336 2.91649i −0.0930753 0.0189382i
\(155\) −54.8490 163.904i −0.353865 1.05745i
\(156\) −20.8971 + 20.1744i −0.133956 + 0.129323i
\(157\) 112.848 65.1528i 0.718777 0.414986i −0.0955254 0.995427i \(-0.530453\pi\)
0.814302 + 0.580441i \(0.197120\pi\)
\(158\) −29.8791 51.7522i −0.189108 0.327545i
\(159\) 74.4564 + 77.1239i 0.468279 + 0.485056i
\(160\) −19.3980 57.9666i −0.121237 0.362292i
\(161\) 143.858 + 127.280i 0.893530 + 0.790559i
\(162\) 63.6835 + 130.760i 0.393108 + 0.807163i
\(163\) 121.121 + 69.9292i 0.743073 + 0.429013i 0.823185 0.567773i \(-0.192195\pi\)
−0.0801127 + 0.996786i \(0.525528\pi\)
\(164\) 11.5652 6.67717i 0.0705195 0.0407145i
\(165\) −14.7233 + 9.37765i −0.0892321 + 0.0568343i
\(166\) −64.7057 + 112.074i −0.389794 + 0.675142i
\(167\) −224.419 −1.34383 −0.671915 0.740629i \(-0.734528\pi\)
−0.671915 + 0.740629i \(0.734528\pi\)
\(168\) 7.82605 + 179.915i 0.0465836 + 1.07092i
\(169\) 13.2519 0.0784136
\(170\) 163.901 + 33.3391i 0.964125 + 0.196113i
\(171\) −9.62879 + 273.490i −0.0563087 + 1.59936i
\(172\) 5.28750 3.05274i 0.0307413 0.0177485i
\(173\) −146.827 + 254.312i −0.848711 + 1.47001i 0.0336474 + 0.999434i \(0.489288\pi\)
−0.882359 + 0.470577i \(0.844046\pi\)
\(174\) 272.716 + 78.2422i 1.56733 + 0.449668i
\(175\) 99.1121 144.228i 0.566355 0.824161i
\(176\) 14.3080i 0.0812954i
\(177\) 80.6051 77.8172i 0.455396 0.439645i
\(178\) −74.4904 + 43.0071i −0.418485 + 0.241613i
\(179\) −211.424 + 122.066i −1.18114 + 0.681933i −0.956278 0.292458i \(-0.905527\pi\)
−0.224863 + 0.974390i \(0.572194\pi\)
\(180\) 25.3183 + 24.0379i 0.140657 + 0.133544i
\(181\) 81.3669 0.449541 0.224771 0.974412i \(-0.427837\pi\)
0.224771 + 0.974412i \(0.427837\pi\)
\(182\) −103.942 + 117.481i −0.571112 + 0.645501i
\(183\) 42.0967 146.729i 0.230036 0.801799i
\(184\) 117.656 203.787i 0.639437 1.10754i
\(185\) −1.54466 1.36649i −0.00834954 0.00738644i
\(186\) 180.684 45.0222i 0.971421 0.242055i
\(187\) 18.7756 + 10.8401i 0.100404 + 0.0579683i
\(188\) −27.0122 −0.143682
\(189\) −95.8518 162.891i −0.507152 0.861856i
\(190\) −86.6317 258.880i −0.455956 1.36253i
\(191\) 207.381 + 119.732i 1.08577 + 0.626867i 0.932446 0.361310i \(-0.117670\pi\)
0.153319 + 0.988177i \(0.451004\pi\)
\(192\) 207.062 51.5948i 1.07845 0.268723i
\(193\) 1.39114 0.803175i 0.00720798 0.00416153i −0.496392 0.868099i \(-0.665342\pi\)
0.503600 + 0.863937i \(0.332009\pi\)
\(194\) 103.796 + 59.9264i 0.535029 + 0.308899i
\(195\) 8.14634 + 187.021i 0.0417761 + 0.959083i
\(196\) −4.63145 37.7319i −0.0236298 0.192510i
\(197\) 286.325 1.45343 0.726713 0.686941i \(-0.241047\pi\)
0.726713 + 0.686941i \(0.241047\pi\)
\(198\) −8.82438 16.6077i −0.0445676 0.0838773i
\(199\) −44.6292 77.3000i −0.224267 0.388442i 0.731832 0.681485i \(-0.238665\pi\)
−0.956099 + 0.293043i \(0.905332\pi\)
\(200\) −197.351 83.7515i −0.986753 0.418757i
\(201\) −62.2515 + 60.0983i −0.309709 + 0.298997i
\(202\) 40.1280i 0.198653i
\(203\) −361.281 73.5105i −1.77971 0.362121i
\(204\) 11.9575 41.6784i 0.0586154 0.204306i
\(205\) 17.1554 84.3391i 0.0836849 0.411410i
\(206\) −23.0712 + 13.3202i −0.111996 + 0.0646610i
\(207\) −8.68944 + 246.809i −0.0419780 + 1.19232i
\(208\) 132.882 + 76.7192i 0.638853 + 0.368842i
\(209\) 35.3854i 0.169308i
\(210\) 146.507 + 118.669i 0.697653 + 0.565089i
\(211\) 174.205 0.825617 0.412808 0.910818i \(-0.364548\pi\)
0.412808 + 0.910818i \(0.364548\pi\)
\(212\) −13.8613 + 24.0085i −0.0653835 + 0.113247i
\(213\) 48.4880 + 194.593i 0.227643 + 0.913583i
\(214\) −30.5177 52.8582i −0.142606 0.247001i
\(215\) 7.84328 38.5590i 0.0364804 0.179344i
\(216\) −172.132 + 154.855i −0.796909 + 0.716921i
\(217\) −229.471 + 76.7750i −1.05747 + 0.353802i
\(218\) −162.737 −0.746501
\(219\) −116.561 + 112.529i −0.532242 + 0.513833i
\(220\) −3.38110 2.99110i −0.0153686 0.0135959i
\(221\) 201.348 116.249i 0.911078 0.526011i
\(222\) 1.59852 1.54323i 0.00720053 0.00695148i
\(223\) 149.196i 0.669041i 0.942388 + 0.334521i \(0.108574\pi\)
−0.942388 + 0.334521i \(0.891426\pi\)
\(224\) −81.1549 + 27.1523i −0.362299 + 0.121216i
\(225\) 224.148 19.5641i 0.996213 0.0869517i
\(226\) −68.4624 + 118.580i −0.302931 + 0.524692i
\(227\) 46.1279 + 79.8959i 0.203207 + 0.351964i 0.949560 0.313586i \(-0.101530\pi\)
−0.746353 + 0.665550i \(0.768197\pi\)
\(228\) −68.6703 + 17.1110i −0.301186 + 0.0750482i
\(229\) −74.0138 + 128.196i −0.323205 + 0.559807i −0.981147 0.193261i \(-0.938094\pi\)
0.657943 + 0.753068i \(0.271427\pi\)
\(230\) −78.1802 233.625i −0.339914 1.01576i
\(231\) 13.1275 + 20.6134i 0.0568290 + 0.0892355i
\(232\) 451.661i 1.94682i
\(233\) 201.616 349.210i 0.865306 1.49875i −0.00143686 0.999999i \(-0.500457\pi\)
0.866743 0.498755i \(-0.166209\pi\)
\(234\) −201.555 7.09619i −0.861348 0.0303256i
\(235\) −115.349 + 130.389i −0.490848 + 0.554848i
\(236\) 25.0922 + 14.4870i 0.106323 + 0.0613855i
\(237\) −27.5337 + 95.9695i −0.116176 + 0.404935i
\(238\) 46.6885 229.459i 0.196170 0.964113i
\(239\) 42.1167i 0.176220i 0.996111 + 0.0881102i \(0.0280828\pi\)
−0.996111 + 0.0881102i \(0.971917\pi\)
\(240\) 85.1736 163.576i 0.354890 0.681567i
\(241\) −133.166 230.650i −0.552554 0.957052i −0.998089 0.0617877i \(-0.980320\pi\)
0.445535 0.895265i \(-0.353014\pi\)
\(242\) −107.418 186.053i −0.443876 0.768815i
\(243\) 83.2741 228.286i 0.342692 0.939448i
\(244\) 39.4759 0.161786
\(245\) −201.911 138.769i −0.824128 0.566404i
\(246\) 89.1286 + 25.5710i 0.362312 + 0.103947i
\(247\) −328.632 189.736i −1.33049 0.768161i
\(248\) 148.217 + 256.719i 0.597648 + 1.03516i
\(249\) 209.799 52.2770i 0.842567 0.209948i
\(250\) −202.574 + 96.6529i −0.810294 + 0.386612i
\(251\) 426.902i 1.70081i −0.526133 0.850403i \(-0.676358\pi\)
0.526133 0.850403i \(-0.323642\pi\)
\(252\) 33.6552 35.4435i 0.133552 0.140649i
\(253\) 31.9333i 0.126219i
\(254\) −0.892041 0.515020i −0.00351197 0.00202764i
\(255\) −150.122 235.697i −0.588713 0.924304i
\(256\) 71.4957 + 123.834i 0.279280 + 0.483727i
\(257\) 8.35527 14.4718i 0.0325108 0.0563103i −0.849312 0.527891i \(-0.822983\pi\)
0.881823 + 0.471581i \(0.156316\pi\)
\(258\) 40.7487 + 11.6908i 0.157941 + 0.0453132i
\(259\) −1.91322 + 2.16242i −0.00738694 + 0.00834910i
\(260\) −45.9084 + 15.3628i −0.176571 + 0.0590877i
\(261\) −222.420 418.600i −0.852183 1.60383i
\(262\) 358.545 207.006i 1.36849 0.790099i
\(263\) −0.756335 1.31001i −0.00287580 0.00498103i 0.864584 0.502488i \(-0.167582\pi\)
−0.867460 + 0.497507i \(0.834249\pi\)
\(264\) 21.5392 20.7942i 0.0815878 0.0787659i
\(265\) 56.6986 + 169.432i 0.213957 + 0.639364i
\(266\) −362.439 + 121.263i −1.36255 + 0.455875i
\(267\) 138.135 + 39.6311i 0.517361 + 0.148431i
\(268\) −19.3787 11.1883i −0.0723087 0.0417474i
\(269\) −10.5890 + 6.11353i −0.0393641 + 0.0227269i −0.519553 0.854438i \(-0.673901\pi\)
0.480189 + 0.877165i \(0.340568\pi\)
\(270\) 2.02122 + 242.398i 0.00748599 + 0.897769i
\(271\) −117.307 + 203.182i −0.432868 + 0.749749i −0.997119 0.0758540i \(-0.975832\pi\)
0.564251 + 0.825603i \(0.309165\pi\)
\(272\) −229.049 −0.842092
\(273\) 261.830 11.3893i 0.959086 0.0417190i
\(274\) 50.0935 0.182823
\(275\) −28.8764 + 3.54795i −0.105005 + 0.0129016i
\(276\) −61.9711 + 15.4417i −0.224533 + 0.0559482i
\(277\) 427.929 247.065i 1.54487 0.891930i 0.546348 0.837558i \(-0.316018\pi\)
0.998521 0.0543719i \(-0.0173156\pi\)
\(278\) 117.143 202.898i 0.421379 0.729850i
\(279\) −263.788 164.938i −0.945477 0.591175i
\(280\) −117.269 + 276.284i −0.418816 + 0.986728i
\(281\) 67.0586i 0.238643i 0.992856 + 0.119321i \(0.0380719\pi\)
−0.992856 + 0.119321i \(0.961928\pi\)
\(282\) −130.268 134.935i −0.461944 0.478494i
\(283\) 118.530 68.4334i 0.418834 0.241814i −0.275744 0.961231i \(-0.588924\pi\)
0.694579 + 0.719417i \(0.255591\pi\)
\(284\) −44.9136 + 25.9309i −0.158146 + 0.0913058i
\(285\) −210.645 + 404.543i −0.739104 + 1.41945i
\(286\) 26.0782 0.0911825
\(287\) −118.073 24.0246i −0.411405 0.0837094i
\(288\) −93.2917 58.3322i −0.323929 0.202542i
\(289\) −29.0330 + 50.2867i −0.100460 + 0.174002i
\(290\) 354.166 + 313.314i 1.22126 + 1.08039i
\(291\) −48.4156 194.303i −0.166377 0.667707i
\(292\) −36.2851 20.9492i −0.124264 0.0717439i
\(293\) 98.9599 0.337747 0.168874 0.985638i \(-0.445987\pi\)
0.168874 + 0.985638i \(0.445987\pi\)
\(294\) 166.148 205.100i 0.565130 0.697620i
\(295\) 177.079 59.2579i 0.600269 0.200874i
\(296\) 3.06324 + 1.76856i 0.0103488 + 0.00597487i
\(297\) −9.72244 + 29.8790i −0.0327355 + 0.100603i
\(298\) −246.947 + 142.575i −0.828681 + 0.478439i
\(299\) −296.572 171.226i −0.991879 0.572662i
\(300\) 20.8488 + 54.3230i 0.0694959 + 0.181077i
\(301\) −53.9819 10.9838i −0.179342 0.0364911i
\(302\) −86.3287 −0.285857
\(303\) 48.2339 46.5657i 0.159188 0.153682i
\(304\) 186.922 + 323.759i 0.614875 + 1.06500i
\(305\) 168.572 190.552i 0.552696 0.624761i
\(306\) 265.864 141.265i 0.868836 0.461650i
\(307\) 441.330i 1.43756i −0.695239 0.718778i \(-0.744702\pi\)
0.695239 0.718778i \(-0.255298\pi\)
\(308\) −4.18782 + 4.73329i −0.0135968 + 0.0153678i
\(309\) 42.7834 + 12.2746i 0.138458 + 0.0397235i
\(310\) 304.120 + 61.8612i 0.981034 + 0.199552i
\(311\) −19.4380 + 11.2225i −0.0625015 + 0.0360853i −0.530925 0.847419i \(-0.678155\pi\)
0.468424 + 0.883504i \(0.344822\pi\)
\(312\) −77.6276 311.537i −0.248806 0.998516i
\(313\) −217.506 125.577i −0.694908 0.401206i 0.110540 0.993872i \(-0.464742\pi\)
−0.805448 + 0.592666i \(0.798075\pi\)
\(314\) 233.977i 0.745149i
\(315\) −27.3711 313.809i −0.0868924 0.996218i
\(316\) −25.8195 −0.0817074
\(317\) −17.4496 + 30.2237i −0.0550462 + 0.0953428i −0.892235 0.451570i \(-0.850864\pi\)
0.837189 + 0.546913i \(0.184197\pi\)
\(318\) −186.777 + 46.5405i −0.587350 + 0.146354i
\(319\) 30.6466 + 53.0814i 0.0960707 + 0.166399i
\(320\) 348.518 + 70.8920i 1.08912 + 0.221538i
\(321\) −28.1221 + 98.0206i −0.0876079 + 0.305360i
\(322\) −327.081 + 109.433i −1.01578 + 0.339854i
\(323\) 566.466 1.75377
\(324\) 62.6857 + 4.41944i 0.193474 + 0.0136403i
\(325\) −121.884 + 287.205i −0.375027 + 0.883709i
\(326\) −217.485 + 125.565i −0.667131 + 0.385168i
\(327\) 188.845 + 195.611i 0.577508 + 0.598198i
\(328\) 147.611i 0.450035i
\(329\) 182.535 + 161.500i 0.554819 + 0.490881i
\(330\) −1.36401 31.3145i −0.00413336 0.0948925i
\(331\) 136.010 235.577i 0.410908 0.711713i −0.584082 0.811695i \(-0.698545\pi\)
0.994989 + 0.0999821i \(0.0318786\pi\)
\(332\) 27.9572 + 48.4232i 0.0842083 + 0.145853i
\(333\) −3.70993 0.130616i −0.0111409 0.000392240i
\(334\) 201.484 348.980i 0.603245 1.04485i
\(335\) −136.759 + 45.7650i −0.408235 + 0.136612i
\(336\) −228.999 119.257i −0.681546 0.354930i
\(337\) 600.523i 1.78197i 0.454036 + 0.890983i \(0.349984\pi\)
−0.454036 + 0.890983i \(0.650016\pi\)
\(338\) −11.8976 + 20.6072i −0.0351999 + 0.0609680i
\(339\) 221.980 55.3121i 0.654808 0.163162i
\(340\) 47.8829 54.1263i 0.140832 0.159195i
\(341\) 34.8383 + 20.1139i 0.102165 + 0.0589850i
\(342\) −416.642 260.513i −1.21825 0.761733i
\(343\) −194.293 + 282.664i −0.566453 + 0.824094i
\(344\) 67.4865i 0.196182i
\(345\) −190.095 + 365.077i −0.551000 + 1.05820i
\(346\) −263.643 456.643i −0.761973 1.31978i
\(347\) 77.0212 + 133.405i 0.221963 + 0.384451i 0.955404 0.295302i \(-0.0954202\pi\)
−0.733441 + 0.679753i \(0.762087\pi\)
\(348\) 88.1924 85.1420i 0.253426 0.244661i
\(349\) −20.2324 −0.0579726 −0.0289863 0.999580i \(-0.509228\pi\)
−0.0289863 + 0.999580i \(0.509228\pi\)
\(350\) 135.297 + 283.611i 0.386563 + 0.810317i
\(351\) 225.361 + 250.505i 0.642055 + 0.713689i
\(352\) 12.3210 + 7.11351i 0.0350027 + 0.0202088i
\(353\) −162.715 281.830i −0.460948 0.798386i 0.538060 0.842907i \(-0.319157\pi\)
−0.999008 + 0.0445203i \(0.985824\pi\)
\(354\) 48.6412 + 195.208i 0.137405 + 0.551436i
\(355\) −66.6232 + 327.531i −0.187671 + 0.922624i
\(356\) 37.1638i 0.104393i
\(357\) −329.989 + 210.151i −0.924339 + 0.588658i
\(358\) 438.363i 1.22448i
\(359\) 499.939 + 288.640i 1.39259 + 0.804011i 0.993601 0.112945i \(-0.0360285\pi\)
0.398987 + 0.916957i \(0.369362\pi\)
\(360\) −370.031 + 109.510i −1.02787 + 0.304193i
\(361\) −281.781 488.059i −0.780556 1.35196i
\(362\) −73.0513 + 126.528i −0.201799 + 0.349526i
\(363\) −98.9858 + 345.018i −0.272688 + 0.950464i
\(364\) 21.5041 + 64.2730i 0.0590772 + 0.176574i
\(365\) −256.070 + 85.6913i −0.701561 + 0.234771i
\(366\) 190.375 + 197.195i 0.520150 + 0.538785i
\(367\) 435.739 251.574i 1.18730 0.685487i 0.229607 0.973283i \(-0.426256\pi\)
0.957692 + 0.287796i \(0.0929226\pi\)
\(368\) 168.687 + 292.174i 0.458388 + 0.793950i
\(369\) −72.6910 136.806i −0.196995 0.370749i
\(370\) 3.51174 1.17517i 0.00949120 0.00317614i
\(371\) 237.209 79.3640i 0.639377 0.213919i
\(372\) 22.1874 77.3348i 0.0596434 0.207889i
\(373\) −185.731 107.232i −0.497938 0.287484i 0.229924 0.973209i \(-0.426152\pi\)
−0.727861 + 0.685724i \(0.759486\pi\)
\(374\) −33.7134 + 19.4644i −0.0901428 + 0.0520440i
\(375\) 351.249 + 131.335i 0.936665 + 0.350227i
\(376\) 149.289 258.576i 0.397045 0.687703i
\(377\) 657.305 1.74351
\(378\) 339.357 2.80951i 0.897770 0.00743255i
\(379\) −505.361 −1.33341 −0.666704 0.745323i \(-0.732295\pi\)
−0.666704 + 0.745323i \(0.732295\pi\)
\(380\) −115.583 23.5108i −0.304166 0.0618704i
\(381\) 0.416094 + 1.66988i 0.00109211 + 0.00438289i
\(382\) −372.374 + 214.990i −0.974800 + 0.562801i
\(383\) −202.429 + 350.617i −0.528535 + 0.915449i 0.470912 + 0.882180i \(0.343925\pi\)
−0.999446 + 0.0332689i \(0.989408\pi\)
\(384\) −65.2112 + 227.296i −0.169821 + 0.591917i
\(385\) 4.96473 + 40.4272i 0.0128954 + 0.105006i
\(386\) 2.88436i 0.00747244i
\(387\) −33.2336 62.5465i −0.0858749 0.161619i
\(388\) 44.8466 25.8922i 0.115584 0.0667324i
\(389\) −168.810 + 97.4627i −0.433960 + 0.250547i −0.701032 0.713130i \(-0.747277\pi\)
0.267072 + 0.963676i \(0.413944\pi\)
\(390\) −298.139 155.240i −0.764458 0.398051i
\(391\) 511.204 1.30743
\(392\) 386.788 + 164.199i 0.986703 + 0.418875i
\(393\) −664.888 190.756i −1.69183 0.485385i
\(394\) −257.063 + 445.245i −0.652443 + 1.13006i
\(395\) −110.256 + 124.632i −0.279129 + 0.315524i
\(396\) −8.12063 0.285904i −0.0205067 0.000721980i
\(397\) 500.171 + 288.774i 1.25988 + 0.727390i 0.973050 0.230593i \(-0.0740666\pi\)
0.286826 + 0.957983i \(0.407400\pi\)
\(398\) 160.272 0.402694
\(399\) 566.343 + 294.936i 1.41941 + 0.739188i
\(400\) 245.462 185.000i 0.613656 0.462501i
\(401\) −199.268 115.047i −0.496927 0.286901i 0.230517 0.973068i \(-0.425958\pi\)
−0.727443 + 0.686168i \(0.759292\pi\)
\(402\) −37.5657 150.760i −0.0934470 0.375024i
\(403\) 373.604 215.700i 0.927057 0.535237i
\(404\) 15.0151 + 8.66897i 0.0371661 + 0.0214579i
\(405\) 289.017 283.715i 0.713623 0.700530i
\(406\) 438.669 495.806i 1.08047 1.22120i
\(407\) 0.480008 0.00117938
\(408\) 332.883 + 344.809i 0.815890 + 0.845121i
\(409\) 290.480 + 503.125i 0.710219 + 1.23014i 0.964775 + 0.263077i \(0.0847375\pi\)
−0.254556 + 0.967058i \(0.581929\pi\)
\(410\) 115.748 + 102.397i 0.282313 + 0.249749i
\(411\) −58.1300 60.2126i −0.141435 0.146503i
\(412\) 11.5104i 0.0279378i
\(413\) −82.9464 247.916i −0.200839 0.600281i
\(414\) −375.996 235.098i −0.908203 0.567869i
\(415\) 353.126 + 71.8293i 0.850905 + 0.173083i
\(416\) 132.129 76.2850i 0.317619 0.183377i
\(417\) −379.821 + 94.6424i −0.910842 + 0.226960i
\(418\) 55.0256 + 31.7690i 0.131640 + 0.0760025i
\(419\) 220.813i 0.527000i −0.964659 0.263500i \(-0.915123\pi\)
0.964659 0.263500i \(-0.0848769\pi\)
\(420\) 76.0539 29.1838i 0.181081 0.0694851i
\(421\) −747.852 −1.77637 −0.888185 0.459486i \(-0.848033\pi\)
−0.888185 + 0.459486i \(0.848033\pi\)
\(422\) −156.401 + 270.895i −0.370620 + 0.641932i
\(423\) −11.0257 + 313.166i −0.0260654 + 0.740344i
\(424\) −153.215 265.376i −0.361356 0.625887i
\(425\) −56.7973 462.267i −0.133641 1.08769i
\(426\) −346.132 99.3053i −0.812516 0.233111i
\(427\) −266.759 236.017i −0.624728 0.552734i
\(428\) −26.3714 −0.0616153
\(429\) −30.2619 31.3461i −0.0705405 0.0730677i
\(430\) 52.9189 + 46.8149i 0.123067 + 0.108872i
\(431\) −310.115 + 179.045i −0.719523 + 0.415417i −0.814577 0.580055i \(-0.803031\pi\)
0.0950539 + 0.995472i \(0.469698\pi\)
\(432\) −68.8792 324.736i −0.159443 0.751703i
\(433\) 622.750i 1.43822i −0.694896 0.719110i \(-0.744550\pi\)
0.694896 0.719110i \(-0.255450\pi\)
\(434\) 86.6310 425.764i 0.199611 0.981022i
\(435\) −34.3800 789.287i −0.0790346 1.81445i
\(436\) −35.1566 + 60.8931i −0.0806345 + 0.139663i
\(437\) −417.182 722.581i −0.954651 1.65350i
\(438\) −70.3388 282.285i −0.160591 0.644487i
\(439\) 194.411 336.729i 0.442849 0.767036i −0.555051 0.831816i \(-0.687301\pi\)
0.997900 + 0.0647799i \(0.0206345\pi\)
\(440\) 47.3189 15.8348i 0.107543 0.0359882i
\(441\) −439.334 + 38.2934i −0.996223 + 0.0868331i
\(442\) 417.472i 0.944506i
\(443\) −192.113 + 332.750i −0.433664 + 0.751128i −0.997186 0.0749733i \(-0.976113\pi\)
0.563522 + 0.826101i \(0.309446\pi\)
\(444\) −0.232113 0.931523i −0.000522778 0.00209802i
\(445\) 179.391 + 158.699i 0.403127 + 0.356627i
\(446\) −232.005 133.948i −0.520191 0.300333i
\(447\) 457.940 + 131.383i 1.02447 + 0.293922i
\(448\) 99.2779 487.919i 0.221602 1.08911i
\(449\) 33.9684i 0.0756535i −0.999284 0.0378267i \(-0.987957\pi\)
0.999284 0.0378267i \(-0.0120435\pi\)
\(450\) −170.817 + 366.123i −0.379593 + 0.813606i
\(451\) 10.0159 + 17.3480i 0.0222081 + 0.0384656i
\(452\) 29.5803 + 51.2346i 0.0654432 + 0.113351i
\(453\) 100.178 + 103.767i 0.221144 + 0.229067i
\(454\) −165.655 −0.364878
\(455\) 402.077 + 170.661i 0.883686 + 0.375080i
\(456\) 215.725 751.918i 0.473082 1.64894i
\(457\) −432.197 249.529i −0.945726 0.546015i −0.0539752 0.998542i \(-0.517189\pi\)
−0.891751 + 0.452527i \(0.850523\pi\)
\(458\) −132.899 230.188i −0.290173 0.502595i
\(459\) −478.317 155.641i −1.04208 0.339088i
\(460\) −104.307 21.2171i −0.226755 0.0461242i
\(461\) 816.492i 1.77113i 0.464513 + 0.885566i \(0.346229\pi\)
−0.464513 + 0.885566i \(0.653771\pi\)
\(462\) −43.8404 + 1.90700i −0.0948927 + 0.00412771i
\(463\) 353.851i 0.764258i 0.924109 + 0.382129i \(0.124809\pi\)
−0.924109 + 0.382129i \(0.875191\pi\)
\(464\) −560.801 323.779i −1.20862 0.697799i
\(465\) −278.553 437.339i −0.599038 0.940514i
\(466\) 362.022 + 627.041i 0.776872 + 1.34558i
\(467\) 127.057 220.068i 0.272070 0.471238i −0.697322 0.716758i \(-0.745625\pi\)
0.969392 + 0.245520i \(0.0789586\pi\)
\(468\) −46.1979 + 73.8851i −0.0987135 + 0.157874i
\(469\) 64.0596 + 191.466i 0.136588 + 0.408243i
\(470\) −99.1994 296.436i −0.211063 0.630715i
\(471\) 281.241 271.513i 0.597114 0.576462i
\(472\) −277.355 + 160.131i −0.587616 + 0.339260i
\(473\) 4.57916 + 7.93133i 0.00968109 + 0.0167681i
\(474\) −124.516 128.977i −0.262693 0.272104i
\(475\) −607.058 + 457.528i −1.27802 + 0.963217i
\(476\) −75.7728 67.0406i −0.159186 0.140842i
\(477\) 272.684 + 170.500i 0.571664 + 0.357442i
\(478\) −65.4930 37.8124i −0.137015 0.0791054i
\(479\) 220.662 127.400i 0.460673 0.265970i −0.251654 0.967817i \(-0.580975\pi\)
0.712327 + 0.701847i \(0.247641\pi\)
\(480\) −98.5134 154.670i −0.205236 0.322229i
\(481\) 2.57379 4.45794i 0.00535092 0.00926807i
\(482\) 478.224 0.992167
\(483\) 511.093 + 266.163i 1.05816 + 0.551062i
\(484\) −92.8234 −0.191784
\(485\) 66.5238 327.043i 0.137162 0.674315i
\(486\) 280.229 + 334.449i 0.576603 + 0.688167i
\(487\) 144.819 83.6115i 0.297370 0.171687i −0.343891 0.939010i \(-0.611745\pi\)
0.641261 + 0.767323i \(0.278412\pi\)
\(488\) −218.172 + 377.885i −0.447074 + 0.774355i
\(489\) 403.305 + 115.708i 0.824754 + 0.236622i
\(490\) 397.067 189.392i 0.810340 0.386515i
\(491\) 663.001i 1.35031i −0.737677 0.675154i \(-0.764077\pi\)
0.737677 0.675154i \(-0.235923\pi\)
\(492\) 28.8229 27.8260i 0.0585832 0.0565569i
\(493\) −849.752 + 490.605i −1.72363 + 0.995141i
\(494\) 590.092 340.690i 1.19452 0.689655i
\(495\) −36.0573 + 37.9778i −0.0728430 + 0.0767228i
\(496\) −425.003 −0.856861
\(497\) 458.539 + 93.2998i 0.922613 + 0.187726i
\(498\) −107.065 + 373.180i −0.214991 + 0.749357i
\(499\) 213.627 370.012i 0.428109 0.741507i −0.568596 0.822617i \(-0.692513\pi\)
0.996705 + 0.0811099i \(0.0258465\pi\)
\(500\) −7.59698 + 96.6793i −0.0151940 + 0.193359i
\(501\) −653.283 + 162.783i −1.30396 + 0.324915i
\(502\) 663.848 + 383.273i 1.32241 + 0.763492i
\(503\) −503.059 −1.00012 −0.500059 0.865991i \(-0.666688\pi\)
−0.500059 + 0.865991i \(0.666688\pi\)
\(504\) 153.283 + 518.053i 0.304132 + 1.02788i
\(505\) 105.964 35.4598i 0.209830 0.0702175i
\(506\) 49.6575 + 28.6698i 0.0981373 + 0.0566596i
\(507\) 38.5762 9.61226i 0.0760871 0.0189591i
\(508\) −0.385421 + 0.222523i −0.000758702 + 0.000438037i
\(509\) −481.244 277.846i −0.945469 0.545867i −0.0537984 0.998552i \(-0.517133\pi\)
−0.891670 + 0.452685i \(0.850466\pi\)
\(510\) 501.297 21.8357i 0.982936 0.0428151i
\(511\) 119.947 + 358.505i 0.234729 + 0.701575i
\(512\) −572.043 −1.11727
\(513\) 170.347 + 803.111i 0.332059 + 1.56552i
\(514\) 15.0027 + 25.9855i 0.0291882 + 0.0505554i
\(515\) 55.5612 + 49.1524i 0.107886 + 0.0954415i
\(516\) 13.1776 12.7218i 0.0255379 0.0246546i
\(517\) 40.5188i 0.0783729i
\(518\) −1.64495 4.91654i −0.00317557 0.00949139i
\(519\) −242.947 + 846.801i −0.468106 + 1.63160i
\(520\) 106.661 524.367i 0.205118 1.00840i
\(521\) −209.107 + 120.728i −0.401358 + 0.231724i −0.687070 0.726591i \(-0.741103\pi\)
0.285712 + 0.958316i \(0.407770\pi\)
\(522\) 850.626 + 29.9481i 1.62955 + 0.0573718i
\(523\) −683.792 394.788i −1.30744 0.754852i −0.325773 0.945448i \(-0.605625\pi\)
−0.981669 + 0.190596i \(0.938958\pi\)
\(524\) 178.881i 0.341375i
\(525\) 183.899 491.738i 0.350283 0.936644i
\(526\) 2.71615 0.00516379
\(527\) −321.992 + 557.707i −0.610991 + 1.05827i
\(528\) 10.3783 + 41.6505i 0.0196559 + 0.0788834i
\(529\) −111.984 193.961i −0.211689 0.366656i
\(530\) −314.376 63.9473i −0.593163 0.120655i
\(531\) 178.196 284.992i 0.335586 0.536708i
\(532\) −32.9247 + 161.814i −0.0618885 + 0.304162i
\(533\) 214.820 0.403039
\(534\) −185.646 + 179.225i −0.347651 + 0.335627i
\(535\) −112.613 + 127.296i −0.210491 + 0.237936i
\(536\) 214.202 123.669i 0.399630 0.230726i
\(537\) −526.914 + 508.689i −0.981218 + 0.947280i
\(538\) 21.9549i 0.0408084i
\(539\) 56.5985 6.94725i 0.105007 0.0128891i
\(540\) 91.1371 + 51.6096i 0.168772 + 0.0955734i
\(541\) −394.171 + 682.723i −0.728596 + 1.26197i 0.228880 + 0.973455i \(0.426494\pi\)
−0.957477 + 0.288511i \(0.906840\pi\)
\(542\) −210.637 364.834i −0.388629 0.673125i
\(543\) 236.858 59.0195i 0.436203 0.108691i
\(544\) −113.876 + 197.240i −0.209332 + 0.362573i
\(545\) 143.806 + 429.732i 0.263864 + 0.788499i
\(546\) −217.361 + 417.381i −0.398097 + 0.764434i
\(547\) 2.30392i 0.00421191i 0.999998 + 0.00210596i \(0.000670347\pi\)
−0.999998 + 0.00210596i \(0.999330\pi\)
\(548\) 10.8219 18.7440i 0.0197479 0.0342044i
\(549\) 16.1130 457.662i 0.0293497 0.833629i
\(550\) 20.4080 48.0891i 0.0371055 0.0874348i
\(551\) 1386.93 + 800.744i 2.51711 + 1.45326i
\(552\) 194.680 678.564i 0.352681 1.22928i
\(553\) 174.476 + 154.369i 0.315508 + 0.279148i
\(554\) 887.259i 1.60155i
\(555\) −5.48769 2.85742i −0.00988773 0.00514851i
\(556\) −50.6137 87.6656i −0.0910319 0.157672i
\(557\) −178.710 309.535i −0.320844 0.555718i 0.659819 0.751425i \(-0.270633\pi\)
−0.980662 + 0.195707i \(0.937300\pi\)
\(558\) 493.313 262.118i 0.884074 0.469746i
\(559\) 98.2134 0.175695
\(560\) −258.980 343.663i −0.462464 0.613683i
\(561\) 62.5183 + 17.9365i 0.111441 + 0.0319724i
\(562\) −104.279 60.2052i −0.185549 0.107127i
\(563\) −331.223 573.695i −0.588318 1.01900i −0.994453 0.105183i \(-0.966457\pi\)
0.406135 0.913813i \(-0.366876\pi\)
\(564\) −78.6324 + 19.5933i −0.139419 + 0.0347399i
\(565\) 373.628 + 75.9996i 0.661288 + 0.134513i
\(566\) 245.758i 0.434202i
\(567\) −397.177 404.648i −0.700488 0.713665i
\(568\) 573.250i 1.00924i
\(569\) −286.622 165.481i −0.503729 0.290828i 0.226523 0.974006i \(-0.427264\pi\)
−0.730252 + 0.683178i \(0.760597\pi\)
\(570\) −439.963 690.759i −0.771864 1.21186i
\(571\) 420.825 + 728.890i 0.736996 + 1.27651i 0.953842 + 0.300309i \(0.0970897\pi\)
−0.216846 + 0.976206i \(0.569577\pi\)
\(572\) 5.63375 9.75795i 0.00984922 0.0170593i
\(573\) 690.532 + 198.114i 1.20512 + 0.345748i
\(574\) 143.365 162.039i 0.249765 0.282298i
\(575\) −547.835 + 412.893i −0.952757 + 0.718075i
\(576\) 565.330 300.384i 0.981476 0.521500i
\(577\) 446.025 257.513i 0.773007 0.446296i −0.0609390 0.998141i \(-0.519410\pi\)
0.833946 + 0.551845i \(0.186076\pi\)
\(578\) −52.1317 90.2948i −0.0901933 0.156219i
\(579\) 3.46701 3.34710i 0.00598793 0.00578082i
\(580\) 193.748 64.8358i 0.334048 0.111786i
\(581\) 100.590 494.370i 0.173133 0.850895i
\(582\) 345.615 + 99.1571i 0.593841 + 0.170373i
\(583\) −36.0131 20.7922i −0.0617720 0.0356641i
\(584\) 401.075 231.561i 0.686773 0.396508i
\(585\) 159.370 + 538.508i 0.272427 + 0.920527i
\(586\) −88.8462 + 153.886i −0.151615 + 0.262604i
\(587\) −935.242 −1.59326 −0.796629 0.604469i \(-0.793385\pi\)
−0.796629 + 0.604469i \(0.793385\pi\)
\(588\) −40.8509 106.478i −0.0694744 0.181085i
\(589\) 1051.08 1.78452
\(590\) −66.8338 + 328.567i −0.113278 + 0.556893i
\(591\) 833.489 207.686i 1.41030 0.351414i
\(592\) −4.39183 + 2.53563i −0.00741863 + 0.00428315i
\(593\) −244.872 + 424.131i −0.412938 + 0.715229i −0.995210 0.0977651i \(-0.968831\pi\)
0.582272 + 0.812994i \(0.302164\pi\)
\(594\) −37.7341 41.9441i −0.0635254 0.0706130i
\(595\) −647.178 + 79.4777i −1.08769 + 0.133576i
\(596\) 123.204i 0.206718i
\(597\) −185.985 192.648i −0.311532 0.322693i
\(598\) 532.525 307.453i 0.890510 0.514136i
\(599\) 406.061 234.439i 0.677898 0.391384i −0.121165 0.992632i \(-0.538663\pi\)
0.799063 + 0.601248i \(0.205330\pi\)
\(600\) −635.235 100.652i −1.05873 0.167753i
\(601\) 679.264 1.13022 0.565112 0.825014i \(-0.308833\pi\)
0.565112 + 0.825014i \(0.308833\pi\)
\(602\) 65.5452 74.0825i 0.108879 0.123061i
\(603\) −137.621 + 220.100i −0.228227 + 0.365008i
\(604\) −18.6499 + 32.3025i −0.0308773 + 0.0534810i
\(605\) −396.380 + 448.063i −0.655174 + 0.740600i
\(606\) 29.1068 + 116.812i 0.0480310 + 0.192759i
\(607\) −530.707 306.404i −0.874312 0.504784i −0.00553303 0.999985i \(-0.501761\pi\)
−0.868779 + 0.495201i \(0.835095\pi\)
\(608\) 371.728 0.611395
\(609\) −1105.01 + 48.0663i −1.81446 + 0.0789266i
\(610\) 144.971 + 433.214i 0.237657 + 0.710186i
\(611\) −376.307 217.261i −0.615887 0.355583i
\(612\) 4.57689 129.999i 0.00747857 0.212417i
\(613\) −173.001 + 99.8821i −0.282220 + 0.162940i −0.634428 0.772982i \(-0.718764\pi\)
0.352208 + 0.935922i \(0.385431\pi\)
\(614\) 686.284 + 396.226i 1.11773 + 0.645319i
\(615\) −11.2360 257.954i −0.0182700 0.419437i
\(616\) −22.1648 66.2478i −0.0359818 0.107545i
\(617\) −530.227 −0.859363 −0.429682 0.902980i \(-0.641374\pi\)
−0.429682 + 0.902980i \(0.641374\pi\)
\(618\) −57.4983 + 55.5096i −0.0930393 + 0.0898213i
\(619\) −410.628 711.228i −0.663373 1.14900i −0.979724 0.200353i \(-0.935791\pi\)
0.316351 0.948642i \(-0.397542\pi\)
\(620\) 88.8473 100.432i 0.143302 0.161987i
\(621\) 153.728 + 724.763i 0.247549 + 1.16709i
\(622\) 40.3023i 0.0647947i
\(623\) 222.194 251.135i 0.356651 0.403106i
\(624\) 442.465 + 126.943i 0.709079 + 0.203435i
\(625\) 434.234 + 449.517i 0.694775 + 0.719227i
\(626\) 390.555 225.487i 0.623889 0.360202i
\(627\) −25.6668 103.007i −0.0409359 0.164285i
\(628\) 87.5496 + 50.5468i 0.139410 + 0.0804885i
\(629\) 7.68420i 0.0122165i
\(630\) 512.557 + 239.174i 0.813583 + 0.379642i
\(631\) 314.044 0.497692 0.248846 0.968543i \(-0.419949\pi\)
0.248846 + 0.968543i \(0.419949\pi\)
\(632\) 142.697 247.159i 0.225787 0.391074i
\(633\) 507.110 126.360i 0.801121 0.199620i
\(634\) −31.3326 54.2697i −0.0494205 0.0855988i
\(635\) −0.571720 + 2.81068i −0.000900346 + 0.00442626i
\(636\) −22.9356 + 79.9427i −0.0360622 + 0.125696i
\(637\) 238.959 562.894i 0.375133 0.883664i
\(638\) −110.058 −0.172505
\(639\) 282.296 + 531.288i 0.441778 + 0.831437i
\(640\) −261.133 + 295.181i −0.408020 + 0.461220i
\(641\) −633.511 + 365.758i −0.988317 + 0.570605i −0.904771 0.425899i \(-0.859958\pi\)
−0.0835460 + 0.996504i \(0.526625\pi\)
\(642\) −127.177 131.734i −0.198096 0.205193i
\(643\) 326.029i 0.507044i −0.967330 0.253522i \(-0.918411\pi\)
0.967330 0.253522i \(-0.0815890\pi\)
\(644\) −29.7127 + 146.028i −0.0461377 + 0.226752i
\(645\) −5.13701 117.934i −0.00796435 0.182843i
\(646\) −508.574 + 880.875i −0.787266 + 1.36358i
\(647\) 286.539 + 496.301i 0.442874 + 0.767080i 0.997901 0.0647521i \(-0.0206257\pi\)
−0.555028 + 0.831832i \(0.687292\pi\)
\(648\) −388.752 + 575.638i −0.599925 + 0.888330i
\(649\) −21.7307 + 37.6387i −0.0334834 + 0.0579949i
\(650\) −337.187 447.387i −0.518749 0.688287i
\(651\) −612.298 + 389.938i −0.940550 + 0.598982i
\(652\) 108.505i 0.166418i
\(653\) 451.271 781.625i 0.691074 1.19698i −0.280412 0.959880i \(-0.590471\pi\)
0.971486 0.237096i \(-0.0761956\pi\)
\(654\) −473.727 + 118.041i −0.724353 + 0.180491i
\(655\) −863.465 763.867i −1.31827 1.16621i
\(656\) −183.280 105.817i −0.279391 0.161306i
\(657\) −257.685 + 412.119i −0.392214 + 0.627275i
\(658\) −415.019 + 138.855i −0.630727 + 0.211025i
\(659\) 1144.56i 1.73681i −0.495855 0.868405i \(-0.665145\pi\)
0.495855 0.868405i \(-0.334855\pi\)
\(660\) −12.0119 6.25459i −0.0181999 0.00947665i
\(661\) −374.330 648.358i −0.566308 0.980875i −0.996927 0.0783407i \(-0.975038\pi\)
0.430618 0.902534i \(-0.358296\pi\)
\(662\) 244.220 + 423.002i 0.368913 + 0.638976i
\(663\) 501.802 484.446i 0.756866 0.730688i
\(664\) −618.046 −0.930792
\(665\) 640.489 + 849.919i 0.963141 + 1.27807i
\(666\) 3.53389 5.65181i 0.00530614 0.00848620i
\(667\) 1251.62 + 722.626i 1.87650 + 1.08340i
\(668\) −87.0544 150.783i −0.130321 0.225723i
\(669\) 108.219 + 434.309i 0.161763 + 0.649191i
\(670\) 51.6158 253.753i 0.0770385 0.378735i
\(671\) 59.2145i 0.0882481i
\(672\) −216.546 + 137.906i −0.322242 + 0.205217i
\(673\) 351.912i 0.522900i −0.965217 0.261450i \(-0.915799\pi\)
0.965217 0.261450i \(-0.0842007\pi\)
\(674\) −933.834 539.149i −1.38551 0.799925i
\(675\) 638.301 219.537i 0.945632 0.325239i
\(676\) 5.14054 + 8.90367i 0.00760434 + 0.0131711i
\(677\) 284.770 493.237i 0.420636 0.728562i −0.575366 0.817896i \(-0.695140\pi\)
0.996002 + 0.0893336i \(0.0284737\pi\)
\(678\) −113.281 + 394.846i −0.167082 + 0.582368i
\(679\) −457.854 93.1606i −0.674307 0.137203i
\(680\) 253.491 + 757.503i 0.372781 + 1.11397i
\(681\) 192.230 + 199.117i 0.282277 + 0.292390i
\(682\) −62.5556 + 36.1165i −0.0917238 + 0.0529567i
\(683\) 390.284 + 675.992i 0.571426 + 0.989740i 0.996420 + 0.0845432i \(0.0269431\pi\)
−0.424993 + 0.905196i \(0.639724\pi\)
\(684\) −187.487 + 99.6199i −0.274104 + 0.145643i
\(685\) −44.2661 132.280i −0.0646220 0.193109i
\(686\) −265.116 555.909i −0.386467 0.810363i
\(687\) −122.467 + 426.863i −0.178263 + 0.621343i
\(688\) −83.7939 48.3784i −0.121793 0.0703175i
\(689\) −386.203 + 222.974i −0.560527 + 0.323620i
\(690\) −397.041 623.371i −0.575422 0.903436i
\(691\) −237.246 + 410.922i −0.343337 + 0.594678i −0.985050 0.172267i \(-0.944891\pi\)
0.641713 + 0.766945i \(0.278224\pi\)
\(692\) −227.822 −0.329223
\(693\) 53.1659 + 50.4834i 0.0767185 + 0.0728476i
\(694\) −276.599 −0.398557
\(695\) −639.300 130.040i −0.919856 0.187108i
\(696\) 327.612 + 1314.78i 0.470707 + 1.88906i
\(697\) −277.715 + 160.339i −0.398443 + 0.230041i
\(698\) 18.1647 31.4621i 0.0260239 0.0450747i
\(699\) 333.604 1162.79i 0.477259 1.66350i
\(700\) 135.350 + 10.6438i 0.193358 + 0.0152055i
\(701\) 319.674i 0.456025i −0.973658 0.228013i \(-0.926777\pi\)
0.973658 0.228013i \(-0.0732227\pi\)
\(702\) −591.873 + 125.541i −0.843125 + 0.178834i
\(703\) 10.8615 6.27091i 0.0154503 0.00892021i
\(704\) −71.6879 + 41.3890i −0.101829 + 0.0587912i
\(705\) −241.203 + 463.231i −0.342132 + 0.657065i
\(706\) 584.342 0.827679
\(707\) −49.6349 148.353i −0.0702050 0.209834i
\(708\) 83.5512 + 23.9709i 0.118010 + 0.0338571i
\(709\) 679.847 1177.53i 0.958882 1.66083i 0.233657 0.972319i \(-0.424931\pi\)
0.725225 0.688512i \(-0.241736\pi\)
\(710\) −449.509 397.659i −0.633111 0.560084i
\(711\) −10.5388 + 299.338i −0.0148225 + 0.421010i
\(712\) −355.753 205.394i −0.499653 0.288475i
\(713\) 948.544 1.33036
\(714\) −30.5282 701.818i −0.0427566 0.982939i
\(715\) −23.0445 68.8634i −0.0322300 0.0963124i
\(716\) −164.027 94.7010i −0.229088 0.132264i
\(717\) 30.5493 + 122.601i 0.0426071 + 0.170992i
\(718\) −897.691 + 518.282i −1.25027 + 0.721842i
\(719\) −10.4725 6.04630i −0.0145654 0.00840932i 0.492700 0.870199i \(-0.336010\pi\)
−0.507265 + 0.861790i \(0.669343\pi\)
\(720\) 129.290 537.949i 0.179569 0.747151i
\(721\) 68.8180 77.7816i 0.0954480 0.107880i
\(722\) 1011.93 1.40157
\(723\) −554.945 574.827i −0.767559 0.795059i
\(724\) 31.5630 + 54.6687i 0.0435953 + 0.0755092i
\(725\) 514.388 1212.09i 0.709500 1.67185i
\(726\) −447.646 463.684i −0.616593 0.638683i
\(727\) 806.023i 1.10870i 0.832284 + 0.554349i \(0.187033\pi\)
−0.832284 + 0.554349i \(0.812967\pi\)
\(728\) −734.105 149.370i −1.00839 0.205178i
\(729\) 76.8232 724.941i 0.105382 0.994432i
\(730\) 96.6465 475.131i 0.132392 0.650865i
\(731\) −126.968 + 73.3053i −0.173692 + 0.100281i
\(732\) 114.914 28.6338i 0.156986 0.0391172i
\(733\) −229.808 132.680i −0.313517 0.181009i 0.334982 0.942224i \(-0.391270\pi\)
−0.648499 + 0.761215i \(0.724603\pi\)
\(734\) 903.452i 1.23086i
\(735\) −688.418 257.499i −0.936623 0.350339i
\(736\) 335.464 0.455793
\(737\) 16.7827 29.0684i 0.0227716 0.0394415i
\(738\) 278.001 + 9.78760i 0.376695 + 0.0132623i
\(739\) 288.214 + 499.201i 0.390005 + 0.675509i 0.992450 0.122652i \(-0.0391398\pi\)
−0.602444 + 0.798161i \(0.705807\pi\)
\(740\) 0.318927 1.56790i 0.000430982 0.00211879i
\(741\) −1094.27 313.946i −1.47675 0.423679i
\(742\) −89.5524 + 440.121i −0.120691 + 0.593155i
\(743\) 142.356 0.191596 0.0957979 0.995401i \(-0.469460\pi\)
0.0957979 + 0.995401i \(0.469460\pi\)
\(744\) 617.668 + 639.797i 0.830200 + 0.859943i
\(745\) 594.710 + 526.112i 0.798268 + 0.706190i
\(746\) 333.498 192.545i 0.447049 0.258104i
\(747\) 572.805 304.356i 0.766807 0.407437i
\(748\) 16.8199i 0.0224864i
\(749\) 178.205 + 157.668i 0.237924 + 0.210505i
\(750\) −519.583 + 428.292i −0.692777 + 0.571056i
\(751\) −39.6817 + 68.7308i −0.0528385 + 0.0915190i −0.891235 0.453542i \(-0.850160\pi\)
0.838396 + 0.545061i \(0.183494\pi\)
\(752\) 214.039 + 370.726i 0.284626 + 0.492987i
\(753\) −309.653 1242.71i −0.411226 1.65034i
\(754\) −590.129 + 1022.13i −0.782664 + 1.35561i
\(755\) 76.2860 + 227.964i 0.101041 + 0.301939i
\(756\) 72.2611 127.588i 0.0955834 0.168767i
\(757\) 1310.05i 1.73058i −0.501268 0.865292i \(-0.667133\pi\)
0.501268 0.865292i \(-0.332867\pi\)
\(758\) 453.714 785.855i 0.598567 1.03675i
\(759\) −23.1628 92.9576i −0.0305176 0.122474i
\(760\) 863.854 976.489i 1.13665 1.28485i
\(761\) −363.973 210.140i −0.478283 0.276137i 0.241418 0.970421i \(-0.422388\pi\)
−0.719701 + 0.694284i \(0.755721\pi\)
\(762\) −2.97029 0.852177i −0.00389802 0.00111834i
\(763\) 601.637 201.292i 0.788515 0.2638