Properties

Label 105.3.o.b.44.6
Level 105
Weight 3
Character 105.44
Analytic conductor 2.861
Analytic rank 0
Dimension 40
CM no
Inner twists 8

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.o (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 44.6
Character \(\chi\) \(=\) 105.44
Dual form 105.3.o.b.74.6

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.949639 + 1.64482i) q^{2} +(0.107903 - 2.99806i) q^{3} +(0.196373 + 0.340128i) q^{4} +(-0.399822 - 4.98399i) q^{5} +(4.82880 + 3.02455i) q^{6} +(-4.60961 - 5.26797i) q^{7} -8.34304 q^{8} +(-8.97671 - 0.647002i) q^{9} +O(q^{10})\) \(q+(-0.949639 + 1.64482i) q^{2} +(0.107903 - 2.99806i) q^{3} +(0.196373 + 0.340128i) q^{4} +(-0.399822 - 4.98399i) q^{5} +(4.82880 + 3.02455i) q^{6} +(-4.60961 - 5.26797i) q^{7} -8.34304 q^{8} +(-8.97671 - 0.647002i) q^{9} +(8.57746 + 4.07535i) q^{10} +(8.35863 - 4.82586i) q^{11} +(1.04091 - 0.552037i) q^{12} -16.9521i q^{13} +(13.0423 - 2.57932i) q^{14} +(-14.9854 + 0.660900i) q^{15} +(7.13738 - 12.3623i) q^{16} +(12.1835 + 21.1024i) q^{17} +(9.58884 - 14.1507i) q^{18} +(6.95261 - 12.0423i) q^{19} +(1.61668 - 1.11471i) q^{20} +(-16.2911 + 13.2514i) q^{21} +18.3313i q^{22} +(0.354602 - 0.614188i) q^{23} +(-0.900243 + 25.0129i) q^{24} +(-24.6803 + 3.98542i) q^{25} +(27.8832 + 16.0984i) q^{26} +(-2.90837 + 26.8429i) q^{27} +(0.886581 - 2.60234i) q^{28} -16.5872i q^{29} +(13.1437 - 25.2760i) q^{30} +(7.12320 + 12.3377i) q^{31} +(-3.13021 - 5.42169i) q^{32} +(-13.5663 - 25.5804i) q^{33} -46.2795 q^{34} +(-24.4125 + 25.0805i) q^{35} +(-1.54272 - 3.18028i) q^{36} +(-1.08578 - 0.626873i) q^{37} +(13.2049 + 22.8716i) q^{38} +(-50.8234 - 1.82919i) q^{39} +(3.33573 + 41.5816i) q^{40} +24.1024i q^{41} +(-6.32563 - 39.3800i) q^{42} +57.6214i q^{43} +(3.28282 + 1.89534i) q^{44} +(0.364437 + 44.9985i) q^{45} +(0.673487 + 1.16651i) q^{46} +(16.0840 - 27.8583i) q^{47} +(-36.2928 - 22.7322i) q^{48} +(-6.50303 + 48.5666i) q^{49} +(16.8821 - 44.3794i) q^{50} +(64.5807 - 34.2497i) q^{51} +(5.76588 - 3.32893i) q^{52} +(-8.67882 - 15.0322i) q^{53} +(-41.3899 - 30.2748i) q^{54} +(-27.3940 - 39.7298i) q^{55} +(38.4582 + 43.9509i) q^{56} +(-35.3532 - 22.1437i) q^{57} +(27.2829 + 15.7518i) q^{58} +(75.8739 - 43.8058i) q^{59} +(-3.16752 - 4.96718i) q^{60} +(52.2391 - 90.4808i) q^{61} -27.0578 q^{62} +(37.9707 + 50.2715i) q^{63} +68.9894 q^{64} +(-84.4891 + 6.77782i) q^{65} +(54.9583 + 1.97801i) q^{66} +(86.1690 - 49.7497i) q^{67} +(-4.78500 + 8.28786i) q^{68} +(-1.80311 - 1.12939i) q^{69} +(-18.0699 - 63.9716i) q^{70} +50.7518i q^{71} +(74.8931 + 5.39796i) q^{72} +(-81.5039 + 47.0563i) q^{73} +(2.06219 - 1.19061i) q^{74} +(9.28542 + 74.4230i) q^{75} +5.46122 q^{76} +(-63.9525 - 21.7877i) q^{77} +(51.2726 - 81.8584i) q^{78} +(-3.71265 + 6.43050i) q^{79} +(-64.4673 - 30.6299i) q^{80} +(80.1628 + 11.6159i) q^{81} +(-39.6441 - 22.8885i) q^{82} +69.6382 q^{83} +(-7.70631 - 2.93883i) q^{84} +(100.303 - 69.1594i) q^{85} +(-94.7770 - 54.7196i) q^{86} +(-49.7293 - 1.78981i) q^{87} +(-69.7364 + 40.2623i) q^{88} +(-78.3272 - 45.2223i) q^{89} +(-74.3607 - 42.1329i) q^{90} +(-89.3032 + 78.1425i) q^{91} +0.278537 q^{92} +(37.7579 - 20.0245i) q^{93} +(30.5480 + 52.9107i) q^{94} +(-62.7984 - 29.8370i) q^{95} +(-16.5923 + 8.79955i) q^{96} -90.4517i q^{97} +(-73.7078 - 56.8170i) q^{98} +(-78.1554 + 37.9123i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40q - 44q^{4} + 80q^{6} + 12q^{9} + O(q^{10}) \) \( 40q - 44q^{4} + 80q^{6} + 12q^{9} + 62q^{10} + 84q^{15} - 116q^{16} - 56q^{19} + 36q^{21} - 12q^{24} - 6q^{25} - 20q^{30} - 444q^{31} + 256q^{34} - 688q^{36} + 168q^{39} + 54q^{40} - 40q^{45} + 304q^{46} + 156q^{49} + 156q^{51} - 140q^{54} - 500q^{55} - 130q^{60} + 288q^{61} + 472q^{64} + 340q^{66} - 272q^{69} + 710q^{70} - 524q^{75} + 400q^{76} - 340q^{79} + 496q^{84} + 896q^{85} + 1356q^{90} - 656q^{91} - 560q^{94} + 472q^{96} - 336q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.949639 + 1.64482i −0.474819 + 0.822411i −0.999584 0.0288361i \(-0.990820\pi\)
0.524765 + 0.851247i \(0.324153\pi\)
\(3\) 0.107903 2.99806i 0.0359678 0.999353i
\(4\) 0.196373 + 0.340128i 0.0490932 + 0.0850320i
\(5\) −0.399822 4.98399i −0.0799644 0.996798i
\(6\) 4.82880 + 3.02455i 0.804801 + 0.504092i
\(7\) −4.60961 5.26797i −0.658515 0.752567i
\(8\) −8.34304 −1.04288
\(9\) −8.97671 0.647002i −0.997413 0.0718891i
\(10\) 8.57746 + 4.07535i 0.857746 + 0.407535i
\(11\) 8.35863 4.82586i 0.759876 0.438714i −0.0693754 0.997591i \(-0.522101\pi\)
0.829251 + 0.558876i \(0.188767\pi\)
\(12\) 1.04091 0.552037i 0.0867427 0.0460031i
\(13\) 16.9521i 1.30401i −0.758216 0.652004i \(-0.773929\pi\)
0.758216 0.652004i \(-0.226071\pi\)
\(14\) 13.0423 2.57932i 0.931596 0.184237i
\(15\) −14.9854 + 0.660900i −0.999029 + 0.0440600i
\(16\) 7.13738 12.3623i 0.446086 0.772644i
\(17\) 12.1835 + 21.1024i 0.716674 + 1.24131i 0.962311 + 0.271953i \(0.0876696\pi\)
−0.245637 + 0.969362i \(0.578997\pi\)
\(18\) 9.58884 14.1507i 0.532713 0.786149i
\(19\) 6.95261 12.0423i 0.365927 0.633804i −0.622997 0.782224i \(-0.714085\pi\)
0.988924 + 0.148420i \(0.0474187\pi\)
\(20\) 1.61668 1.11471i 0.0808340 0.0557355i
\(21\) −16.2911 + 13.2514i −0.775766 + 0.631021i
\(22\) 18.3313i 0.833240i
\(23\) 0.354602 0.614188i 0.0154175 0.0267038i −0.858214 0.513292i \(-0.828426\pi\)
0.873631 + 0.486589i \(0.161759\pi\)
\(24\) −0.900243 + 25.0129i −0.0375101 + 1.04221i
\(25\) −24.6803 + 3.98542i −0.987211 + 0.159417i
\(26\) 27.8832 + 16.0984i 1.07243 + 0.619168i
\(27\) −2.90837 + 26.8429i −0.107717 + 0.994182i
\(28\) 0.886581 2.60234i 0.0316636 0.0929408i
\(29\) 16.5872i 0.571971i −0.958234 0.285986i \(-0.907679\pi\)
0.958234 0.285986i \(-0.0923209\pi\)
\(30\) 13.1437 25.2760i 0.438123 0.842533i
\(31\) 7.12320 + 12.3377i 0.229781 + 0.397992i 0.957743 0.287625i \(-0.0928658\pi\)
−0.727962 + 0.685617i \(0.759532\pi\)
\(32\) −3.13021 5.42169i −0.0978192 0.169428i
\(33\) −13.5663 25.5804i −0.411100 0.775164i
\(34\) −46.2795 −1.36116
\(35\) −24.4125 + 25.0805i −0.697500 + 0.716585i
\(36\) −1.54272 3.18028i −0.0428533 0.0883412i
\(37\) −1.08578 0.626873i −0.0293453 0.0169425i 0.485256 0.874372i \(-0.338727\pi\)
−0.514601 + 0.857430i \(0.672060\pi\)
\(38\) 13.2049 + 22.8716i 0.347498 + 0.601885i
\(39\) −50.8234 1.82919i −1.30316 0.0469023i
\(40\) 3.33573 + 41.5816i 0.0833933 + 1.03954i
\(41\) 24.1024i 0.587862i 0.955827 + 0.293931i \(0.0949637\pi\)
−0.955827 + 0.293931i \(0.905036\pi\)
\(42\) −6.32563 39.3800i −0.150610 0.937619i
\(43\) 57.6214i 1.34003i 0.742346 + 0.670017i \(0.233713\pi\)
−0.742346 + 0.670017i \(0.766287\pi\)
\(44\) 3.28282 + 1.89534i 0.0746095 + 0.0430758i
\(45\) 0.364437 + 44.9985i 0.00809860 + 0.999967i
\(46\) 0.673487 + 1.16651i 0.0146410 + 0.0253590i
\(47\) 16.0840 27.8583i 0.342213 0.592730i −0.642630 0.766176i \(-0.722157\pi\)
0.984843 + 0.173446i \(0.0554903\pi\)
\(48\) −36.2928 22.7322i −0.756100 0.473588i
\(49\) −6.50303 + 48.5666i −0.132715 + 0.991154i
\(50\) 16.8821 44.3794i 0.337641 0.887588i
\(51\) 64.5807 34.2497i 1.26629 0.671562i
\(52\) 5.76588 3.32893i 0.110882 0.0640180i
\(53\) −8.67882 15.0322i −0.163751 0.283625i 0.772460 0.635064i \(-0.219026\pi\)
−0.936211 + 0.351438i \(0.885693\pi\)
\(54\) −41.3899 30.2748i −0.766480 0.560645i
\(55\) −27.3940 39.7298i −0.498073 0.722361i
\(56\) 38.4582 + 43.9509i 0.686753 + 0.784838i
\(57\) −35.3532 22.1437i −0.620232 0.388487i
\(58\) 27.2829 + 15.7518i 0.470395 + 0.271583i
\(59\) 75.8739 43.8058i 1.28600 0.742471i 0.308060 0.951367i \(-0.400320\pi\)
0.977938 + 0.208896i \(0.0669870\pi\)
\(60\) −3.16752 4.96718i −0.0527921 0.0827863i
\(61\) 52.2391 90.4808i 0.856379 1.48329i −0.0189801 0.999820i \(-0.506042\pi\)
0.875359 0.483473i \(-0.160625\pi\)
\(62\) −27.0578 −0.436417
\(63\) 37.9707 + 50.2715i 0.602710 + 0.797960i
\(64\) 68.9894 1.07796
\(65\) −84.4891 + 6.77782i −1.29983 + 0.104274i
\(66\) 54.9583 + 1.97801i 0.832701 + 0.0299698i
\(67\) 86.1690 49.7497i 1.28610 0.742533i 0.308147 0.951339i \(-0.400291\pi\)
0.977957 + 0.208806i \(0.0669577\pi\)
\(68\) −4.78500 + 8.28786i −0.0703676 + 0.121880i
\(69\) −1.80311 1.12939i −0.0261320 0.0163680i
\(70\) −18.0699 63.9716i −0.258141 0.913880i
\(71\) 50.7518i 0.714814i 0.933949 + 0.357407i \(0.116339\pi\)
−0.933949 + 0.357407i \(0.883661\pi\)
\(72\) 74.8931 + 5.39796i 1.04018 + 0.0749717i
\(73\) −81.5039 + 47.0563i −1.11649 + 0.644607i −0.940503 0.339786i \(-0.889645\pi\)
−0.175988 + 0.984392i \(0.556312\pi\)
\(74\) 2.06219 1.19061i 0.0278674 0.0160893i
\(75\) 9.28542 + 74.4230i 0.123806 + 0.992306i
\(76\) 5.46122 0.0718582
\(77\) −63.9525 21.7877i −0.830552 0.282957i
\(78\) 51.2726 81.8584i 0.657340 1.04947i
\(79\) −3.71265 + 6.43050i −0.0469956 + 0.0813987i −0.888566 0.458748i \(-0.848298\pi\)
0.841571 + 0.540147i \(0.181631\pi\)
\(80\) −64.4673 30.6299i −0.805841 0.382874i
\(81\) 80.1628 + 11.6159i 0.989664 + 0.143406i
\(82\) −39.6441 22.8885i −0.483465 0.279128i
\(83\) 69.6382 0.839015 0.419508 0.907752i \(-0.362203\pi\)
0.419508 + 0.907752i \(0.362203\pi\)
\(84\) −7.70631 2.93883i −0.0917418 0.0349860i
\(85\) 100.303 69.1594i 1.18003 0.813640i
\(86\) −94.7770 54.7196i −1.10206 0.636274i
\(87\) −49.7293 1.78981i −0.571601 0.0205726i
\(88\) −69.7364 + 40.2623i −0.792459 + 0.457527i
\(89\) −78.3272 45.2223i −0.880081 0.508115i −0.00939614 0.999956i \(-0.502991\pi\)
−0.870685 + 0.491841i \(0.836324\pi\)
\(90\) −74.3607 42.1329i −0.826230 0.468143i
\(91\) −89.3032 + 78.1425i −0.981354 + 0.858709i
\(92\) 0.278537 0.00302757
\(93\) 37.7579 20.0245i 0.405999 0.215317i
\(94\) 30.5480 + 52.9107i 0.324979 + 0.562879i
\(95\) −62.7984 29.8370i −0.661036 0.314073i
\(96\) −16.5923 + 8.79955i −0.172837 + 0.0916620i
\(97\) 90.4517i 0.932492i −0.884655 0.466246i \(-0.845606\pi\)
0.884655 0.466246i \(-0.154394\pi\)
\(98\) −73.7078 56.8170i −0.752121 0.579765i
\(99\) −78.1554 + 37.9123i −0.789448 + 0.382953i
\(100\) −6.20209 7.61183i −0.0620209 0.0761183i
\(101\) −47.1698 + 27.2335i −0.467028 + 0.269638i −0.714995 0.699130i \(-0.753571\pi\)
0.247967 + 0.968768i \(0.420238\pi\)
\(102\) −4.99372 + 138.749i −0.0489580 + 1.36028i
\(103\) 94.7932 + 54.7289i 0.920322 + 0.531348i 0.883738 0.467982i \(-0.155019\pi\)
0.0365842 + 0.999331i \(0.488352\pi\)
\(104\) 141.432i 1.35992i
\(105\) 72.5586 + 75.8963i 0.691034 + 0.722822i
\(106\) 32.9670 0.311009
\(107\) 39.8017 68.9385i 0.371978 0.644285i −0.617892 0.786263i \(-0.712013\pi\)
0.989870 + 0.141978i \(0.0453462\pi\)
\(108\) −9.70114 + 4.28200i −0.0898254 + 0.0396482i
\(109\) −70.7849 122.603i −0.649402 1.12480i −0.983266 0.182176i \(-0.941686\pi\)
0.333864 0.942621i \(-0.391648\pi\)
\(110\) 91.3629 7.32925i 0.830572 0.0666295i
\(111\) −1.99656 + 3.18758i −0.0179870 + 0.0287169i
\(112\) −98.0248 + 19.3859i −0.875222 + 0.173088i
\(113\) 99.6031 0.881443 0.440722 0.897644i \(-0.354723\pi\)
0.440722 + 0.897644i \(0.354723\pi\)
\(114\) 69.9953 37.1213i 0.613994 0.325625i
\(115\) −3.20288 1.52176i −0.0278512 0.0132327i
\(116\) 5.64176 3.25727i 0.0486358 0.0280799i
\(117\) −10.9680 + 152.174i −0.0937439 + 1.30063i
\(118\) 166.399i 1.41016i
\(119\) 55.0057 161.456i 0.462232 1.35677i
\(120\) 125.024 5.51392i 1.04187 0.0459493i
\(121\) −13.9222 + 24.1139i −0.115059 + 0.199288i
\(122\) 99.2166 + 171.848i 0.813251 + 1.40859i
\(123\) 72.2603 + 2.60073i 0.587482 + 0.0211441i
\(124\) −2.79761 + 4.84560i −0.0225613 + 0.0390774i
\(125\) 29.7310 + 121.413i 0.237848 + 0.971302i
\(126\) −118.746 + 14.7154i −0.942430 + 0.116789i
\(127\) 89.2383i 0.702663i 0.936251 + 0.351332i \(0.114271\pi\)
−0.936251 + 0.351332i \(0.885729\pi\)
\(128\) −52.9941 + 91.7885i −0.414016 + 0.717097i
\(129\) 172.752 + 6.21755i 1.33917 + 0.0481981i
\(130\) 69.0858 145.406i 0.531429 1.11851i
\(131\) −96.9674 55.9841i −0.740209 0.427360i 0.0819364 0.996638i \(-0.473890\pi\)
−0.822145 + 0.569278i \(0.807223\pi\)
\(132\) 6.03656 9.63757i 0.0457315 0.0730119i
\(133\) −95.4872 + 18.8840i −0.717949 + 0.141985i
\(134\) 188.977i 1.41028i
\(135\) 134.948 + 3.76289i 0.999611 + 0.0278733i
\(136\) −101.647 176.058i −0.747405 1.29454i
\(137\) −44.2662 76.6714i −0.323111 0.559645i 0.658017 0.753003i \(-0.271395\pi\)
−0.981128 + 0.193358i \(0.938062\pi\)
\(138\) 3.56995 1.89328i 0.0258692 0.0137194i
\(139\) −5.87121 −0.0422389 −0.0211195 0.999777i \(-0.506723\pi\)
−0.0211195 + 0.999777i \(0.506723\pi\)
\(140\) −13.3245 3.37824i −0.0951752 0.0241303i
\(141\) −81.7853 51.2268i −0.580038 0.363311i
\(142\) −83.4777 48.1959i −0.587871 0.339408i
\(143\) −81.8085 141.696i −0.572087 0.990884i
\(144\) −72.0687 + 106.355i −0.500477 + 0.738577i
\(145\) −82.6702 + 6.63191i −0.570139 + 0.0457373i
\(146\) 178.746i 1.22429i
\(147\) 144.904 + 24.7370i 0.985739 + 0.168279i
\(148\) 0.492404i 0.00332705i
\(149\) 4.98359 + 2.87728i 0.0334469 + 0.0193106i 0.516630 0.856209i \(-0.327186\pi\)
−0.483183 + 0.875519i \(0.660520\pi\)
\(150\) −131.230 55.4021i −0.874869 0.369347i
\(151\) 131.443 + 227.666i 0.870482 + 1.50772i 0.861498 + 0.507760i \(0.169526\pi\)
0.00898406 + 0.999960i \(0.497140\pi\)
\(152\) −58.0059 + 100.469i −0.381618 + 0.660982i
\(153\) −95.7141 197.313i −0.625582 1.28962i
\(154\) 96.5687 84.5001i 0.627069 0.548702i
\(155\) 58.6431 40.4348i 0.378343 0.260870i
\(156\) −9.35818 17.6457i −0.0599883 0.113113i
\(157\) 135.602 78.2900i 0.863709 0.498662i −0.00154383 0.999999i \(-0.500491\pi\)
0.865252 + 0.501336i \(0.167158\pi\)
\(158\) −7.05135 12.2133i −0.0446288 0.0772994i
\(159\) −46.0037 + 24.3976i −0.289332 + 0.153444i
\(160\) −25.7701 + 17.7687i −0.161063 + 0.111054i
\(161\) −4.87010 + 0.963135i −0.0302491 + 0.00598221i
\(162\) −95.2318 + 120.823i −0.587850 + 0.745819i
\(163\) −2.59424 1.49779i −0.0159156 0.00918887i 0.492021 0.870583i \(-0.336258\pi\)
−0.507937 + 0.861394i \(0.669592\pi\)
\(164\) −8.19788 + 4.73305i −0.0499871 + 0.0288601i
\(165\) −122.068 + 77.8418i −0.739808 + 0.471769i
\(166\) −66.1312 + 114.543i −0.398381 + 0.690015i
\(167\) 201.798 1.20837 0.604186 0.796844i \(-0.293499\pi\)
0.604186 + 0.796844i \(0.293499\pi\)
\(168\) 135.917 110.557i 0.809031 0.658080i
\(169\) −118.374 −0.700436
\(170\) 18.5036 + 230.656i 0.108844 + 1.35680i
\(171\) −70.2030 + 103.602i −0.410544 + 0.605858i
\(172\) −19.5987 + 11.3153i −0.113946 + 0.0657866i
\(173\) −7.78179 + 13.4785i −0.0449814 + 0.0779101i −0.887640 0.460539i \(-0.847656\pi\)
0.842658 + 0.538449i \(0.180990\pi\)
\(174\) 50.1688 80.0962i 0.288326 0.460323i
\(175\) 134.761 + 111.644i 0.770066 + 0.637965i
\(176\) 137.776i 0.782818i
\(177\) −123.145 232.201i −0.695736 1.31187i
\(178\) 148.765 85.8896i 0.835759 0.482526i
\(179\) −27.1566 + 15.6789i −0.151713 + 0.0875916i −0.573935 0.818901i \(-0.694584\pi\)
0.422222 + 0.906493i \(0.361250\pi\)
\(180\) −15.2337 + 8.96045i −0.0846316 + 0.0497803i
\(181\) 125.301 0.692273 0.346137 0.938184i \(-0.387493\pi\)
0.346137 + 0.938184i \(0.387493\pi\)
\(182\) −43.7249 221.095i −0.240246 1.21481i
\(183\) −265.630 166.379i −1.45153 0.909176i
\(184\) −2.95846 + 5.12420i −0.0160786 + 0.0278489i
\(185\) −2.69021 + 5.66213i −0.0145417 + 0.0306061i
\(186\) −2.91964 + 81.1210i −0.0156970 + 0.436135i
\(187\) 203.674 + 117.591i 1.08917 + 0.628830i
\(188\) 12.6339 0.0672013
\(189\) 154.814 108.414i 0.819122 0.573619i
\(190\) 108.712 74.9578i 0.572170 0.394515i
\(191\) −42.0451 24.2747i −0.220131 0.127093i 0.385880 0.922549i \(-0.373898\pi\)
−0.606011 + 0.795456i \(0.707231\pi\)
\(192\) 7.44419 206.834i 0.0387718 1.07726i
\(193\) −14.9330 + 8.62156i −0.0773730 + 0.0446713i −0.538187 0.842825i \(-0.680891\pi\)
0.460814 + 0.887497i \(0.347557\pi\)
\(194\) 148.777 + 85.8964i 0.766891 + 0.442765i
\(195\) 11.2036 + 254.035i 0.0574546 + 1.30274i
\(196\) −17.7959 + 7.32530i −0.0907952 + 0.0373740i
\(197\) −354.243 −1.79819 −0.899094 0.437755i \(-0.855774\pi\)
−0.899094 + 0.437755i \(0.855774\pi\)
\(198\) 11.8604 164.555i 0.0599009 0.831085i
\(199\) 7.75382 + 13.4300i 0.0389639 + 0.0674875i 0.884850 0.465877i \(-0.154261\pi\)
−0.845886 + 0.533364i \(0.820928\pi\)
\(200\) 205.909 33.2505i 1.02954 0.166252i
\(201\) −139.855 263.708i −0.695794 1.31198i
\(202\) 103.448i 0.512118i
\(203\) −87.3807 + 76.4603i −0.430447 + 0.376652i
\(204\) 24.3312 + 15.2400i 0.119270 + 0.0747059i
\(205\) 120.126 9.63665i 0.585980 0.0470080i
\(206\) −180.039 + 103.945i −0.873973 + 0.504589i
\(207\) −3.58054 + 5.28396i −0.0172973 + 0.0255264i
\(208\) −209.567 120.994i −1.00753 0.581700i
\(209\) 134.209i 0.642150i
\(210\) −193.740 + 47.2719i −0.922573 + 0.225104i
\(211\) −355.817 −1.68634 −0.843169 0.537649i \(-0.819313\pi\)
−0.843169 + 0.537649i \(0.819313\pi\)
\(212\) 3.40857 5.90381i 0.0160782 0.0278482i
\(213\) 152.157 + 5.47630i 0.714352 + 0.0257103i
\(214\) 75.5944 + 130.933i 0.353245 + 0.611838i
\(215\) 287.185 23.0383i 1.33574 0.107155i
\(216\) 24.2646 223.951i 0.112336 1.03681i
\(217\) 32.1597 94.3969i 0.148201 0.435009i
\(218\) 268.880 1.23340
\(219\) 132.283 + 249.431i 0.604032 + 1.13895i
\(220\) 8.13379 17.1193i 0.0369718 0.0778151i
\(221\) 357.729 206.535i 1.61868 0.934548i
\(222\) −3.34699 6.31104i −0.0150765 0.0284281i
\(223\) 125.746i 0.563882i 0.959432 + 0.281941i \(0.0909782\pi\)
−0.959432 + 0.281941i \(0.909022\pi\)
\(224\) −14.1322 + 41.4817i −0.0630904 + 0.185186i
\(225\) 224.126 19.8077i 0.996117 0.0880344i
\(226\) −94.5869 + 163.829i −0.418526 + 0.724909i
\(227\) 195.808 + 339.150i 0.862591 + 1.49405i 0.869420 + 0.494074i \(0.164493\pi\)
−0.00682884 + 0.999977i \(0.502174\pi\)
\(228\) 0.589284 16.3731i 0.00258458 0.0718117i
\(229\) 63.3517 109.728i 0.276645 0.479163i −0.693904 0.720068i \(-0.744111\pi\)
0.970549 + 0.240904i \(0.0774441\pi\)
\(230\) 5.54461 3.82305i 0.0241070 0.0166219i
\(231\) −72.2215 + 189.382i −0.312647 + 0.819837i
\(232\) 138.387i 0.596497i
\(233\) −187.050 + 323.979i −0.802788 + 1.39047i 0.114986 + 0.993367i \(0.463318\pi\)
−0.917774 + 0.397103i \(0.870016\pi\)
\(234\) −239.884 162.551i −1.02514 0.694662i
\(235\) −145.276 69.0241i −0.618197 0.293720i
\(236\) 29.7991 + 17.2045i 0.126268 + 0.0729006i
\(237\) 18.8784 + 11.8246i 0.0796557 + 0.0498929i
\(238\) 213.330 + 243.799i 0.896346 + 1.02437i
\(239\) 82.1964i 0.343918i −0.985104 0.171959i \(-0.944990\pi\)
0.985104 0.171959i \(-0.0550097\pi\)
\(240\) −98.7865 + 189.972i −0.411611 + 0.791549i
\(241\) −104.237 180.543i −0.432517 0.749141i 0.564572 0.825384i \(-0.309041\pi\)
−0.997089 + 0.0762423i \(0.975708\pi\)
\(242\) −26.4421 45.7990i −0.109265 0.189252i
\(243\) 43.4750 239.079i 0.178909 0.983866i
\(244\) 41.0334 0.168170
\(245\) 244.655 + 12.9930i 0.998593 + 0.0530328i
\(246\) −72.8989 + 116.386i −0.296337 + 0.473112i
\(247\) −204.142 117.861i −0.826486 0.477172i
\(248\) −59.4291 102.934i −0.239634 0.415058i
\(249\) 7.51421 208.780i 0.0301775 0.838472i
\(250\) −227.936 66.3961i −0.911745 0.265584i
\(251\) 279.326i 1.11285i 0.830897 + 0.556427i \(0.187828\pi\)
−0.830897 + 0.556427i \(0.812172\pi\)
\(252\) −9.64231 + 22.7869i −0.0382631 + 0.0904241i
\(253\) 6.84503i 0.0270555i
\(254\) −146.781 84.7441i −0.577878 0.333638i
\(255\) −196.521 308.176i −0.770670 1.20853i
\(256\) 37.3282 + 64.6544i 0.145813 + 0.252556i
\(257\) 80.6774 139.737i 0.313920 0.543725i −0.665288 0.746587i \(-0.731691\pi\)
0.979207 + 0.202862i \(0.0650244\pi\)
\(258\) −174.279 + 278.243i −0.675501 + 1.07846i
\(259\) 1.70265 + 8.60947i 0.00657395 + 0.0332412i
\(260\) −18.8967 27.4061i −0.0726796 0.105408i
\(261\) −10.7319 + 148.898i −0.0411185 + 0.570491i
\(262\) 184.168 106.329i 0.702931 0.405837i
\(263\) −15.5086 26.8617i −0.0589680 0.102136i 0.835034 0.550198i \(-0.185448\pi\)
−0.894002 + 0.448062i \(0.852114\pi\)
\(264\) 113.184 + 213.418i 0.428728 + 0.808403i
\(265\) −71.4501 + 49.2653i −0.269623 + 0.185907i
\(266\) 59.6175 174.992i 0.224126 0.657866i
\(267\) −144.031 + 229.950i −0.539441 + 0.861236i
\(268\) 33.8425 + 19.5390i 0.126278 + 0.0729067i
\(269\) −271.904 + 156.984i −1.01080 + 0.583583i −0.911425 0.411467i \(-0.865017\pi\)
−0.0993714 + 0.995050i \(0.531683\pi\)
\(270\) −134.341 + 218.391i −0.497558 + 0.808857i
\(271\) 128.076 221.834i 0.472604 0.818574i −0.526905 0.849924i \(-0.676648\pi\)
0.999508 + 0.0313506i \(0.00998084\pi\)
\(272\) 347.832 1.27879
\(273\) 224.640 + 276.168i 0.822856 + 1.01160i
\(274\) 168.148 0.613678
\(275\) −187.060 + 152.416i −0.680220 + 0.554241i
\(276\) 0.0300551 0.835069i 0.000108895 0.00302561i
\(277\) −283.178 + 163.493i −1.02230 + 0.590226i −0.914770 0.403975i \(-0.867628\pi\)
−0.107532 + 0.994202i \(0.534295\pi\)
\(278\) 5.57553 9.65710i 0.0200559 0.0347378i
\(279\) −55.9604 115.361i −0.200575 0.413481i
\(280\) 203.674 209.248i 0.727409 0.747313i
\(281\) 405.760i 1.44399i 0.691900 + 0.721993i \(0.256774\pi\)
−0.691900 + 0.721993i \(0.743226\pi\)
\(282\) 161.926 85.8754i 0.574204 0.304523i
\(283\) −393.833 + 227.380i −1.39164 + 0.803462i −0.993496 0.113863i \(-0.963678\pi\)
−0.398140 + 0.917325i \(0.630344\pi\)
\(284\) −17.2621 + 9.96628i −0.0607821 + 0.0350926i
\(285\) −96.2292 + 185.054i −0.337646 + 0.649311i
\(286\) 310.754 1.08655
\(287\) 126.971 111.102i 0.442406 0.387116i
\(288\) 24.5912 + 50.6942i 0.0853861 + 0.176022i
\(289\) −152.373 + 263.918i −0.527242 + 0.913210i
\(290\) 67.5985 142.276i 0.233098 0.490606i
\(291\) −271.179 9.76005i −0.931888 0.0335397i
\(292\) −32.0103 18.4812i −0.109624 0.0632916i
\(293\) 141.910 0.484333 0.242166 0.970235i \(-0.422142\pi\)
0.242166 + 0.970235i \(0.422142\pi\)
\(294\) −178.294 + 214.850i −0.606442 + 0.730781i
\(295\) −248.664 360.640i −0.842928 1.22251i
\(296\) 9.05867 + 5.23003i 0.0306036 + 0.0176690i
\(297\) 105.230 + 238.405i 0.354310 + 0.802712i
\(298\) −9.46522 + 5.46474i −0.0317625 + 0.0183381i
\(299\) −10.4118 6.01124i −0.0348220 0.0201045i
\(300\) −23.4899 + 17.7729i −0.0782998 + 0.0592430i
\(301\) 303.548 265.612i 1.00847 0.882433i
\(302\) −499.293 −1.65329
\(303\) 76.5578 + 144.356i 0.252666 + 0.476424i
\(304\) −99.2469 171.901i −0.326470 0.565463i
\(305\) −471.842 224.183i −1.54702 0.735026i
\(306\) 415.438 + 29.9429i 1.35764 + 0.0978527i
\(307\) 187.823i 0.611801i 0.952063 + 0.305901i \(0.0989575\pi\)
−0.952063 + 0.305901i \(0.901042\pi\)
\(308\) −5.14793 26.0305i −0.0167141 0.0845148i
\(309\) 174.309 278.290i 0.564106 0.900615i
\(310\) 10.8183 + 134.856i 0.0348978 + 0.435019i
\(311\) 233.836 135.005i 0.751885 0.434101i −0.0744894 0.997222i \(-0.523733\pi\)
0.826375 + 0.563121i \(0.190399\pi\)
\(312\) 424.022 + 15.2610i 1.35904 + 0.0489135i
\(313\) −55.2832 31.9177i −0.176623 0.101974i 0.409082 0.912498i \(-0.365849\pi\)
−0.585705 + 0.810524i \(0.699182\pi\)
\(314\) 297.389i 0.947098i
\(315\) 235.371 209.345i 0.747209 0.664589i
\(316\) −2.91626 −0.00922866
\(317\) −99.2398 + 171.888i −0.313059 + 0.542235i −0.979023 0.203749i \(-0.934687\pi\)
0.665964 + 0.745984i \(0.268021\pi\)
\(318\) 3.55725 98.8369i 0.0111863 0.310808i
\(319\) −80.0473 138.646i −0.250932 0.434627i
\(320\) −27.5835 343.842i −0.0861983 1.07451i
\(321\) −202.387 126.766i −0.630489 0.394911i
\(322\) 3.04065 8.92508i 0.00944301 0.0277176i
\(323\) 338.827 1.04900
\(324\) 11.7909 + 29.5466i 0.0363917 + 0.0911933i
\(325\) 67.5612 + 418.383i 0.207880 + 1.28733i
\(326\) 4.92718 2.84471i 0.0151141 0.00872611i
\(327\) −375.209 + 198.988i −1.14743 + 0.608526i
\(328\) 201.087i 0.613070i
\(329\) −220.898 + 43.6858i −0.671422 + 0.132784i
\(330\) −12.1151 274.702i −0.0367126 0.832431i
\(331\) 27.5811 47.7719i 0.0833266 0.144326i −0.821350 0.570424i \(-0.806779\pi\)
0.904677 + 0.426098i \(0.140112\pi\)
\(332\) 13.6751 + 23.6859i 0.0411900 + 0.0713431i
\(333\) 9.34111 + 6.32976i 0.0280514 + 0.0190083i
\(334\) −191.635 + 331.922i −0.573758 + 0.993778i
\(335\) −282.404 409.574i −0.842998 1.22261i
\(336\) 47.5428 + 295.976i 0.141496 + 0.880881i
\(337\) 300.345i 0.891232i −0.895224 0.445616i \(-0.852985\pi\)
0.895224 0.445616i \(-0.147015\pi\)
\(338\) 112.412 194.704i 0.332581 0.576047i
\(339\) 10.7475 298.616i 0.0317036 0.880873i
\(340\) 43.2198 + 20.5347i 0.127117 + 0.0603962i
\(341\) 119.080 + 68.7511i 0.349209 + 0.201616i
\(342\) −103.739 213.856i −0.303330 0.625309i
\(343\) 285.824 189.615i 0.833305 0.552814i
\(344\) 480.738i 1.39749i
\(345\) −4.90794 + 9.43823i −0.0142259 + 0.0273572i
\(346\) −14.7798 25.5993i −0.0427161 0.0739865i
\(347\) 71.3734 + 123.622i 0.205687 + 0.356260i 0.950351 0.311179i \(-0.100724\pi\)
−0.744664 + 0.667439i \(0.767390\pi\)
\(348\) −9.15672 17.2658i −0.0263124 0.0496143i
\(349\) 46.0748 0.132020 0.0660098 0.997819i \(-0.478973\pi\)
0.0660098 + 0.997819i \(0.478973\pi\)
\(350\) −311.609 + 115.637i −0.890311 + 0.330393i
\(351\) 455.044 + 49.3029i 1.29642 + 0.140464i
\(352\) −52.3286 30.2119i −0.148661 0.0858294i
\(353\) −163.141 282.568i −0.462155 0.800476i 0.536913 0.843637i \(-0.319590\pi\)
−0.999068 + 0.0431618i \(0.986257\pi\)
\(354\) 498.873 + 17.9550i 1.40925 + 0.0507203i
\(355\) 252.947 20.2917i 0.712525 0.0571597i
\(356\) 35.5217i 0.0997801i
\(357\) −478.118 182.332i −1.33927 0.510733i
\(358\) 59.5571i 0.166361i
\(359\) −78.5207 45.3340i −0.218721 0.126278i 0.386637 0.922232i \(-0.373637\pi\)
−0.605358 + 0.795954i \(0.706970\pi\)
\(360\) −3.04051 375.425i −0.00844587 1.04285i
\(361\) 83.8224 + 145.185i 0.232195 + 0.402173i
\(362\) −118.991 + 206.099i −0.328705 + 0.569333i
\(363\) 70.7926 + 44.3414i 0.195021 + 0.122153i
\(364\) −44.1152 15.0294i −0.121196 0.0412896i
\(365\) 267.115 + 387.400i 0.731822 + 1.06137i
\(366\) 525.917 278.914i 1.43693 0.762061i
\(367\) 255.238 147.362i 0.695471 0.401531i −0.110187 0.993911i \(-0.535145\pi\)
0.805658 + 0.592380i \(0.201812\pi\)
\(368\) −5.06186 8.76739i −0.0137550 0.0238244i
\(369\) 15.5943 216.360i 0.0422609 0.586341i
\(370\) −6.75847 9.80190i −0.0182661 0.0264916i
\(371\) −39.1830 + 115.012i −0.105615 + 0.310006i
\(372\) 14.2255 + 8.91024i 0.0382406 + 0.0239523i
\(373\) 35.1907 + 20.3173i 0.0943450 + 0.0544701i 0.546430 0.837505i \(-0.315986\pi\)
−0.452085 + 0.891975i \(0.649320\pi\)
\(374\) −386.833 + 223.338i −1.03431 + 0.597161i
\(375\) 367.211 76.0344i 0.979229 0.202758i
\(376\) −134.190 + 232.423i −0.356887 + 0.618147i
\(377\) −281.187 −0.745855
\(378\) 31.3045 + 357.596i 0.0828160 + 0.946021i
\(379\) −32.1947 −0.0849463 −0.0424732 0.999098i \(-0.513524\pi\)
−0.0424732 + 0.999098i \(0.513524\pi\)
\(380\) −2.18351 27.2187i −0.00574609 0.0716280i
\(381\) 267.542 + 9.62912i 0.702209 + 0.0252733i
\(382\) 79.8553 46.1045i 0.209045 0.120692i
\(383\) −125.563 + 217.482i −0.327841 + 0.567838i −0.982083 0.188448i \(-0.939654\pi\)
0.654242 + 0.756285i \(0.272988\pi\)
\(384\) 269.469 + 168.784i 0.701742 + 0.439541i
\(385\) −83.0201 + 327.450i −0.215637 + 0.850519i
\(386\) 32.7495i 0.0848432i
\(387\) 37.2812 517.251i 0.0963338 1.33657i
\(388\) 30.7651 17.7623i 0.0792916 0.0457790i
\(389\) 24.1611 13.9494i 0.0621108 0.0358597i −0.468623 0.883398i \(-0.655250\pi\)
0.530734 + 0.847539i \(0.321916\pi\)
\(390\) −428.481 222.813i −1.09867 0.571316i
\(391\) 17.2811 0.0441971
\(392\) 54.2550 405.193i 0.138406 1.03366i
\(393\) −178.307 + 284.673i −0.453707 + 0.724359i
\(394\) 336.403 582.667i 0.853815 1.47885i
\(395\) 33.5339 + 15.9328i 0.0848961 + 0.0403361i
\(396\) −28.2426 19.1379i −0.0713198 0.0483280i
\(397\) 281.690 + 162.634i 0.709546 + 0.409657i 0.810893 0.585195i \(-0.198982\pi\)
−0.101347 + 0.994851i \(0.532315\pi\)
\(398\) −29.4533 −0.0740033
\(399\) 46.3120 + 288.314i 0.116070 + 0.722591i
\(400\) −126.884 + 333.551i −0.317209 + 0.833877i
\(401\) 324.443 + 187.317i 0.809084 + 0.467125i 0.846638 0.532170i \(-0.178623\pi\)
−0.0375536 + 0.999295i \(0.511956\pi\)
\(402\) 566.564 + 20.3913i 1.40936 + 0.0507245i
\(403\) 209.151 120.753i 0.518984 0.299636i
\(404\) −18.5257 10.6958i −0.0458558 0.0264748i
\(405\) 25.8427 404.175i 0.0638091 0.997962i
\(406\) −42.7836 216.335i −0.105378 0.532846i
\(407\) −12.1008 −0.0297317
\(408\) −538.800 + 285.747i −1.32059 + 0.700359i
\(409\) 210.447 + 364.506i 0.514541 + 0.891212i 0.999858 + 0.0168731i \(0.00537114\pi\)
−0.485316 + 0.874339i \(0.661296\pi\)
\(410\) −98.2256 + 206.737i −0.239575 + 0.504237i
\(411\) −234.642 + 124.440i −0.570904 + 0.302773i
\(412\) 42.9891i 0.104342i
\(413\) −580.516 197.774i −1.40561 0.478871i
\(414\) −5.29096 10.9072i −0.0127801 0.0263459i
\(415\) −27.8429 347.076i −0.0670913 0.836328i
\(416\) −91.9090 + 53.0637i −0.220935 + 0.127557i
\(417\) −0.633524 + 17.6022i −0.00151924 + 0.0422116i
\(418\) 220.750 + 127.450i 0.528111 + 0.304905i
\(419\) 481.407i 1.14894i −0.818524 0.574472i \(-0.805208\pi\)
0.818524 0.574472i \(-0.194792\pi\)
\(420\) −11.5659 + 39.5832i −0.0275379 + 0.0942457i
\(421\) −125.377 −0.297807 −0.148904 0.988852i \(-0.547574\pi\)
−0.148904 + 0.988852i \(0.547574\pi\)
\(422\) 337.898 585.256i 0.800706 1.38686i
\(423\) −162.406 + 239.670i −0.383938 + 0.566595i
\(424\) 72.4077 + 125.414i 0.170773 + 0.295787i
\(425\) −384.793 472.256i −0.905395 1.11119i
\(426\) −153.502 + 245.071i −0.360333 + 0.575283i
\(427\) −717.452 + 141.887i −1.68022 + 0.332288i
\(428\) 31.2639 0.0730465
\(429\) −433.642 + 229.977i −1.01082 + 0.536077i
\(430\) −234.828 + 494.246i −0.546111 + 1.14941i
\(431\) −294.379 + 169.960i −0.683013 + 0.394338i −0.800989 0.598678i \(-0.795693\pi\)
0.117976 + 0.993016i \(0.462359\pi\)
\(432\) 311.082 + 227.542i 0.720098 + 0.526718i
\(433\) 184.329i 0.425703i −0.977085 0.212852i \(-0.931725\pi\)
0.977085 0.212852i \(-0.0682751\pi\)
\(434\) 124.726 + 142.540i 0.287387 + 0.328433i
\(435\) 10.9625 + 248.566i 0.0252010 + 0.571416i
\(436\) 27.8005 48.1518i 0.0637625 0.110440i
\(437\) −4.93081 8.54042i −0.0112833 0.0195433i
\(438\) −535.891 19.2873i −1.22349 0.0440349i
\(439\) −62.0405 + 107.457i −0.141322 + 0.244777i −0.927995 0.372593i \(-0.878469\pi\)
0.786673 + 0.617371i \(0.211802\pi\)
\(440\) 228.549 + 331.468i 0.519430 + 0.753336i
\(441\) 89.7985 431.761i 0.203625 0.979049i
\(442\) 784.535i 1.77497i
\(443\) 280.029 485.025i 0.632121 1.09487i −0.354997 0.934868i \(-0.615518\pi\)
0.987117 0.159998i \(-0.0511486\pi\)
\(444\) −1.47625 0.0531320i −0.00332490 0.000119667i
\(445\) −194.070 + 408.463i −0.436113 + 0.917894i
\(446\) −206.829 119.413i −0.463742 0.267742i
\(447\) 9.16399 14.6306i 0.0205011 0.0327307i
\(448\) −318.014 363.434i −0.709852 0.811236i
\(449\) 397.281i 0.884814i 0.896814 + 0.442407i \(0.145875\pi\)
−0.896814 + 0.442407i \(0.854125\pi\)
\(450\) −180.259 + 387.458i −0.400575 + 0.861019i
\(451\) 116.315 + 201.463i 0.257904 + 0.446702i
\(452\) 19.5593 + 33.8778i 0.0432729 + 0.0749508i
\(453\) 696.738 369.507i 1.53805 0.815690i
\(454\) −743.788 −1.63830
\(455\) 425.167 + 413.843i 0.934433 + 0.909545i
\(456\) 294.954 + 184.746i 0.646828 + 0.405145i
\(457\) 608.910 + 351.555i 1.33241 + 0.769266i 0.985668 0.168695i \(-0.0539554\pi\)
0.346740 + 0.937961i \(0.387289\pi\)
\(458\) 120.322 + 208.405i 0.262713 + 0.455032i
\(459\) −601.882 + 265.666i −1.31129 + 0.578792i
\(460\) −0.111365 1.38822i −0.000242098 0.00301788i
\(461\) 780.964i 1.69406i 0.531542 + 0.847032i \(0.321613\pi\)
−0.531542 + 0.847032i \(0.678387\pi\)
\(462\) −242.916 298.636i −0.525792 0.646399i
\(463\) 880.813i 1.90240i −0.308570 0.951202i \(-0.599850\pi\)
0.308570 0.951202i \(-0.400150\pi\)
\(464\) −205.056 118.389i −0.441930 0.255149i
\(465\) −114.898 180.179i −0.247093 0.387481i
\(466\) −355.259 615.327i −0.762359 1.32044i
\(467\) −25.2777 + 43.7822i −0.0541278 + 0.0937521i −0.891820 0.452391i \(-0.850571\pi\)
0.837692 + 0.546143i \(0.183905\pi\)
\(468\) −53.9125 + 26.1523i −0.115198 + 0.0558811i
\(469\) −659.285 224.609i −1.40573 0.478911i
\(470\) 251.492 173.406i 0.535090 0.368948i
\(471\) −220.086 414.991i −0.467274 0.881086i
\(472\) −633.019 + 365.474i −1.34114 + 0.774309i
\(473\) 278.073 + 481.637i 0.587892 + 1.01826i
\(474\) −37.3771 + 19.8225i −0.0788546 + 0.0418197i
\(475\) −123.599 + 324.916i −0.260208 + 0.684033i
\(476\) 65.7172 12.9966i 0.138061 0.0273037i
\(477\) 68.1814 + 140.555i 0.142938 + 0.294664i
\(478\) 135.198 + 78.0569i 0.282842 + 0.163299i
\(479\) 568.259 328.084i 1.18634 0.684936i 0.228870 0.973457i \(-0.426497\pi\)
0.957474 + 0.288521i \(0.0931636\pi\)
\(480\) 50.4908 + 79.1776i 0.105189 + 0.164953i
\(481\) −10.6268 + 18.4062i −0.0220932 + 0.0382665i
\(482\) 395.948 0.821469
\(483\) 2.36204 + 14.7048i 0.00489034 + 0.0304447i
\(484\) −10.9357 −0.0225945
\(485\) −450.810 + 36.1646i −0.929505 + 0.0745661i
\(486\) 351.957 + 298.548i 0.724192 + 0.614295i
\(487\) 701.394 404.950i 1.44023 0.831520i 0.442370 0.896833i \(-0.354138\pi\)
0.997865 + 0.0653129i \(0.0208045\pi\)
\(488\) −435.833 + 754.886i −0.893101 + 1.54690i
\(489\) −4.77038 + 7.61607i −0.00975537 + 0.0155748i
\(490\) −253.705 + 390.076i −0.517766 + 0.796073i
\(491\) 406.082i 0.827051i −0.910492 0.413526i \(-0.864297\pi\)
0.910492 0.413526i \(-0.135703\pi\)
\(492\) 13.3054 + 25.0885i 0.0270435 + 0.0509928i
\(493\) 350.028 202.089i 0.709996 0.409917i
\(494\) 387.722 223.851i 0.784863 0.453141i
\(495\) 220.203 + 374.367i 0.444854 + 0.756298i
\(496\) 203.364 0.410008
\(497\) 267.359 233.946i 0.537946 0.470716i
\(498\) 336.270 + 210.625i 0.675240 + 0.422941i
\(499\) 341.349 591.233i 0.684065 1.18484i −0.289664 0.957128i \(-0.593544\pi\)
0.973730 0.227708i \(-0.0731230\pi\)
\(500\) −35.4575 + 33.9545i −0.0709150 + 0.0679090i
\(501\) 21.7747 605.002i 0.0434625 1.20759i
\(502\) −459.442 265.259i −0.915223 0.528404i
\(503\) −296.107 −0.588682 −0.294341 0.955701i \(-0.595100\pi\)
−0.294341 + 0.955701i \(0.595100\pi\)
\(504\) −316.792 419.417i −0.628555 0.832177i
\(505\) 154.591 + 224.205i 0.306121 + 0.443971i
\(506\) 11.2589 + 6.50030i 0.0222507 + 0.0128465i
\(507\) −12.7729 + 354.891i −0.0251932 + 0.699983i
\(508\) −30.3524 + 17.5240i −0.0597489 + 0.0344960i
\(509\) 722.798 + 417.308i 1.42004 + 0.819858i 0.996301 0.0859284i \(-0.0273856\pi\)
0.423735 + 0.905786i \(0.360719\pi\)
\(510\) 693.518 30.5861i 1.35984 0.0599728i
\(511\) 623.592 + 212.449i 1.22034 + 0.415751i
\(512\) −565.746 −1.10497
\(513\) 303.029 + 221.652i 0.590700 + 0.432070i
\(514\) 153.229 + 265.400i 0.298110 + 0.516342i
\(515\) 234.868 494.330i 0.456054 0.959864i
\(516\) 31.8091 + 59.9789i 0.0616456 + 0.116238i
\(517\) 310.477i 0.600535i
\(518\) −15.7780 5.37533i −0.0304594 0.0103771i
\(519\) 39.5695 + 24.7846i 0.0762418 + 0.0477546i
\(520\) 704.896 56.5476i 1.35557 0.108745i
\(521\) 619.025 357.394i 1.18815 0.685977i 0.230262 0.973129i \(-0.426042\pi\)
0.957885 + 0.287152i \(0.0927083\pi\)
\(522\) −234.720 159.052i −0.449654 0.304697i
\(523\) −195.670 112.970i −0.374130 0.216004i 0.301131 0.953583i \(-0.402636\pi\)
−0.675261 + 0.737579i \(0.735969\pi\)
\(524\) 43.9751i 0.0839219i
\(525\) 349.256 391.976i 0.665249 0.746621i
\(526\) 58.9102 0.111997
\(527\) −173.570 + 300.632i −0.329355 + 0.570460i
\(528\) −413.061 14.8665i −0.782312 0.0281563i
\(529\) 264.249 + 457.692i 0.499525 + 0.865202i
\(530\) −13.1809 164.307i −0.0248696 0.310013i
\(531\) −709.440 + 344.142i −1.33605 + 0.648101i
\(532\) −25.1741 28.7695i −0.0473197 0.0540781i
\(533\) 408.586 0.766577
\(534\) −241.450 455.274i −0.452153 0.852574i
\(535\) −359.502 170.808i −0.671967 0.319267i
\(536\) −718.912 + 415.064i −1.34125 + 0.774373i
\(537\) 44.0760 + 83.1090i 0.0820781 + 0.154765i
\(538\) 596.312i 1.10839i
\(539\) 180.019 + 437.333i 0.333987 + 0.811378i
\(540\) 25.2202 + 46.6384i 0.0467040 + 0.0863673i
\(541\) −315.187 + 545.919i −0.582600 + 1.00909i 0.412570 + 0.910926i \(0.364631\pi\)
−0.995170 + 0.0981672i \(0.968702\pi\)
\(542\) 243.251 + 421.323i 0.448803 + 0.777349i
\(543\) 13.5205 375.661i 0.0248996 0.691825i
\(544\) 76.2736 132.110i 0.140209 0.242849i
\(545\) −582.750 + 401.810i −1.06927 + 0.737267i
\(546\) −667.574 + 107.233i −1.22266 + 0.196397i
\(547\) 300.639i 0.549615i 0.961499 + 0.274807i \(0.0886141\pi\)
−0.961499 + 0.274807i \(0.911386\pi\)
\(548\) 17.3854 30.1124i 0.0317251 0.0549496i
\(549\) −527.477 + 778.422i −0.960796 + 1.41789i
\(550\) −73.0578 452.421i −0.132832 0.822584i
\(551\) −199.747 115.324i −0.362518 0.209300i
\(552\) 15.0434 + 9.42254i 0.0272526 + 0.0170698i
\(553\) 50.9896 10.0839i 0.0922053 0.0182350i
\(554\) 621.036i 1.12100i
\(555\) 16.6851 + 8.67637i 0.0300633 + 0.0156331i
\(556\) −1.15295 1.99696i −0.00207365 0.00359166i
\(557\) 217.246 + 376.281i 0.390028 + 0.675549i 0.992453 0.122627i \(-0.0391319\pi\)
−0.602425 + 0.798176i \(0.705799\pi\)
\(558\) 242.891 + 17.5065i 0.435288 + 0.0313736i
\(559\) 976.805 1.74741
\(560\) 135.811 + 480.804i 0.242521 + 0.858578i
\(561\) 374.523 597.938i 0.667598 1.06584i
\(562\) −667.404 385.326i −1.18755 0.685633i
\(563\) −227.729 394.438i −0.404492 0.700601i 0.589770 0.807571i \(-0.299218\pi\)
−0.994262 + 0.106970i \(0.965885\pi\)
\(564\) 1.36324 37.8770i 0.00241709 0.0671579i
\(565\) −39.8235 496.421i −0.0704840 0.878620i
\(566\) 863.714i 1.52600i
\(567\) −308.327 475.840i −0.543786 0.839224i
\(568\) 423.425i 0.745466i
\(569\) 374.954 + 216.480i 0.658970 + 0.380457i 0.791884 0.610671i \(-0.209100\pi\)
−0.132914 + 0.991128i \(0.542434\pi\)
\(570\) −212.998 334.014i −0.373680 0.585990i
\(571\) −107.252 185.766i −0.187832 0.325335i 0.756695 0.653768i \(-0.226813\pi\)
−0.944527 + 0.328433i \(0.893479\pi\)
\(572\) 32.1299 55.6507i 0.0561712 0.0972914i
\(573\) −77.3139 + 123.434i −0.134928 + 0.215418i
\(574\) 62.1676 + 314.351i 0.108306 + 0.547650i
\(575\) −6.30387 + 16.5716i −0.0109633 + 0.0288201i
\(576\) −619.298 44.6362i −1.07517 0.0774935i
\(577\) 179.599 103.691i 0.311263 0.179708i −0.336228 0.941780i \(-0.609151\pi\)
0.647492 + 0.762073i \(0.275818\pi\)
\(578\) −289.398 501.253i −0.500689 0.867219i
\(579\) 24.2366 + 45.7002i 0.0418595 + 0.0789296i
\(580\) −18.4899 26.8161i −0.0318791 0.0462347i
\(581\) −321.005 366.852i −0.552504 0.631415i
\(582\) 273.576 436.774i 0.470062 0.750470i
\(583\) −145.086 83.7655i −0.248861 0.143680i
\(584\) 679.990 392.593i 1.16437 0.672247i
\(585\) 762.820 6.17797i 1.30397 0.0105606i
\(586\) −134.763 + 233.416i −0.229971 + 0.398321i
\(587\) −473.066 −0.805905 −0.402953 0.915221i \(-0.632016\pi\)
−0.402953 + 0.915221i \(0.632016\pi\)
\(588\) 20.0414 + 54.1435i 0.0340841 + 0.0920807i
\(589\) 198.099 0.336332
\(590\) 829.329 66.5298i 1.40564 0.112762i
\(591\) −38.2241 + 1062.04i −0.0646769 + 1.79702i
\(592\) −15.4992 + 8.94847i −0.0261811 + 0.0151157i
\(593\) 220.683 382.234i 0.372146 0.644576i −0.617749 0.786375i \(-0.711955\pi\)
0.989895 + 0.141799i \(0.0452887\pi\)
\(594\) −492.065 53.3141i −0.828392 0.0897544i
\(595\) −826.686 209.594i −1.38939 0.352259i
\(596\) 2.26008i 0.00379207i
\(597\) 41.1006 21.7973i 0.0688453 0.0365113i
\(598\) 19.7749 11.4170i 0.0330683 0.0190920i
\(599\) −98.8142 + 57.0504i −0.164965 + 0.0952427i −0.580210 0.814467i \(-0.697029\pi\)
0.415244 + 0.909710i \(0.363696\pi\)
\(600\) −77.4687 620.914i −0.129114 1.03486i
\(601\) −1061.91 −1.76691 −0.883454 0.468518i \(-0.844788\pi\)
−0.883454 + 0.468518i \(0.844788\pi\)
\(602\) 148.624 + 751.518i 0.246884 + 1.24837i
\(603\) −805.703 + 390.837i −1.33616 + 0.648155i
\(604\) −51.6236 + 89.4148i −0.0854696 + 0.148038i
\(605\) 125.750 + 59.7467i 0.207851 + 0.0987548i
\(606\) −310.143 11.1624i −0.511787 0.0184198i
\(607\) −187.998 108.541i −0.309716 0.178815i 0.337083 0.941475i \(-0.390560\pi\)
−0.646800 + 0.762660i \(0.723893\pi\)
\(608\) −87.0527 −0.143179
\(609\) 219.804 + 270.223i 0.360926 + 0.443716i
\(610\) 816.821 563.203i 1.33905 0.923284i
\(611\) −472.257 272.658i −0.772925 0.446248i
\(612\) 48.3158 71.3019i 0.0789474 0.116506i
\(613\) 40.6966 23.4962i 0.0663893 0.0383299i −0.466438 0.884554i \(-0.654463\pi\)
0.532827 + 0.846224i \(0.321130\pi\)
\(614\) −308.935 178.364i −0.503152 0.290495i
\(615\) −15.9292 361.184i −0.0259012 0.587291i
\(616\) 533.558 + 181.776i 0.866166 + 0.295091i
\(617\) −140.650 −0.227958 −0.113979 0.993483i \(-0.536360\pi\)
−0.113979 + 0.993483i \(0.536360\pi\)
\(618\) 292.207 + 550.982i 0.472827 + 0.891557i
\(619\) 41.4260 + 71.7519i 0.0669241 + 0.115916i 0.897546 0.440921i \(-0.145348\pi\)
−0.830622 + 0.556837i \(0.812015\pi\)
\(620\) 25.2689 + 12.0059i 0.0407563 + 0.0193643i
\(621\) 15.4553 + 11.3048i 0.0248877 + 0.0182042i
\(622\) 512.826i 0.824479i
\(623\) 122.828 + 621.082i 0.197156 + 0.996922i
\(624\) −385.359 + 615.239i −0.617563 + 0.985960i
\(625\) 593.233 196.722i 0.949173 0.314756i
\(626\) 104.998 60.6206i 0.167728 0.0968381i
\(627\) −402.367 14.4816i −0.641734 0.0230967i
\(628\) 53.2572 + 30.7481i 0.0848045 + 0.0489619i
\(629\) 30.5499i 0.0485690i
\(630\) 120.819 + 585.946i 0.191776 + 0.930073i
\(631\) 243.800 0.386371 0.193186 0.981162i \(-0.438118\pi\)
0.193186 + 0.981162i \(0.438118\pi\)
\(632\) 30.9748 53.6499i 0.0490108 0.0848891i
\(633\) −38.3939 + 1066.76i −0.0606539 + 1.68525i
\(634\) −188.484 326.464i −0.297293 0.514927i
\(635\) 444.762 35.6794i 0.700413 0.0561880i
\(636\) −17.3322 10.8561i −0.0272519 0.0170694i
\(637\) 823.305 + 110.240i 1.29247 + 0.173061i
\(638\) 304.064 0.476589
\(639\) 32.8365 455.585i 0.0513874 0.712965i
\(640\) 478.661 + 227.423i 0.747908 + 0.355348i
\(641\) −115.942 + 66.9392i −0.180877 + 0.104429i −0.587705 0.809076i \(-0.699968\pi\)
0.406828 + 0.913505i \(0.366635\pi\)
\(642\) 400.703 212.508i 0.624148 0.331010i
\(643\) 681.323i 1.05960i 0.848122 + 0.529801i \(0.177733\pi\)
−0.848122 + 0.529801i \(0.822267\pi\)
\(644\) −1.28394 1.46732i −0.00199370 0.00227845i
\(645\) −38.0820 863.482i −0.0590419 1.33873i
\(646\) −321.763 + 557.311i −0.498086 + 0.862710i
\(647\) −76.8005 133.022i −0.118702 0.205599i 0.800551 0.599264i \(-0.204540\pi\)
−0.919254 + 0.393666i \(0.871207\pi\)
\(648\) −668.801 96.9119i −1.03210 0.149555i
\(649\) 422.801 732.313i 0.651466 1.12837i
\(650\) −752.324 286.186i −1.15742 0.440287i
\(651\) −279.537 106.602i −0.429397 0.163752i
\(652\) 1.17650i 0.00180445i
\(653\) 122.460 212.107i 0.187534 0.324819i −0.756893 0.653538i \(-0.773284\pi\)
0.944428 + 0.328720i \(0.106617\pi\)
\(654\) 29.0131 806.118i 0.0443625 1.23260i
\(655\) −240.255 + 505.668i −0.366801 + 0.772012i
\(656\) 297.961 + 172.028i 0.454209 + 0.262237i
\(657\) 762.082 369.678i 1.15994 0.562675i
\(658\) 137.918 404.823i 0.209601 0.615233i
\(659\) 758.783i 1.15142i 0.817655 + 0.575708i \(0.195273\pi\)
−0.817655 + 0.575708i \(0.804727\pi\)
\(660\) −50.4471 26.2328i −0.0764350 0.0397467i
\(661\) −495.701 858.579i −0.749926 1.29891i −0.947858 0.318694i \(-0.896756\pi\)
0.197932 0.980216i \(-0.436578\pi\)
\(662\) 52.3842 + 90.7321i 0.0791302 + 0.137058i
\(663\) −580.604 1094.78i −0.875723 1.65125i
\(664\) −580.995 −0.874992
\(665\) 132.296 + 468.357i 0.198941 + 0.704296i
\(666\) −19.2820 + 9.35348i −0.0289520 + 0.0140443i
\(667\) −10.1876 5.88183i −0.0152738 0.00881834i
\(668\) 39.6277 + 68.6371i 0.0593228 + 0.102750i
\(669\) 376.993 + 13.5684i 0.563517 + 0.0202816i
\(670\) 941.859 75.5571i 1.40576 0.112772i
\(671\) 1008.39i 1.50282i
\(672\) 122.840 + 46.8453i 0.182797 + 0.0697103i
\(673\) 1101.01i 1.63598i 0.575235 + 0.817988i \(0.304911\pi\)
−0.575235 + 0.817988i \(0.695089\pi\)
\(674\) 494.014 + 285.219i 0.732959 + 0.423174i
\(675\) −35.2008 674.082i −0.0521493 0.998639i
\(676\) −23.2454 40.2622i −0.0343867 0.0595595i
\(677\) 68.0959 117.946i 0.100585 0.174218i −0.811341 0.584573i \(-0.801262\pi\)
0.911926 + 0.410355i \(0.134595\pi\)
\(678\) 480.964 + 301.255i 0.709386 + 0.444329i
\(679\) −476.497 + 416.947i −0.701763 + 0.614060i
\(680\) −836.830 + 576.999i −1.23063 + 0.848529i
\(681\) 1037.92 550.449i 1.52411 0.808295i
\(682\) −226.167 + 130.577i −0.331623 + 0.191462i
\(683\) 607.226 + 1051.75i 0.889057 + 1.53989i 0.840992 + 0.541047i \(0.181972\pi\)
0.0480644 + 0.998844i \(0.484695\pi\)
\(684\) −49.0238 3.53342i −0.0716722 0.00516582i
\(685\) −364.431 + 251.277i −0.532015 + 0.366828i
\(686\) 40.4539 + 650.195i 0.0589707 + 0.947806i
\(687\) −322.136 201.772i −0.468903 0.293700i
\(688\) 712.334 + 411.266i 1.03537 + 0.597771i
\(689\) −254.827 + 147.124i −0.369850 + 0.213533i
\(690\) −10.8634 17.0356i −0.0157441 0.0246893i
\(691\) −580.261 + 1005.04i −0.839741 + 1.45447i 0.0503694 + 0.998731i \(0.483960\pi\)
−0.890111 + 0.455744i \(0.849373\pi\)
\(692\) −6.11253 −0.00883314
\(693\) 559.987 + 236.959i 0.808062 + 0.341933i
\(694\) −271.116 −0.390657
\(695\) 2.34744 + 29.2621i 0.00337761 + 0.0421037i
\(696\) 414.894 + 14.9325i 0.596111 + 0.0214547i
\(697\) −508.616 + 293.650i −0.729722 + 0.421305i
\(698\) −43.7545 + 75.7849i −0.0626855 + 0.108574i
\(699\) 951.126 + 595.744i 1.36070 + 0.852281i
\(700\) −11.5097 + 67.7600i −0.0164424 + 0.0967999i
\(701\) 1106.20i 1.57803i −0.614373 0.789016i \(-0.710591\pi\)
0.614373 0.789016i \(-0.289409\pi\)
\(702\) −513.222 + 701.646i −0.731085 + 0.999496i
\(703\) −15.0980 + 8.71681i −0.0214765 + 0.0123994i
\(704\) 576.657 332.933i 0.819115 0.472916i
\(705\) −222.614 + 428.099i −0.315765 + 0.607232i
\(706\) 619.699 0.877760
\(707\) 360.899 + 122.953i 0.510466 + 0.173909i
\(708\) 54.7957 87.4832i 0.0773950 0.123564i
\(709\) −400.014 + 692.845i −0.564195 + 0.977214i 0.432929 + 0.901428i \(0.357480\pi\)
−0.997124 + 0.0757864i \(0.975853\pi\)
\(710\) −206.832 + 435.322i −0.291312 + 0.613129i
\(711\) 37.4880 55.3227i 0.0527257 0.0778097i
\(712\) 653.488 + 377.291i 0.917820 + 0.529903i
\(713\) 10.1036 0.0141705
\(714\) 753.943 613.270i 1.05594 0.858922i
\(715\) −673.504 + 464.386i −0.941964 + 0.649491i
\(716\) −10.6657 6.15782i −0.0148962 0.00860031i
\(717\) −246.430 8.86928i −0.343695 0.0123700i
\(718\) 149.133 86.1018i 0.207706 0.119919i
\(719\) −679.759 392.459i −0.945423 0.545840i −0.0537665 0.998554i \(-0.517123\pi\)
−0.891656 + 0.452714i \(0.850456\pi\)
\(720\) 558.887 + 316.666i 0.776232 + 0.439815i
\(721\) −148.649 751.646i −0.206171 1.04251i
\(722\) −318.404 −0.441002
\(723\) −552.526 + 293.026i −0.764213 + 0.405292i
\(724\) 24.6058 + 42.6185i 0.0339859 + 0.0588653i
\(725\) 66.1067 + 409.376i 0.0911817 + 0.564656i
\(726\) −140.161 + 74.3330i −0.193060 + 0.102387i
\(727\) 579.070i 0.796520i −0.917273 0.398260i \(-0.869614\pi\)
0.917273 0.398260i \(-0.130386\pi\)
\(728\) 745.060 651.947i 1.02343 0.895531i
\(729\) −712.083 156.138i −0.976794 0.214181i
\(730\) −890.867 + 71.4665i −1.22037 + 0.0978993i
\(731\) −1215.95 + 702.028i −1.66340 + 0.960367i
\(732\) 4.42765 123.021i 0.00604870 0.168061i
\(733\) −590.643 341.008i −0.805789 0.465223i 0.0397023 0.999212i \(-0.487359\pi\)
−0.845491 + 0.533989i \(0.820692\pi\)
\(734\) 559.762i 0.762618i
\(735\) 65.3531 732.089i 0.0889157 0.996039i
\(736\) −4.43992 −0.00603249
\(737\) 480.170 831.679i 0.651520 1.12847i
\(738\) 341.065 + 231.114i 0.462147 + 0.313162i
\(739\) −439.884 761.902i −0.595243 1.03099i −0.993513 0.113722i \(-0.963723\pi\)
0.398270 0.917268i \(-0.369611\pi\)
\(740\) −2.45413 + 0.196874i −0.00331640 + 0.000266046i
\(741\) −375.383 + 599.312i −0.506590 + 0.808788i
\(742\) −151.965 173.669i −0.204804 0.234055i
\(743\) 77.0002 0.103634 0.0518171 0.998657i \(-0.483499\pi\)
0.0518171 + 0.998657i \(0.483499\pi\)
\(744\) −315.016 + 167.065i −0.423408 + 0.224550i
\(745\) 12.3478 25.9885i 0.0165742 0.0348840i
\(746\) −66.8368 + 38.5883i −0.0895936 + 0.0517269i
\(747\) −625.123 45.0561i −0.836844 0.0603160i
\(748\) 92.3669i 0.123485i
\(749\) −546.636 + 108.106i −0.729821 + 0.144333i
\(750\) −223.655 + 676.202i −0.298206 + 0.901602i
\(751\) −399.639 + 692.195i −0.532142 + 0.921697i 0.467154 + 0.884176i \(0.345279\pi\)
−0.999296 + 0.0375212i \(0.988054\pi\)
\(752\) −229.595 397.671i −0.305313 0.528818i
\(753\) 837.436 + 30.1403i 1.11213 + 0.0400269i
\(754\) 267.026 462.503i 0.354146 0.613399i
\(755\) 1082.13 746.135i 1.43328 0.988259i
\(756\) 67.2759 + 31.3670i 0.0889893 + 0.0414907i
\(757\) 393.905i 0.520350i 0.965561 + 0.260175i \(0.0837803\pi\)
−0.965561 + 0.260175i \(0.916220\pi\)
\(758\) 30.5733 52.9545i 0.0403342 0.0698608i
\(759\) −20.5218 0.738602i −0.0270379 0.000973126i
\(760\) 523.930 + 248.931i 0.689381 + 0.327541i
\(761\) 654.465 + 377.855i 0.860006 + 0.496525i 0.864014 0.503467i \(-0.167943\pi\)
−0.00400819 + 0.999992i \(0.501276\pi\)
\(762\) −269.906 + 430.914i −0.354207 + 0.565504i
\(763\) −319.578 + 938.044i −0.418845 + 1.22942i