Properties

Label 105.3.o.b.44.15
Level 105
Weight 3
Character 105.44
Analytic conductor 2.861
Analytic rank 0
Dimension 40
CM no
Inner twists 8

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.o (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 44.15
Character \(\chi\) \(=\) 105.44
Dual form 105.3.o.b.74.15

$q$-expansion

\(f(q)\) \(=\) \(q+(0.949639 - 1.64482i) q^{2} +(-0.107903 + 2.99806i) q^{3} +(0.196373 + 0.340128i) q^{4} +(-4.51617 + 2.14574i) q^{5} +(4.82880 + 3.02455i) q^{6} +(4.60961 + 5.26797i) q^{7} +8.34304 q^{8} +(-8.97671 - 0.647002i) q^{9} +O(q^{10})\) \(q+(0.949639 - 1.64482i) q^{2} +(-0.107903 + 2.99806i) q^{3} +(0.196373 + 0.340128i) q^{4} +(-4.51617 + 2.14574i) q^{5} +(4.82880 + 3.02455i) q^{6} +(4.60961 + 5.26797i) q^{7} +8.34304 q^{8} +(-8.97671 - 0.647002i) q^{9} +(-0.759373 + 9.46598i) q^{10} +(8.35863 - 4.82586i) q^{11} +(-1.04091 + 0.552037i) q^{12} +16.9521i q^{13} +(13.0423 - 2.57932i) q^{14} +(-5.94574 - 13.7713i) q^{15} +(7.13738 - 12.3623i) q^{16} +(-12.1835 - 21.1024i) q^{17} +(-9.58884 + 14.1507i) q^{18} +(6.95261 - 12.0423i) q^{19} +(-1.61668 - 1.11471i) q^{20} +(-16.2911 + 13.2514i) q^{21} -18.3313i q^{22} +(-0.354602 + 0.614188i) q^{23} +(-0.900243 + 25.0129i) q^{24} +(15.7916 - 19.3810i) q^{25} +(27.8832 + 16.0984i) q^{26} +(2.90837 - 26.8429i) q^{27} +(-0.886581 + 2.60234i) q^{28} -16.5872i q^{29} +(-28.2976 - 3.29806i) q^{30} +(7.12320 + 12.3377i) q^{31} +(3.13021 + 5.42169i) q^{32} +(13.5663 + 25.5804i) q^{33} -46.2795 q^{34} +(-32.1215 - 13.9000i) q^{35} +(-1.54272 - 3.18028i) q^{36} +(1.08578 + 0.626873i) q^{37} +(-13.2049 - 22.8716i) q^{38} +(-50.8234 - 1.82919i) q^{39} +(-37.6786 + 17.9020i) q^{40} +24.1024i q^{41} +(6.32563 + 39.3800i) q^{42} -57.6214i q^{43} +(3.28282 + 1.89534i) q^{44} +(41.9287 - 16.3397i) q^{45} +(0.673487 + 1.16651i) q^{46} +(-16.0840 + 27.8583i) q^{47} +(36.2928 + 22.7322i) q^{48} +(-6.50303 + 48.5666i) q^{49} +(-16.8821 - 44.3794i) q^{50} +(64.5807 - 34.2497i) q^{51} +(-5.76588 + 3.32893i) q^{52} +(8.67882 + 15.0322i) q^{53} +(-41.3899 - 30.2748i) q^{54} +(-27.3940 + 39.7298i) q^{55} +(38.4582 + 43.9509i) q^{56} +(35.3532 + 22.1437i) q^{57} +(-27.2829 - 15.7518i) q^{58} +(75.8739 - 43.8058i) q^{59} +(3.51641 - 4.72662i) q^{60} +(52.2391 - 90.4808i) q^{61} +27.0578 q^{62} +(-37.9707 - 50.2715i) q^{63} +68.9894 q^{64} +(-36.3748 - 76.5586i) q^{65} +(54.9583 + 1.97801i) q^{66} +(-86.1690 + 49.7497i) q^{67} +(4.78500 - 8.28786i) q^{68} +(-1.80311 - 1.12939i) q^{69} +(-53.3669 + 39.6341i) q^{70} +50.7518i q^{71} +(-74.8931 - 5.39796i) q^{72} +(81.5039 - 47.0563i) q^{73} +(2.06219 - 1.19061i) q^{74} +(56.4015 + 49.4355i) q^{75} +5.46122 q^{76} +(63.9525 + 21.7877i) q^{77} +(-51.2726 + 81.8584i) q^{78} +(-3.71265 + 6.43050i) q^{79} +(-5.70736 + 71.1453i) q^{80} +(80.1628 + 11.6159i) q^{81} +(39.6441 + 22.8885i) q^{82} -69.6382 q^{83} +(-7.70631 - 2.93883i) q^{84} +(100.303 + 69.1594i) q^{85} +(-94.7770 - 54.7196i) q^{86} +(49.7293 + 1.78981i) q^{87} +(69.7364 - 40.2623i) q^{88} +(-78.3272 - 45.2223i) q^{89} +(12.9412 - 84.4820i) q^{90} +(-89.3032 + 78.1425i) q^{91} -0.278537 q^{92} +(-37.7579 + 20.0245i) q^{93} +(30.5480 + 52.9107i) q^{94} +(-5.55961 + 69.3035i) q^{95} +(-16.5923 + 8.79955i) q^{96} +90.4517i q^{97} +(73.7078 + 56.8170i) q^{98} +(-78.1554 + 37.9123i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40q - 44q^{4} + 80q^{6} + 12q^{9} + O(q^{10}) \) \( 40q - 44q^{4} + 80q^{6} + 12q^{9} + 62q^{10} + 84q^{15} - 116q^{16} - 56q^{19} + 36q^{21} - 12q^{24} - 6q^{25} - 20q^{30} - 444q^{31} + 256q^{34} - 688q^{36} + 168q^{39} + 54q^{40} - 40q^{45} + 304q^{46} + 156q^{49} + 156q^{51} - 140q^{54} - 500q^{55} - 130q^{60} + 288q^{61} + 472q^{64} + 340q^{66} - 272q^{69} + 710q^{70} - 524q^{75} + 400q^{76} - 340q^{79} + 496q^{84} + 896q^{85} + 1356q^{90} - 656q^{91} - 560q^{94} + 472q^{96} - 336q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.949639 1.64482i 0.474819 0.822411i −0.524765 0.851247i \(-0.675847\pi\)
0.999584 + 0.0288361i \(0.00918008\pi\)
\(3\) −0.107903 + 2.99806i −0.0359678 + 0.999353i
\(4\) 0.196373 + 0.340128i 0.0490932 + 0.0850320i
\(5\) −4.51617 + 2.14574i −0.903234 + 0.429148i
\(6\) 4.82880 + 3.02455i 0.804801 + 0.504092i
\(7\) 4.60961 + 5.26797i 0.658515 + 0.752567i
\(8\) 8.34304 1.04288
\(9\) −8.97671 0.647002i −0.997413 0.0718891i
\(10\) −0.759373 + 9.46598i −0.0759373 + 0.946598i
\(11\) 8.35863 4.82586i 0.759876 0.438714i −0.0693754 0.997591i \(-0.522101\pi\)
0.829251 + 0.558876i \(0.188767\pi\)
\(12\) −1.04091 + 0.552037i −0.0867427 + 0.0460031i
\(13\) 16.9521i 1.30401i 0.758216 + 0.652004i \(0.226071\pi\)
−0.758216 + 0.652004i \(0.773929\pi\)
\(14\) 13.0423 2.57932i 0.931596 0.184237i
\(15\) −5.94574 13.7713i −0.396383 0.918085i
\(16\) 7.13738 12.3623i 0.446086 0.772644i
\(17\) −12.1835 21.1024i −0.716674 1.24131i −0.962311 0.271953i \(-0.912330\pi\)
0.245637 0.969362i \(-0.421003\pi\)
\(18\) −9.58884 + 14.1507i −0.532713 + 0.786149i
\(19\) 6.95261 12.0423i 0.365927 0.633804i −0.622997 0.782224i \(-0.714085\pi\)
0.988924 + 0.148420i \(0.0474187\pi\)
\(20\) −1.61668 1.11471i −0.0808340 0.0557355i
\(21\) −16.2911 + 13.2514i −0.775766 + 0.631021i
\(22\) 18.3313i 0.833240i
\(23\) −0.354602 + 0.614188i −0.0154175 + 0.0267038i −0.873631 0.486589i \(-0.838241\pi\)
0.858214 + 0.513292i \(0.171574\pi\)
\(24\) −0.900243 + 25.0129i −0.0375101 + 1.04221i
\(25\) 15.7916 19.3810i 0.631665 0.775242i
\(26\) 27.8832 + 16.0984i 1.07243 + 0.619168i
\(27\) 2.90837 26.8429i 0.107717 0.994182i
\(28\) −0.886581 + 2.60234i −0.0316636 + 0.0929408i
\(29\) 16.5872i 0.571971i −0.958234 0.285986i \(-0.907679\pi\)
0.958234 0.285986i \(-0.0923209\pi\)
\(30\) −28.2976 3.29806i −0.943254 0.109935i
\(31\) 7.12320 + 12.3377i 0.229781 + 0.397992i 0.957743 0.287625i \(-0.0928658\pi\)
−0.727962 + 0.685617i \(0.759532\pi\)
\(32\) 3.13021 + 5.42169i 0.0978192 + 0.169428i
\(33\) 13.5663 + 25.5804i 0.411100 + 0.775164i
\(34\) −46.2795 −1.36116
\(35\) −32.1215 13.9000i −0.917756 0.397144i
\(36\) −1.54272 3.18028i −0.0428533 0.0883412i
\(37\) 1.08578 + 0.626873i 0.0293453 + 0.0169425i 0.514601 0.857430i \(-0.327940\pi\)
−0.485256 + 0.874372i \(0.661273\pi\)
\(38\) −13.2049 22.8716i −0.347498 0.601885i
\(39\) −50.8234 1.82919i −1.30316 0.0469023i
\(40\) −37.6786 + 17.9020i −0.941965 + 0.447550i
\(41\) 24.1024i 0.587862i 0.955827 + 0.293931i \(0.0949637\pi\)
−0.955827 + 0.293931i \(0.905036\pi\)
\(42\) 6.32563 + 39.3800i 0.150610 + 0.937619i
\(43\) 57.6214i 1.34003i −0.742346 0.670017i \(-0.766287\pi\)
0.742346 0.670017i \(-0.233713\pi\)
\(44\) 3.28282 + 1.89534i 0.0746095 + 0.0430758i
\(45\) 41.9287 16.3397i 0.931748 0.363105i
\(46\) 0.673487 + 1.16651i 0.0146410 + 0.0253590i
\(47\) −16.0840 + 27.8583i −0.342213 + 0.592730i −0.984843 0.173446i \(-0.944510\pi\)
0.642630 + 0.766176i \(0.277843\pi\)
\(48\) 36.2928 + 22.7322i 0.756100 + 0.473588i
\(49\) −6.50303 + 48.5666i −0.132715 + 0.991154i
\(50\) −16.8821 44.3794i −0.337641 0.887588i
\(51\) 64.5807 34.2497i 1.26629 0.671562i
\(52\) −5.76588 + 3.32893i −0.110882 + 0.0640180i
\(53\) 8.67882 + 15.0322i 0.163751 + 0.283625i 0.936211 0.351438i \(-0.114307\pi\)
−0.772460 + 0.635064i \(0.780974\pi\)
\(54\) −41.3899 30.2748i −0.766480 0.560645i
\(55\) −27.3940 + 39.7298i −0.498073 + 0.722361i
\(56\) 38.4582 + 43.9509i 0.686753 + 0.784838i
\(57\) 35.3532 + 22.1437i 0.620232 + 0.388487i
\(58\) −27.2829 15.7518i −0.470395 0.271583i
\(59\) 75.8739 43.8058i 1.28600 0.742471i 0.308060 0.951367i \(-0.400320\pi\)
0.977938 + 0.208896i \(0.0669870\pi\)
\(60\) 3.51641 4.72662i 0.0586069 0.0787770i
\(61\) 52.2391 90.4808i 0.856379 1.48329i −0.0189801 0.999820i \(-0.506042\pi\)
0.875359 0.483473i \(-0.160625\pi\)
\(62\) 27.0578 0.436417
\(63\) −37.9707 50.2715i −0.602710 0.797960i
\(64\) 68.9894 1.07796
\(65\) −36.3748 76.5586i −0.559612 1.17782i
\(66\) 54.9583 + 1.97801i 0.832701 + 0.0299698i
\(67\) −86.1690 + 49.7497i −1.28610 + 0.742533i −0.977957 0.208806i \(-0.933042\pi\)
−0.308147 + 0.951339i \(0.599709\pi\)
\(68\) 4.78500 8.28786i 0.0703676 0.121880i
\(69\) −1.80311 1.12939i −0.0261320 0.0163680i
\(70\) −53.3669 + 39.6341i −0.762384 + 0.566201i
\(71\) 50.7518i 0.714814i 0.933949 + 0.357407i \(0.116339\pi\)
−0.933949 + 0.357407i \(0.883661\pi\)
\(72\) −74.8931 5.39796i −1.04018 0.0749717i
\(73\) 81.5039 47.0563i 1.11649 0.644607i 0.175988 0.984392i \(-0.443688\pi\)
0.940503 + 0.339786i \(0.110355\pi\)
\(74\) 2.06219 1.19061i 0.0278674 0.0160893i
\(75\) 56.4015 + 49.4355i 0.752021 + 0.659140i
\(76\) 5.46122 0.0718582
\(77\) 63.9525 + 21.7877i 0.830552 + 0.282957i
\(78\) −51.2726 + 81.8584i −0.657340 + 1.04947i
\(79\) −3.71265 + 6.43050i −0.0469956 + 0.0813987i −0.888566 0.458748i \(-0.848298\pi\)
0.841571 + 0.540147i \(0.181631\pi\)
\(80\) −5.70736 + 71.1453i −0.0713420 + 0.889316i
\(81\) 80.1628 + 11.6159i 0.989664 + 0.143406i
\(82\) 39.6441 + 22.8885i 0.483465 + 0.279128i
\(83\) −69.6382 −0.839015 −0.419508 0.907752i \(-0.637797\pi\)
−0.419508 + 0.907752i \(0.637797\pi\)
\(84\) −7.70631 2.93883i −0.0917418 0.0349860i
\(85\) 100.303 + 69.1594i 1.18003 + 0.813640i
\(86\) −94.7770 54.7196i −1.10206 0.636274i
\(87\) 49.7293 + 1.78981i 0.571601 + 0.0205726i
\(88\) 69.7364 40.2623i 0.792459 0.457527i
\(89\) −78.3272 45.2223i −0.880081 0.508115i −0.00939614 0.999956i \(-0.502991\pi\)
−0.870685 + 0.491841i \(0.836324\pi\)
\(90\) 12.9412 84.4820i 0.143791 0.938689i
\(91\) −89.3032 + 78.1425i −0.981354 + 0.858709i
\(92\) −0.278537 −0.00302757
\(93\) −37.7579 + 20.0245i −0.405999 + 0.215317i
\(94\) 30.5480 + 52.9107i 0.324979 + 0.562879i
\(95\) −5.55961 + 69.3035i −0.0585222 + 0.729510i
\(96\) −16.5923 + 8.79955i −0.172837 + 0.0916620i
\(97\) 90.4517i 0.932492i 0.884655 + 0.466246i \(0.154394\pi\)
−0.884655 + 0.466246i \(0.845606\pi\)
\(98\) 73.7078 + 56.8170i 0.752121 + 0.579765i
\(99\) −78.1554 + 37.9123i −0.789448 + 0.382953i
\(100\) 9.69308 + 1.56526i 0.0969308 + 0.0156526i
\(101\) −47.1698 + 27.2335i −0.467028 + 0.269638i −0.714995 0.699130i \(-0.753571\pi\)
0.247967 + 0.968768i \(0.420238\pi\)
\(102\) 4.99372 138.749i 0.0489580 1.36028i
\(103\) −94.7932 54.7289i −0.920322 0.531348i −0.0365842 0.999331i \(-0.511648\pi\)
−0.883738 + 0.467982i \(0.844981\pi\)
\(104\) 141.432i 1.35992i
\(105\) 45.1392 94.8022i 0.429897 0.902878i
\(106\) 32.9670 0.311009
\(107\) −39.8017 + 68.9385i −0.371978 + 0.644285i −0.989870 0.141978i \(-0.954654\pi\)
0.617892 + 0.786263i \(0.287987\pi\)
\(108\) 9.70114 4.28200i 0.0898254 0.0396482i
\(109\) −70.7849 122.603i −0.649402 1.12480i −0.983266 0.182176i \(-0.941686\pi\)
0.333864 0.942621i \(-0.391648\pi\)
\(110\) 39.3342 + 82.7873i 0.357583 + 0.752611i
\(111\) −1.99656 + 3.18758i −0.0179870 + 0.0287169i
\(112\) 98.0248 19.3859i 0.875222 0.173088i
\(113\) −99.6031 −0.881443 −0.440722 0.897644i \(-0.645277\pi\)
−0.440722 + 0.897644i \(0.645277\pi\)
\(114\) 69.9953 37.1213i 0.613994 0.325625i
\(115\) 0.283555 3.53466i 0.00246570 0.0307362i
\(116\) 5.64176 3.25727i 0.0486358 0.0280799i
\(117\) 10.9680 152.174i 0.0937439 1.30063i
\(118\) 166.399i 1.41016i
\(119\) 55.0057 161.456i 0.462232 1.35677i
\(120\) −49.6056 114.894i −0.413380 0.957453i
\(121\) −13.9222 + 24.1139i −0.115059 + 0.199288i
\(122\) −99.2166 171.848i −0.813251 1.40859i
\(123\) −72.2603 2.60073i −0.587482 0.0211441i
\(124\) −2.79761 + 4.84560i −0.0225613 + 0.0390774i
\(125\) −29.7310 + 121.413i −0.237848 + 0.971302i
\(126\) −118.746 + 14.7154i −0.942430 + 0.116789i
\(127\) 89.2383i 0.702663i −0.936251 0.351332i \(-0.885729\pi\)
0.936251 0.351332i \(-0.114271\pi\)
\(128\) 52.9941 91.7885i 0.414016 0.717097i
\(129\) 172.752 + 6.21755i 1.33917 + 0.0481981i
\(130\) −160.468 12.8730i −1.23437 0.0990228i
\(131\) −96.9674 55.9841i −0.740209 0.427360i 0.0819364 0.996638i \(-0.473890\pi\)
−0.822145 + 0.569278i \(0.807223\pi\)
\(132\) −6.03656 + 9.63757i −0.0457315 + 0.0730119i
\(133\) 95.4872 18.8840i 0.717949 0.141985i
\(134\) 188.977i 1.41028i
\(135\) 44.4632 + 127.468i 0.329357 + 0.944206i
\(136\) −101.647 176.058i −0.747405 1.29454i
\(137\) 44.2662 + 76.6714i 0.323111 + 0.559645i 0.981128 0.193358i \(-0.0619379\pi\)
−0.658017 + 0.753003i \(0.728605\pi\)
\(138\) −3.56995 + 1.89328i −0.0258692 + 0.0137194i
\(139\) −5.87121 −0.0422389 −0.0211195 0.999777i \(-0.506723\pi\)
−0.0211195 + 0.999777i \(0.506723\pi\)
\(140\) −1.57999 13.6550i −0.0112857 0.0975357i
\(141\) −81.7853 51.2268i −0.580038 0.363311i
\(142\) 83.4777 + 48.1959i 0.587871 + 0.339408i
\(143\) 81.8085 + 141.696i 0.572087 + 0.990884i
\(144\) −72.0687 + 106.355i −0.500477 + 0.738577i
\(145\) 35.5917 + 74.9105i 0.245460 + 0.516624i
\(146\) 178.746i 1.22429i
\(147\) −144.904 24.7370i −0.985739 0.168279i
\(148\) 0.492404i 0.00332705i
\(149\) 4.98359 + 2.87728i 0.0334469 + 0.0193106i 0.516630 0.856209i \(-0.327186\pi\)
−0.483183 + 0.875519i \(0.660520\pi\)
\(150\) 134.874 45.8247i 0.899158 0.305498i
\(151\) 131.443 + 227.666i 0.870482 + 1.50772i 0.861498 + 0.507760i \(0.169526\pi\)
0.00898406 + 0.999960i \(0.497140\pi\)
\(152\) 58.0059 100.469i 0.381618 0.660982i
\(153\) 95.7141 + 197.313i 0.625582 + 1.28962i
\(154\) 96.5687 84.5001i 0.627069 0.548702i
\(155\) −58.6431 40.4348i −0.378343 0.260870i
\(156\) −9.35818 17.6457i −0.0599883 0.113113i
\(157\) −135.602 + 78.2900i −0.863709 + 0.498662i −0.865252 0.501336i \(-0.832842\pi\)
0.00154383 + 0.999999i \(0.499509\pi\)
\(158\) 7.05135 + 12.2133i 0.0446288 + 0.0772994i
\(159\) −46.0037 + 24.3976i −0.289332 + 0.153444i
\(160\) −25.7701 17.7687i −0.161063 0.111054i
\(161\) −4.87010 + 0.963135i −0.0302491 + 0.00598221i
\(162\) 95.2318 120.823i 0.587850 0.745819i
\(163\) 2.59424 + 1.49779i 0.0159156 + 0.00918887i 0.507937 0.861394i \(-0.330408\pi\)
−0.492021 + 0.870583i \(0.663742\pi\)
\(164\) −8.19788 + 4.73305i −0.0499871 + 0.0288601i
\(165\) −116.157 86.4158i −0.703979 0.523732i
\(166\) −66.1312 + 114.543i −0.398381 + 0.690015i
\(167\) −201.798 −1.20837 −0.604186 0.796844i \(-0.706501\pi\)
−0.604186 + 0.796844i \(0.706501\pi\)
\(168\) −135.917 + 110.557i −0.809031 + 0.658080i
\(169\) −118.374 −0.700436
\(170\) 209.006 99.3037i 1.22945 0.584139i
\(171\) −70.2030 + 103.602i −0.410544 + 0.605858i
\(172\) 19.5987 11.3153i 0.113946 0.0657866i
\(173\) 7.78179 13.4785i 0.0449814 0.0779101i −0.842658 0.538449i \(-0.819010\pi\)
0.887640 + 0.460539i \(0.152344\pi\)
\(174\) 50.1688 80.0962i 0.288326 0.460323i
\(175\) 174.892 6.14927i 0.999382 0.0351387i
\(176\) 137.776i 0.782818i
\(177\) 123.145 + 232.201i 0.695736 + 1.31187i
\(178\) −148.765 + 85.8896i −0.835759 + 0.482526i
\(179\) −27.1566 + 15.6789i −0.151713 + 0.0875916i −0.573935 0.818901i \(-0.694584\pi\)
0.422222 + 0.906493i \(0.361250\pi\)
\(180\) 13.7912 + 11.0524i 0.0766180 + 0.0614024i
\(181\) 125.301 0.692273 0.346137 0.938184i \(-0.387493\pi\)
0.346137 + 0.938184i \(0.387493\pi\)
\(182\) 43.7249 + 221.095i 0.240246 + 1.21481i
\(183\) 265.630 + 166.379i 1.45153 + 0.909176i
\(184\) −2.95846 + 5.12420i −0.0160786 + 0.0278489i
\(185\) −6.24866 0.501275i −0.0337765 0.00270959i
\(186\) −2.91964 + 81.1210i −0.0156970 + 0.436135i
\(187\) −203.674 117.591i −1.08917 0.628830i
\(188\) −12.6339 −0.0672013
\(189\) 154.814 108.414i 0.819122 0.573619i
\(190\) 108.712 + 74.9578i 0.572170 + 0.394515i
\(191\) −42.0451 24.2747i −0.220131 0.127093i 0.385880 0.922549i \(-0.373898\pi\)
−0.606011 + 0.795456i \(0.707231\pi\)
\(192\) −7.44419 + 206.834i −0.0387718 + 1.07726i
\(193\) 14.9330 8.62156i 0.0773730 0.0446713i −0.460814 0.887497i \(-0.652443\pi\)
0.538187 + 0.842825i \(0.319109\pi\)
\(194\) 148.777 + 85.8964i 0.766891 + 0.442765i
\(195\) 233.452 100.793i 1.19719 0.516886i
\(196\) −17.7959 + 7.32530i −0.0907952 + 0.0373740i
\(197\) 354.243 1.79819 0.899094 0.437755i \(-0.144226\pi\)
0.899094 + 0.437755i \(0.144226\pi\)
\(198\) −11.8604 + 164.555i −0.0599009 + 0.831085i
\(199\) 7.75382 + 13.4300i 0.0389639 + 0.0674875i 0.884850 0.465877i \(-0.154261\pi\)
−0.845886 + 0.533364i \(0.820928\pi\)
\(200\) 131.750 161.697i 0.658750 0.808484i
\(201\) −139.855 263.708i −0.695794 1.31198i
\(202\) 103.448i 0.512118i
\(203\) 87.3807 76.4603i 0.430447 0.376652i
\(204\) 24.3312 + 15.2400i 0.119270 + 0.0747059i
\(205\) −51.7174 108.850i −0.252280 0.530977i
\(206\) −180.039 + 103.945i −0.873973 + 0.504589i
\(207\) 3.58054 5.28396i 0.0172973 0.0255264i
\(208\) 209.567 + 120.994i 1.00753 + 0.581700i
\(209\) 134.209i 0.642150i
\(210\) −113.067 164.274i −0.538414 0.782256i
\(211\) −355.817 −1.68634 −0.843169 0.537649i \(-0.819313\pi\)
−0.843169 + 0.537649i \(0.819313\pi\)
\(212\) −3.40857 + 5.90381i −0.0160782 + 0.0278482i
\(213\) −152.157 5.47630i −0.714352 0.0257103i
\(214\) 75.5944 + 130.933i 0.353245 + 0.611838i
\(215\) 123.641 + 260.228i 0.575072 + 1.21036i
\(216\) 24.2646 223.951i 0.112336 1.03681i
\(217\) −32.1597 + 94.3969i −0.148201 + 0.435009i
\(218\) −268.880 −1.23340
\(219\) 132.283 + 249.431i 0.604032 + 1.13895i
\(220\) −18.8927 1.51559i −0.0858758 0.00688906i
\(221\) 357.729 206.535i 1.61868 0.934548i
\(222\) 3.34699 + 6.31104i 0.0150765 + 0.0284281i
\(223\) 125.746i 0.563882i −0.959432 0.281941i \(-0.909022\pi\)
0.959432 0.281941i \(-0.0909782\pi\)
\(224\) −14.1322 + 41.4817i −0.0630904 + 0.185186i
\(225\) −154.296 + 163.761i −0.685762 + 0.727826i
\(226\) −94.5869 + 163.829i −0.418526 + 0.724909i
\(227\) −195.808 339.150i −0.862591 1.49405i −0.869420 0.494074i \(-0.835507\pi\)
0.00682884 0.999977i \(-0.497826\pi\)
\(228\) −0.589284 + 16.3731i −0.00258458 + 0.0718117i
\(229\) 63.3517 109.728i 0.276645 0.479163i −0.693904 0.720068i \(-0.744111\pi\)
0.970549 + 0.240904i \(0.0774441\pi\)
\(230\) −5.54461 3.82305i −0.0241070 0.0166219i
\(231\) −72.2215 + 189.382i −0.312647 + 0.819837i
\(232\) 138.387i 0.596497i
\(233\) 187.050 323.979i 0.802788 1.39047i −0.114986 0.993367i \(-0.536682\pi\)
0.917774 0.397103i \(-0.129984\pi\)
\(234\) −239.884 162.551i −1.02514 0.694662i
\(235\) 12.8615 160.325i 0.0547297 0.682234i
\(236\) 29.7991 + 17.2045i 0.126268 + 0.0729006i
\(237\) −18.8784 11.8246i −0.0796557 0.0498929i
\(238\) −213.330 243.799i −0.896346 1.02437i
\(239\) 82.1964i 0.343918i −0.985104 0.171959i \(-0.944990\pi\)
0.985104 0.171959i \(-0.0550097\pi\)
\(240\) −212.682 24.7878i −0.886175 0.103283i
\(241\) −104.237 180.543i −0.432517 0.749141i 0.564572 0.825384i \(-0.309041\pi\)
−0.997089 + 0.0762423i \(0.975708\pi\)
\(242\) 26.4421 + 45.7990i 0.109265 + 0.189252i
\(243\) −43.4750 + 239.079i −0.178909 + 0.983866i
\(244\) 41.0334 0.168170
\(245\) −74.8423 233.289i −0.305479 0.952199i
\(246\) −72.8989 + 116.386i −0.296337 + 0.473112i
\(247\) 204.142 + 117.861i 0.826486 + 0.477172i
\(248\) 59.4291 + 102.934i 0.239634 + 0.415058i
\(249\) 7.51421 208.780i 0.0301775 0.838472i
\(250\) 171.469 + 164.200i 0.685875 + 0.656802i
\(251\) 279.326i 1.11285i 0.830897 + 0.556427i \(0.187828\pi\)
−0.830897 + 0.556427i \(0.812172\pi\)
\(252\) 9.64231 22.7869i 0.0382631 0.0904241i
\(253\) 6.84503i 0.0270555i
\(254\) −146.781 84.7441i −0.577878 0.333638i
\(255\) −218.167 + 293.251i −0.855556 + 1.15000i
\(256\) 37.3282 + 64.6544i 0.145813 + 0.252556i
\(257\) −80.6774 + 139.737i −0.313920 + 0.543725i −0.979207 0.202862i \(-0.934976\pi\)
0.665288 + 0.746587i \(0.268309\pi\)
\(258\) 174.279 278.243i 0.675501 1.07846i
\(259\) 1.70265 + 8.60947i 0.00657395 + 0.0332412i
\(260\) 18.8967 27.4061i 0.0726796 0.105408i
\(261\) −10.7319 + 148.898i −0.0411185 + 0.570491i
\(262\) −184.168 + 106.329i −0.702931 + 0.405837i
\(263\) 15.5086 + 26.8617i 0.0589680 + 0.102136i 0.894002 0.448062i \(-0.147886\pi\)
−0.835034 + 0.550198i \(0.814552\pi\)
\(264\) 113.184 + 213.418i 0.428728 + 0.808403i
\(265\) −71.4501 49.2653i −0.269623 0.185907i
\(266\) 59.6175 174.992i 0.224126 0.657866i
\(267\) 144.031 229.950i 0.539441 0.861236i
\(268\) −33.8425 19.5390i −0.126278 0.0729067i
\(269\) −271.904 + 156.984i −1.01080 + 0.583583i −0.911425 0.411467i \(-0.865017\pi\)
−0.0993714 + 0.995050i \(0.531683\pi\)
\(270\) 251.886 + 47.9143i 0.932910 + 0.177460i
\(271\) 128.076 221.834i 0.472604 0.818574i −0.526905 0.849924i \(-0.676648\pi\)
0.999508 + 0.0313506i \(0.00998084\pi\)
\(272\) −347.832 −1.27879
\(273\) −224.640 276.168i −0.822856 1.01160i
\(274\) 168.148 0.613678
\(275\) 38.4661 238.207i 0.139877 0.866208i
\(276\) 0.0300551 0.835069i 0.000108895 0.00302561i
\(277\) 283.178 163.493i 1.02230 0.590226i 0.107532 0.994202i \(-0.465705\pi\)
0.914770 + 0.403975i \(0.132372\pi\)
\(278\) −5.57553 + 9.65710i −0.0200559 + 0.0347378i
\(279\) −55.9604 115.361i −0.200575 0.413481i
\(280\) −267.991 115.969i −0.957110 0.414174i
\(281\) 405.760i 1.44399i 0.691900 + 0.721993i \(0.256774\pi\)
−0.691900 + 0.721993i \(0.743226\pi\)
\(282\) −161.926 + 85.8754i −0.574204 + 0.304523i
\(283\) 393.833 227.380i 1.39164 0.803462i 0.398140 0.917325i \(-0.369656\pi\)
0.993496 + 0.113863i \(0.0363224\pi\)
\(284\) −17.2621 + 9.96628i −0.0607821 + 0.0350926i
\(285\) −207.176 24.1461i −0.726933 0.0847233i
\(286\) 310.754 1.08655
\(287\) −126.971 + 111.102i −0.442406 + 0.387116i
\(288\) −24.5912 50.6942i −0.0853861 0.176022i
\(289\) −152.373 + 263.918i −0.527242 + 0.913210i
\(290\) 157.014 + 12.5958i 0.541426 + 0.0434339i
\(291\) −271.179 9.76005i −0.931888 0.0335397i
\(292\) 32.0103 + 18.4812i 0.109624 + 0.0632916i
\(293\) −141.910 −0.484333 −0.242166 0.970235i \(-0.577858\pi\)
−0.242166 + 0.970235i \(0.577858\pi\)
\(294\) −178.294 + 214.850i −0.606442 + 0.730781i
\(295\) −248.664 + 360.640i −0.842928 + 1.22251i
\(296\) 9.05867 + 5.23003i 0.0306036 + 0.0176690i
\(297\) −105.230 238.405i −0.354310 0.802712i
\(298\) 9.46522 5.46474i 0.0317625 0.0183381i
\(299\) −10.4118 6.01124i −0.0348220 0.0201045i
\(300\) −5.73864 + 28.8915i −0.0191288 + 0.0963051i
\(301\) 303.548 265.612i 1.00847 0.882433i
\(302\) 499.293 1.65329
\(303\) −76.5578 144.356i −0.252666 0.476424i
\(304\) −99.2469 171.901i −0.326470 0.565463i
\(305\) −41.7727 + 520.719i −0.136960 + 1.70727i
\(306\) 415.438 + 29.9429i 1.35764 + 0.0978527i
\(307\) 187.823i 0.611801i −0.952063 0.305901i \(-0.901042\pi\)
0.952063 0.305901i \(-0.0989575\pi\)
\(308\) 5.14793 + 26.0305i 0.0167141 + 0.0845148i
\(309\) 174.309 278.290i 0.564106 0.900615i
\(310\) −122.198 + 58.0591i −0.394187 + 0.187287i
\(311\) 233.836 135.005i 0.751885 0.434101i −0.0744894 0.997222i \(-0.523733\pi\)
0.826375 + 0.563121i \(0.190399\pi\)
\(312\) −424.022 15.2610i −1.35904 0.0489135i
\(313\) 55.2832 + 31.9177i 0.176623 + 0.101974i 0.585705 0.810524i \(-0.300818\pi\)
−0.409082 + 0.912498i \(0.634151\pi\)
\(314\) 297.389i 0.947098i
\(315\) 279.352 + 145.559i 0.886831 + 0.462093i
\(316\) −2.91626 −0.00922866
\(317\) 99.2398 171.888i 0.313059 0.542235i −0.665964 0.745984i \(-0.731979\pi\)
0.979023 + 0.203749i \(0.0653128\pi\)
\(318\) −3.55725 + 98.8369i −0.0111863 + 0.310808i
\(319\) −80.0473 138.646i −0.250932 0.434627i
\(320\) −311.568 + 148.033i −0.973649 + 0.462603i
\(321\) −202.387 126.766i −0.630489 0.394911i
\(322\) −3.04065 + 8.92508i −0.00944301 + 0.0277176i
\(323\) −338.827 −1.04900
\(324\) 11.7909 + 29.5466i 0.0363917 + 0.0911933i
\(325\) 328.549 + 267.701i 1.01092 + 0.823695i
\(326\) 4.92718 2.84471i 0.0151141 0.00872611i
\(327\) 375.209 198.988i 1.14743 0.608526i
\(328\) 201.087i 0.613070i
\(329\) −220.898 + 43.6858i −0.671422 + 0.132784i
\(330\) −252.445 + 108.993i −0.764986 + 0.330282i
\(331\) 27.5811 47.7719i 0.0833266 0.144326i −0.821350 0.570424i \(-0.806779\pi\)
0.904677 + 0.426098i \(0.140112\pi\)
\(332\) −13.6751 23.6859i −0.0411900 0.0713431i
\(333\) −9.34111 6.32976i −0.0280514 0.0190083i
\(334\) −191.635 + 331.922i −0.573758 + 0.993778i
\(335\) 282.404 409.574i 0.842998 1.22261i
\(336\) 47.5428 + 295.976i 0.141496 + 0.880881i
\(337\) 300.345i 0.891232i 0.895224 + 0.445616i \(0.147015\pi\)
−0.895224 + 0.445616i \(0.852985\pi\)
\(338\) −112.412 + 194.704i −0.332581 + 0.576047i
\(339\) 10.7475 298.616i 0.0317036 0.880873i
\(340\) −3.82629 + 47.6968i −0.0112538 + 0.140285i
\(341\) 119.080 + 68.7511i 0.349209 + 0.201616i
\(342\) 103.739 + 213.856i 0.303330 + 0.625309i
\(343\) −285.824 + 189.615i −0.833305 + 0.552814i
\(344\) 480.738i 1.39749i
\(345\) 10.5665 + 1.23152i 0.0306276 + 0.00356961i
\(346\) −14.7798 25.5993i −0.0427161 0.0739865i
\(347\) −71.3734 123.622i −0.205687 0.356260i 0.744664 0.667439i \(-0.232610\pi\)
−0.950351 + 0.311179i \(0.899276\pi\)
\(348\) 9.15672 + 17.2658i 0.0263124 + 0.0496143i
\(349\) 46.0748 0.132020 0.0660098 0.997819i \(-0.478973\pi\)
0.0660098 + 0.997819i \(0.478973\pi\)
\(350\) 155.970 293.506i 0.445628 0.838588i
\(351\) 455.044 + 49.3029i 1.29642 + 0.140464i
\(352\) 52.3286 + 30.2119i 0.148661 + 0.0858294i
\(353\) 163.141 + 282.568i 0.462155 + 0.800476i 0.999068 0.0431618i \(-0.0137431\pi\)
−0.536913 + 0.843637i \(0.680410\pi\)
\(354\) 498.873 + 17.9550i 1.40925 + 0.0507203i
\(355\) −108.900 229.204i −0.306761 0.645645i
\(356\) 35.5217i 0.0997801i
\(357\) 478.118 + 182.332i 1.33927 + 0.510733i
\(358\) 59.5571i 0.166361i
\(359\) −78.5207 45.3340i −0.218721 0.126278i 0.386637 0.922232i \(-0.373637\pi\)
−0.605358 + 0.795954i \(0.706970\pi\)
\(360\) 349.813 136.323i 0.971702 0.378675i
\(361\) 83.8224 + 145.185i 0.232195 + 0.402173i
\(362\) 118.991 206.099i 0.328705 0.569333i
\(363\) −70.7926 44.3414i −0.195021 0.122153i
\(364\) −44.1152 15.0294i −0.121196 0.0412896i
\(365\) −267.115 + 387.400i −0.731822 + 1.06137i
\(366\) 525.917 278.914i 1.43693 0.762061i
\(367\) −255.238 + 147.362i −0.695471 + 0.401531i −0.805658 0.592380i \(-0.798188\pi\)
0.110187 + 0.993911i \(0.464855\pi\)
\(368\) 5.06186 + 8.76739i 0.0137550 + 0.0238244i
\(369\) 15.5943 216.360i 0.0422609 0.586341i
\(370\) −6.75847 + 9.80190i −0.0182661 + 0.0264916i
\(371\) −39.1830 + 115.012i −0.105615 + 0.310006i
\(372\) −14.2255 8.91024i −0.0382406 0.0239523i
\(373\) −35.1907 20.3173i −0.0943450 0.0544701i 0.452085 0.891975i \(-0.350680\pi\)
−0.546430 + 0.837505i \(0.684014\pi\)
\(374\) −386.833 + 223.338i −1.03431 + 0.597161i
\(375\) −360.795 102.236i −0.962119 0.272630i
\(376\) −134.190 + 232.423i −0.356887 + 0.618147i
\(377\) 281.187 0.745855
\(378\) −31.3045 357.596i −0.0828160 0.946021i
\(379\) −32.1947 −0.0849463 −0.0424732 0.999098i \(-0.513524\pi\)
−0.0424732 + 0.999098i \(0.513524\pi\)
\(380\) −24.6638 + 11.7183i −0.0649047 + 0.0308378i
\(381\) 267.542 + 9.62912i 0.702209 + 0.0252733i
\(382\) −79.8553 + 46.1045i −0.209045 + 0.120692i
\(383\) 125.563 217.482i 0.327841 0.567838i −0.654242 0.756285i \(-0.727012\pi\)
0.982083 + 0.188448i \(0.0603456\pi\)
\(384\) 269.469 + 168.784i 0.701742 + 0.439541i
\(385\) −335.571 + 38.8283i −0.871614 + 0.100853i
\(386\) 32.7495i 0.0848432i
\(387\) −37.2812 + 517.251i −0.0963338 + 1.33657i
\(388\) −30.7651 + 17.7623i −0.0792916 + 0.0457790i
\(389\) 24.1611 13.9494i 0.0621108 0.0358597i −0.468623 0.883398i \(-0.655250\pi\)
0.530734 + 0.847539i \(0.321916\pi\)
\(390\) 55.9090 479.704i 0.143356 1.23001i
\(391\) 17.2811 0.0441971
\(392\) −54.2550 + 405.193i −0.138406 + 1.03366i
\(393\) 178.307 284.673i 0.453707 0.724359i
\(394\) 336.403 582.667i 0.853815 1.47885i
\(395\) 2.96880 37.0076i 0.00751594 0.0936902i
\(396\) −28.2426 19.1379i −0.0713198 0.0483280i
\(397\) −281.690 162.634i −0.709546 0.409657i 0.101347 0.994851i \(-0.467685\pi\)
−0.810893 + 0.585195i \(0.801018\pi\)
\(398\) 29.4533 0.0740033
\(399\) 46.3120 + 288.314i 0.116070 + 0.722591i
\(400\) −126.884 333.551i −0.317209 0.833877i
\(401\) 324.443 + 187.317i 0.809084 + 0.467125i 0.846638 0.532170i \(-0.178623\pi\)
−0.0375536 + 0.999295i \(0.511956\pi\)
\(402\) −566.564 20.3913i −1.40936 0.0507245i
\(403\) −209.151 + 120.753i −0.518984 + 0.299636i
\(404\) −18.5257 10.6958i −0.0458558 0.0264748i
\(405\) −386.954 + 119.549i −0.955441 + 0.295183i
\(406\) −42.7836 216.335i −0.105378 0.532846i
\(407\) 12.1008 0.0297317
\(408\) 538.800 285.747i 1.32059 0.700359i
\(409\) 210.447 + 364.506i 0.514541 + 0.891212i 0.999858 + 0.0168731i \(0.00537114\pi\)
−0.485316 + 0.874339i \(0.661296\pi\)
\(410\) −228.152 18.3027i −0.556469 0.0446407i
\(411\) −234.642 + 124.440i −0.570904 + 0.302773i
\(412\) 42.9891i 0.104342i
\(413\) 580.516 + 197.774i 1.40561 + 0.478871i
\(414\) −5.29096 10.9072i −0.0127801 0.0263459i
\(415\) 314.498 149.425i 0.757827 0.360061i
\(416\) −91.9090 + 53.0637i −0.220935 + 0.127557i
\(417\) 0.633524 17.6022i 0.00151924 0.0422116i
\(418\) −220.750 127.450i −0.528111 0.304905i
\(419\) 481.407i 1.14894i −0.818524 0.574472i \(-0.805208\pi\)
0.818524 0.574472i \(-0.194792\pi\)
\(420\) 41.1090 3.26349i 0.0978785 0.00777022i
\(421\) −125.377 −0.297807 −0.148904 0.988852i \(-0.547574\pi\)
−0.148904 + 0.988852i \(0.547574\pi\)
\(422\) −337.898 + 585.256i −0.800706 + 1.38686i
\(423\) 162.406 239.670i 0.383938 0.566595i
\(424\) 72.4077 + 125.414i 0.170773 + 0.295787i
\(425\) −601.382 97.1122i −1.41502 0.228499i
\(426\) −153.502 + 245.071i −0.360333 + 0.575283i
\(427\) 717.452 141.887i 1.68022 0.332288i
\(428\) −31.2639 −0.0730465
\(429\) −433.642 + 229.977i −1.01082 + 0.536077i
\(430\) 545.443 + 43.7561i 1.26847 + 0.101758i
\(431\) −294.379 + 169.960i −0.683013 + 0.394338i −0.800989 0.598678i \(-0.795693\pi\)
0.117976 + 0.993016i \(0.462359\pi\)
\(432\) −311.082 227.542i −0.720098 0.526718i
\(433\) 184.329i 0.425703i 0.977085 + 0.212852i \(0.0682751\pi\)
−0.977085 + 0.212852i \(0.931725\pi\)
\(434\) 124.726 + 142.540i 0.287387 + 0.328433i
\(435\) −228.426 + 98.6229i −0.525118 + 0.226719i
\(436\) 27.8005 48.1518i 0.0637625 0.110440i
\(437\) 4.93081 + 8.54042i 0.0112833 + 0.0195433i
\(438\) 535.891 + 19.2873i 1.22349 + 0.0440349i
\(439\) −62.0405 + 107.457i −0.141322 + 0.244777i −0.927995 0.372593i \(-0.878469\pi\)
0.786673 + 0.617371i \(0.211802\pi\)
\(440\) −228.549 + 331.468i −0.519430 + 0.753336i
\(441\) 89.7985 431.761i 0.203625 0.979049i
\(442\) 784.535i 1.77497i
\(443\) −280.029 + 485.025i −0.632121 + 1.09487i 0.354997 + 0.934868i \(0.384482\pi\)
−0.987117 + 0.159998i \(0.948851\pi\)
\(444\) −1.47625 0.0531320i −0.00332490 0.000119667i
\(445\) 450.774 + 36.1617i 1.01298 + 0.0812622i
\(446\) −206.829 119.413i −0.463742 0.267742i
\(447\) −9.16399 + 14.6306i −0.0205011 + 0.0327307i
\(448\) 318.014 + 363.434i 0.709852 + 0.811236i
\(449\) 397.281i 0.884814i 0.896814 + 0.442407i \(0.145875\pi\)
−0.896814 + 0.442407i \(0.854125\pi\)
\(450\) 122.832 + 409.304i 0.272960 + 0.909564i
\(451\) 116.315 + 201.463i 0.257904 + 0.446702i
\(452\) −19.5593 33.8778i −0.0432729 0.0749508i
\(453\) −696.738 + 369.507i −1.53805 + 0.815690i
\(454\) −743.788 −1.63830
\(455\) 235.635 544.526i 0.517879 1.19676i
\(456\) 294.954 + 184.746i 0.646828 + 0.405145i
\(457\) −608.910 351.555i −1.33241 0.769266i −0.346740 0.937961i \(-0.612711\pi\)
−0.985668 + 0.168695i \(0.946045\pi\)
\(458\) −120.322 208.405i −0.262713 0.455032i
\(459\) −601.882 + 265.666i −1.31129 + 0.578792i
\(460\) 1.25792 0.597667i 0.00273461 0.00129928i
\(461\) 780.964i 1.69406i 0.531542 + 0.847032i \(0.321613\pi\)
−0.531542 + 0.847032i \(0.678387\pi\)
\(462\) 242.916 + 298.636i 0.525792 + 0.646399i
\(463\) 880.813i 1.90240i 0.308570 + 0.951202i \(0.400150\pi\)
−0.308570 + 0.951202i \(0.599850\pi\)
\(464\) −205.056 118.389i −0.441930 0.255149i
\(465\) 127.554 171.453i 0.274309 0.368715i
\(466\) −355.259 615.327i −0.762359 1.32044i
\(467\) 25.2777 43.7822i 0.0541278 0.0937521i −0.837692 0.546143i \(-0.816095\pi\)
0.891820 + 0.452391i \(0.149429\pi\)
\(468\) 53.9125 26.1523i 0.115198 0.0558811i
\(469\) −659.285 224.609i −1.40573 0.478911i
\(470\) −251.492 173.406i −0.535090 0.368948i
\(471\) −220.086 414.991i −0.467274 0.881086i
\(472\) 633.019 365.474i 1.34114 0.774309i
\(473\) −278.073 481.637i −0.587892 1.01826i
\(474\) −37.3771 + 19.8225i −0.0788546 + 0.0418197i
\(475\) −123.599 324.916i −0.260208 0.684033i
\(476\) 65.7172 12.9966i 0.138061 0.0273037i
\(477\) −68.1814 140.555i −0.142938 0.294664i
\(478\) −135.198 78.0569i −0.282842 0.163299i
\(479\) 568.259 328.084i 1.18634 0.684936i 0.228870 0.973457i \(-0.426497\pi\)
0.957474 + 0.288521i \(0.0931636\pi\)
\(480\) 56.0522 75.3430i 0.116775 0.156965i
\(481\) −10.6268 + 18.4062i −0.0220932 + 0.0382665i
\(482\) −395.948 −0.821469
\(483\) −2.36204 14.7048i −0.00489034 0.0304447i
\(484\) −10.9357 −0.0225945
\(485\) −194.086 408.495i −0.400177 0.842258i
\(486\) 351.957 + 298.548i 0.724192 + 0.614295i
\(487\) −701.394 + 404.950i −1.44023 + 0.831520i −0.997865 0.0653129i \(-0.979195\pi\)
−0.442370 + 0.896833i \(0.645862\pi\)
\(488\) 435.833 754.886i 0.893101 1.54690i
\(489\) −4.77038 + 7.61607i −0.00975537 + 0.0155748i
\(490\) −454.792 98.4376i −0.928146 0.200893i
\(491\) 406.082i 0.827051i −0.910492 0.413526i \(-0.864297\pi\)
0.910492 0.413526i \(-0.135703\pi\)
\(492\) −13.3054 25.0885i −0.0270435 0.0509928i
\(493\) −350.028 + 202.089i −0.709996 + 0.409917i
\(494\) 387.722 223.851i 0.784863 0.453141i
\(495\) 271.613 338.920i 0.548714 0.684686i
\(496\) 203.364 0.410008
\(497\) −267.359 + 233.946i −0.537946 + 0.470716i
\(498\) −336.270 210.625i −0.675240 0.422941i
\(499\) 341.349 591.233i 0.684065 1.18484i −0.289664 0.957128i \(-0.593544\pi\)
0.973730 0.227708i \(-0.0731230\pi\)
\(500\) −47.1342 + 13.7299i −0.0942685 + 0.0274597i
\(501\) 21.7747 605.002i 0.0434625 1.20759i
\(502\) 459.442 + 265.259i 0.915223 + 0.528404i
\(503\) 296.107 0.588682 0.294341 0.955701i \(-0.404900\pi\)
0.294341 + 0.955701i \(0.404900\pi\)
\(504\) −316.792 419.417i −0.628555 0.832177i
\(505\) 154.591 224.205i 0.306121 0.443971i
\(506\) 11.2589 + 6.50030i 0.0222507 + 0.0128465i
\(507\) 12.7729 354.891i 0.0251932 0.699983i
\(508\) 30.3524 17.5240i 0.0597489 0.0344960i
\(509\) 722.798 + 417.308i 1.42004 + 0.819858i 0.996301 0.0859284i \(-0.0273856\pi\)
0.423735 + 0.905786i \(0.360719\pi\)
\(510\) 275.166 + 637.328i 0.539541 + 1.24966i
\(511\) 623.592 + 212.449i 1.22034 + 0.415751i
\(512\) 565.746 1.10497
\(513\) −303.029 221.652i −0.590700 0.432070i
\(514\) 153.229 + 265.400i 0.298110 + 0.516342i
\(515\) 545.536 + 43.7636i 1.05929 + 0.0849778i
\(516\) 31.8091 + 59.9789i 0.0616456 + 0.116238i
\(517\) 310.477i 0.600535i
\(518\) 15.7780 + 5.37533i 0.0304594 + 0.0103771i
\(519\) 39.5695 + 24.7846i 0.0762418 + 0.0477546i
\(520\) −303.476 638.732i −0.583608 1.22833i
\(521\) 619.025 357.394i 1.18815 0.685977i 0.230262 0.973129i \(-0.426042\pi\)
0.957885 + 0.287152i \(0.0927083\pi\)
\(522\) 234.720 + 159.052i 0.449654 + 0.304697i
\(523\) 195.670 + 112.970i 0.374130 + 0.216004i 0.675261 0.737579i \(-0.264031\pi\)
−0.301131 + 0.953583i \(0.597364\pi\)
\(524\) 43.9751i 0.0839219i
\(525\) −0.435566 + 525.000i −0.000829650 + 1.00000i
\(526\) 58.9102 0.111997
\(527\) 173.570 300.632i 0.329355 0.570460i
\(528\) 413.061 + 14.8665i 0.782312 + 0.0281563i
\(529\) 264.249 + 457.692i 0.499525 + 0.865202i
\(530\) −148.884 + 70.7385i −0.280914 + 0.133469i
\(531\) −709.440 + 344.142i −1.33605 + 0.648101i
\(532\) 25.1741 + 28.7695i 0.0473197 + 0.0540781i
\(533\) −408.586 −0.766577
\(534\) −241.450 455.274i −0.452153 0.852574i
\(535\) 31.8272 396.742i 0.0594900 0.741574i
\(536\) −718.912 + 415.064i −1.34125 + 0.774373i
\(537\) −44.0760 83.1090i −0.0820781 0.154765i
\(538\) 596.312i 1.10839i
\(539\) 180.019 + 437.333i 0.333987 + 0.811378i
\(540\) −34.6240 + 40.1544i −0.0641185 + 0.0743600i
\(541\) −315.187 + 545.919i −0.582600 + 1.00909i 0.412570 + 0.910926i \(0.364631\pi\)
−0.995170 + 0.0981672i \(0.968702\pi\)
\(542\) −243.251 421.323i −0.448803 0.777349i
\(543\) −13.5205 + 375.661i −0.0248996 + 0.691825i
\(544\) 76.2736 132.110i 0.140209 0.242849i
\(545\) 582.750 + 401.810i 1.06927 + 0.737267i
\(546\) −667.574 + 107.233i −1.22266 + 0.196397i
\(547\) 300.639i 0.549615i −0.961499 0.274807i \(-0.911386\pi\)
0.961499 0.274807i \(-0.0886141\pi\)
\(548\) −17.3854 + 30.1124i −0.0317251 + 0.0549496i
\(549\) −527.477 + 778.422i −0.960796 + 1.41789i
\(550\) −355.280 289.481i −0.645963 0.526328i
\(551\) −199.747 115.324i −0.362518 0.209300i
\(552\) −15.0434 9.42254i −0.0272526 0.0170698i
\(553\) −50.9896 + 10.0839i −0.0922053 + 0.0182350i
\(554\) 621.036i 1.12100i
\(555\) 2.17710 18.6797i 0.00392271 0.0336572i
\(556\) −1.15295 1.99696i −0.00207365 0.00359166i
\(557\) −217.246 376.281i −0.390028 0.675549i 0.602425 0.798176i \(-0.294201\pi\)
−0.992453 + 0.122627i \(0.960868\pi\)
\(558\) −242.891 17.5065i −0.435288 0.0313736i
\(559\) 976.805 1.74741
\(560\) −401.100 + 297.886i −0.716250 + 0.531939i
\(561\) 374.523 597.938i 0.667598 1.06584i
\(562\) 667.404 + 385.326i 1.18755 + 0.685633i
\(563\) 227.729 + 394.438i 0.404492 + 0.700601i 0.994262 0.106970i \(-0.0341150\pi\)
−0.589770 + 0.807571i \(0.700782\pi\)
\(564\) 1.36324 37.8770i 0.00241709 0.0671579i
\(565\) 449.825 213.722i 0.796150 0.378269i
\(566\) 863.714i 1.52600i
\(567\) 308.327 + 475.840i 0.543786 + 0.839224i
\(568\) 423.425i 0.745466i
\(569\) 374.954 + 216.480i 0.658970 + 0.380457i 0.791884 0.610671i \(-0.209100\pi\)
−0.132914 + 0.991128i \(0.542434\pi\)
\(570\) −236.458 + 317.838i −0.414839 + 0.557610i
\(571\) −107.252 185.766i −0.187832 0.325335i 0.756695 0.653768i \(-0.226813\pi\)
−0.944527 + 0.328433i \(0.893479\pi\)
\(572\) −32.1299 + 55.6507i −0.0561712 + 0.0972914i
\(573\) 77.3139 123.434i 0.134928 0.215418i
\(574\) 62.1676 + 314.351i 0.108306 + 0.547650i
\(575\) 6.30387 + 16.5716i 0.0109633 + 0.0288201i
\(576\) −619.298 44.6362i −1.07517 0.0774935i
\(577\) −179.599 + 103.691i −0.311263 + 0.179708i −0.647492 0.762073i \(-0.724182\pi\)
0.336228 + 0.941780i \(0.390849\pi\)
\(578\) 289.398 + 501.253i 0.500689 + 0.867219i
\(579\) 24.2366 + 45.7002i 0.0418595 + 0.0789296i
\(580\) −18.4899 + 26.8161i −0.0318791 + 0.0462347i
\(581\) −321.005 366.852i −0.552504 0.631415i
\(582\) −273.576 + 436.774i −0.470062 + 0.750470i
\(583\) 145.086 + 83.7655i 0.248861 + 0.143680i
\(584\) 679.990 392.593i 1.16437 0.672247i
\(585\) 276.992 + 710.779i 0.473491 + 1.21501i
\(586\) −134.763 + 233.416i −0.229971 + 0.398321i
\(587\) 473.066 0.805905 0.402953 0.915221i \(-0.367984\pi\)
0.402953 + 0.915221i \(0.367984\pi\)
\(588\) −20.0414 54.1435i −0.0340841 0.0920807i
\(589\) 198.099 0.336332
\(590\) 357.048 + 751.485i 0.605166 + 1.27370i
\(591\) −38.2241 + 1062.04i −0.0646769 + 1.79702i
\(592\) 15.4992 8.94847i 0.0261811 0.0151157i
\(593\) −220.683 + 382.234i −0.372146 + 0.644576i −0.989895 0.141799i \(-0.954711\pi\)
0.617749 + 0.786375i \(0.288045\pi\)
\(594\) −492.065 53.3141i −0.828392 0.0897544i
\(595\) 98.0266 + 847.189i 0.164751 + 1.42385i
\(596\) 2.26008i 0.00379207i
\(597\) −41.1006 + 21.7973i −0.0688453 + 0.0365113i
\(598\) −19.7749 + 11.4170i −0.0330683 + 0.0190920i
\(599\) −98.8142 + 57.0504i −0.164965 + 0.0952427i −0.580210 0.814467i \(-0.697029\pi\)
0.415244 + 0.909710i \(0.363696\pi\)
\(600\) 470.560 + 412.442i 0.784267 + 0.687404i
\(601\) −1061.91 −1.76691 −0.883454 0.468518i \(-0.844788\pi\)
−0.883454 + 0.468518i \(0.844788\pi\)
\(602\) −148.624 751.518i −0.246884 1.24837i
\(603\) 805.703 390.837i 1.33616 0.648155i
\(604\) −51.6236 + 89.4148i −0.0854696 + 0.148038i
\(605\) 11.1328 138.776i 0.0184013 0.229382i
\(606\) −310.143 11.1624i −0.511787 0.0184198i
\(607\) 187.998 + 108.541i 0.309716 + 0.178815i 0.646800 0.762660i \(-0.276107\pi\)
−0.337083 + 0.941475i \(0.609440\pi\)
\(608\) 87.0527 0.143179
\(609\) 219.804 + 270.223i 0.360926 + 0.443716i
\(610\) 816.821 + 563.203i 1.33905 + 0.923284i
\(611\) −472.257 272.658i −0.772925 0.446248i
\(612\) −48.3158 + 71.3019i −0.0789474 + 0.116506i
\(613\) −40.6966 + 23.4962i −0.0663893 + 0.0383299i −0.532827 0.846224i \(-0.678870\pi\)
0.466438 + 0.884554i \(0.345537\pi\)
\(614\) −308.935 178.364i −0.503152 0.290495i
\(615\) 331.920 143.306i 0.539708 0.233018i
\(616\) 533.558 + 181.776i 0.866166 + 0.295091i
\(617\) 140.650 0.227958 0.113979 0.993483i \(-0.463640\pi\)
0.113979 + 0.993483i \(0.463640\pi\)
\(618\) −292.207 550.982i −0.472827 0.891557i
\(619\) 41.4260 + 71.7519i 0.0669241 + 0.115916i 0.897546 0.440921i \(-0.145348\pi\)
−0.830622 + 0.556837i \(0.812015\pi\)
\(620\) 2.23709 27.8865i 0.00360821 0.0449782i
\(621\) 15.4553 + 11.3048i 0.0248877 + 0.0182042i
\(622\) 512.826i 0.824479i
\(623\) −122.828 621.082i −0.197156 0.996922i
\(624\) −385.359 + 615.239i −0.617563 + 0.985960i
\(625\) −126.250 612.116i −0.202000 0.979386i
\(626\) 104.998 60.6206i 0.167728 0.0968381i
\(627\) 402.367 + 14.4816i 0.641734 + 0.0230967i
\(628\) −53.2572 30.7481i −0.0848045 0.0489619i
\(629\) 30.5499i 0.0485690i
\(630\) 504.703 321.255i 0.801115 0.509929i
\(631\) 243.800 0.386371 0.193186 0.981162i \(-0.438118\pi\)
0.193186 + 0.981162i \(0.438118\pi\)
\(632\) −30.9748 + 53.6499i −0.0490108 + 0.0848891i
\(633\) 38.3939 1066.76i 0.0606539 1.68525i
\(634\) −188.484 326.464i −0.297293 0.514927i
\(635\) 191.482 + 403.015i 0.301546 + 0.634670i
\(636\) −17.3322 10.8561i −0.0272519 0.0170694i
\(637\) −823.305 110.240i −1.29247 0.173061i
\(638\) −304.064 −0.476589
\(639\) 32.8365 455.585i 0.0513874 0.712965i
\(640\) −42.3764 + 528.244i −0.0662131 + 0.825381i
\(641\) −115.942 + 66.9392i −0.180877 + 0.104429i −0.587705 0.809076i \(-0.699968\pi\)
0.406828 + 0.913505i \(0.366635\pi\)
\(642\) −400.703 + 212.508i −0.624148 + 0.331010i
\(643\) 681.323i 1.05960i −0.848122 0.529801i \(-0.822267\pi\)
0.848122 0.529801i \(-0.177733\pi\)
\(644\) −1.28394 1.46732i −0.00199370 0.00227845i
\(645\) −793.521 + 342.602i −1.23027 + 0.531166i
\(646\) −321.763 + 557.311i −0.498086 + 0.862710i
\(647\) 76.8005 + 133.022i 0.118702 + 0.205599i 0.919254 0.393666i \(-0.128793\pi\)
−0.800551 + 0.599264i \(0.795460\pi\)
\(648\) 668.801 + 96.9119i 1.03210 + 0.149555i
\(649\) 422.801 732.313i 0.651466 1.12837i
\(650\) 752.324 286.186i 1.15742 0.440287i
\(651\) −279.537 106.602i −0.429397 0.163752i
\(652\) 1.17650i 0.00180445i
\(653\) −122.460 + 212.107i −0.187534 + 0.324819i −0.944428 0.328720i \(-0.893383\pi\)
0.756893 + 0.653538i \(0.226716\pi\)
\(654\) 29.0131 806.118i 0.0443625 1.23260i
\(655\) 558.049 + 44.7674i 0.851983 + 0.0683471i
\(656\) 297.961 + 172.028i 0.454209 + 0.262237i
\(657\) −762.082 + 369.678i −1.15994 + 0.562675i
\(658\) −137.918 + 404.823i −0.209601 + 0.615233i
\(659\) 758.783i 1.15142i 0.817655 + 0.575708i \(0.195273\pi\)
−0.817655 + 0.575708i \(0.804727\pi\)
\(660\) 6.58242 56.4778i 0.00997337 0.0855724i
\(661\) −495.701 858.579i −0.749926 1.29891i −0.947858 0.318694i \(-0.896756\pi\)
0.197932 0.980216i \(-0.436578\pi\)
\(662\) −52.3842 90.7321i −0.0791302 0.137058i
\(663\) 580.604 + 1094.78i 0.875723 + 1.65125i
\(664\) −580.995 −0.874992
\(665\) −390.716 + 290.174i −0.587543 + 0.436352i
\(666\) −19.2820 + 9.35348i −0.0289520 + 0.0140443i
\(667\) 10.1876 + 5.88183i 0.0152738 + 0.00881834i
\(668\) −39.6277 68.6371i −0.0593228 0.102750i
\(669\) 376.993 + 13.5684i 0.563517 + 0.0202816i
\(670\) −405.495 853.452i −0.605217 1.27381i
\(671\) 1008.39i 1.50282i
\(672\) −122.840 46.8453i −0.182797 0.0697103i
\(673\) 1101.01i 1.63598i −0.575235 0.817988i \(-0.695089\pi\)
0.575235 0.817988i \(-0.304911\pi\)
\(674\) 494.014 + 285.219i 0.732959 + 0.423174i
\(675\) −474.316 480.260i −0.702690 0.711496i
\(676\) −23.2454 40.2622i −0.0343867 0.0595595i
\(677\) −68.0959 + 117.946i −0.100585 + 0.174218i −0.911926 0.410355i \(-0.865405\pi\)
0.811341 + 0.584573i \(0.198738\pi\)
\(678\) −480.964 301.255i −0.709386 0.444329i
\(679\) −476.497 + 416.947i −0.701763 + 0.614060i
\(680\) 836.830 + 576.999i 1.23063 + 0.848529i
\(681\) 1037.92 550.449i 1.52411 0.808295i
\(682\) 226.167 130.577i 0.331623 0.191462i
\(683\) −607.226 1051.75i −0.889057 1.53989i −0.840992 0.541047i \(-0.818028\pi\)
−0.0480644 0.998844i \(-0.515305\pi\)
\(684\) −49.0238 3.53342i −0.0716722 0.00516582i
\(685\) −364.431 251.277i −0.532015 0.366828i
\(686\) 40.4539 + 650.195i 0.0589707 + 0.947806i
\(687\) 322.136 + 201.772i 0.468903 + 0.293700i
\(688\) −712.334 411.266i −1.03537 0.597771i
\(689\) −254.827 + 147.124i −0.369850 + 0.213533i
\(690\) 12.0600 16.2106i 0.0174783 0.0234936i
\(691\) −580.261 + 1005.04i −0.839741 + 1.45447i 0.0503694 + 0.998731i \(0.483960\pi\)
−0.890111 + 0.455744i \(0.849373\pi\)
\(692\) 6.11253 0.00883314
\(693\) −559.987 236.959i −0.808062 0.341933i
\(694\) −271.116 −0.390657
\(695\) 26.5154 12.5981i 0.0381517 0.0181267i
\(696\) 414.894 + 14.9325i 0.596111 + 0.0214547i
\(697\) 508.616 293.650i 0.729722 0.421305i
\(698\) 43.7545 75.7849i 0.0626855 0.108574i
\(699\) 951.126 + 595.744i 1.36070 + 0.852281i
\(700\) 36.4356 + 58.2781i 0.0520508 + 0.0832544i
\(701\) 1106.20i 1.57803i −0.614373 0.789016i \(-0.710591\pi\)
0.614373 0.789016i \(-0.289409\pi\)
\(702\) 513.222 701.646i 0.731085 0.999496i
\(703\) 15.0980 8.71681i 0.0214765 0.0123994i
\(704\) 576.657 332.933i 0.819115 0.472916i
\(705\) 479.276 + 55.8591i 0.679824 + 0.0792327i
\(706\) 619.699 0.877760
\(707\) −360.899 122.953i −0.510466 0.173909i
\(708\) −54.7957 + 87.4832i −0.0773950 + 0.123564i
\(709\) −400.014 + 692.845i −0.564195 + 0.977214i 0.432929 + 0.901428i \(0.357480\pi\)
−0.997124 + 0.0757864i \(0.975853\pi\)
\(710\) −480.416 38.5395i −0.676642 0.0542810i
\(711\) 37.4880 55.3227i 0.0527257 0.0778097i
\(712\) −653.488 377.291i −0.917820 0.529903i
\(713\) −10.1036 −0.0141705
\(714\) 753.943 613.270i 1.05594 0.858922i
\(715\) −673.504 464.386i −0.941964 0.649491i
\(716\) −10.6657 6.15782i −0.0148962 0.00860031i
\(717\) 246.430 + 8.86928i 0.343695 + 0.0123700i
\(718\) −149.133 + 86.1018i −0.207706 + 0.119919i
\(719\) −679.759 392.459i −0.945423 0.545840i −0.0537665 0.998554i \(-0.517123\pi\)
−0.891656 + 0.452714i \(0.850456\pi\)
\(720\) 97.2645 634.958i 0.135090 0.881886i
\(721\) −148.649 751.646i −0.206171 1.04251i
\(722\) 318.404 0.441002
\(723\) 552.526 293.026i 0.764213 0.405292i
\(724\) 24.6058 + 42.6185i 0.0339859 + 0.0588653i
\(725\) −321.477 261.938i −0.443416 0.361294i
\(726\) −140.161 + 74.3330i −0.193060 + 0.102387i
\(727\) 579.070i 0.796520i 0.917273 + 0.398260i \(0.130386\pi\)
−0.917273 + 0.398260i \(0.869614\pi\)
\(728\) −745.060 + 651.947i −1.02343 + 0.895531i
\(729\) −712.083 156.138i −0.976794 0.214181i
\(730\) 383.542 + 807.247i 0.525400 + 1.10582i
\(731\) −1215.95 + 702.028i −1.66340 + 0.960367i
\(732\) −4.42765 + 123.021i −0.00604870 + 0.168061i
\(733\) 590.643 + 341.008i 0.805789 + 0.465223i 0.845491 0.533989i \(-0.179308\pi\)
−0.0397023 + 0.999212i \(0.512641\pi\)
\(734\) 559.762i 0.762618i
\(735\) 707.489 199.209i 0.962570 0.271033i
\(736\) −4.43992 −0.00603249
\(737\) −480.170 + 831.679i −0.651520 + 1.12847i
\(738\) −341.065 231.114i −0.462147 0.313162i
\(739\) −439.884 761.902i −0.595243 1.03099i −0.993513 0.113722i \(-0.963723\pi\)
0.398270 0.917268i \(-0.369611\pi\)
\(740\) −1.05657 2.22378i −0.00142780 0.00300511i
\(741\) −375.383 + 599.312i −0.506590 + 0.808788i
\(742\) 151.965 + 173.669i 0.204804 + 0.234055i
\(743\) −77.0002 −0.103634 −0.0518171 0.998657i \(-0.516501\pi\)
−0.0518171 + 0.998657i \(0.516501\pi\)
\(744\) −315.016 + 167.065i −0.423408 + 0.224550i
\(745\) −28.6806 2.30080i −0.0384975 0.00308832i
\(746\) −66.8368 + 38.5883i −0.0895936 + 0.0517269i
\(747\) 625.123 + 45.0561i 0.836844 + 0.0603160i
\(748\) 92.3669i 0.123485i
\(749\) −546.636 + 108.106i −0.729821 + 0.144333i
\(750\) −510.785 + 496.356i −0.681046 + 0.661808i
\(751\) −399.639 + 692.195i −0.532142 + 0.921697i 0.467154 + 0.884176i \(0.345279\pi\)
−0.999296 + 0.0375212i \(0.988054\pi\)
\(752\) 229.595 + 397.671i 0.305313 + 0.528818i
\(753\) −837.436 30.1403i −1.11213 0.0400269i
\(754\) 267.026 462.503i 0.354146 0.613399i
\(755\) −1082.13 746.135i −1.43328 0.988259i
\(756\) 67.2759 + 31.3670i 0.0889893 + 0.0414907i
\(757\) 393.905i 0.520350i −0.965561 0.260175i \(-0.916220\pi\)
0.965561 0.260175i \(-0.0837803\pi\)
\(758\) −30.5733 + 52.9545i −0.0403342 + 0.0698608i
\(759\) −20.5218 0.738602i −0.0270379 0.000973126i
\(760\) −46.3841 + 578.202i −0.0610317 + 0.760792i
\(761\) 654.465 + 377.855i 0.860006 + 0.496525i 0.864014 0.503467i \(-0.167943\pi\)
−0.00400819 + 0.999992i \(0.501276\pi\)
\(762\) 269.906 430.914i 0.354207 0.565504i
\(763\) 319.578 938.044i 0.418845 1.22942