Properties

Label 105.3.o.b.44.12
Level 105
Weight 3
Character 105.44
Analytic conductor 2.861
Analytic rank 0
Dimension 40
CM no
Inner twists 8

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.o (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 44.12
Character \(\chi\) \(=\) 105.44
Dual form 105.3.o.b.74.12

$q$-expansion

\(f(q)\) \(=\) \(q+(0.0859580 - 0.148884i) q^{2} +(-0.346935 - 2.97987i) q^{3} +(1.98522 + 3.43851i) q^{4} +(1.39092 + 4.80264i) q^{5} +(-0.473476 - 0.204491i) q^{6} +(6.99566 - 0.246384i) q^{7} +1.37025 q^{8} +(-8.75927 + 2.06764i) q^{9} +O(q^{10})\) \(q+(0.0859580 - 0.148884i) q^{2} +(-0.346935 - 2.97987i) q^{3} +(1.98522 + 3.43851i) q^{4} +(1.39092 + 4.80264i) q^{5} +(-0.473476 - 0.204491i) q^{6} +(6.99566 - 0.246384i) q^{7} +1.37025 q^{8} +(-8.75927 + 2.06764i) q^{9} +(0.834595 + 0.205740i) q^{10} +(10.0440 - 5.79890i) q^{11} +(9.55756 - 7.10865i) q^{12} -7.34521i q^{13} +(0.564650 - 1.06272i) q^{14} +(13.8287 - 5.81096i) q^{15} +(-7.82311 + 13.5500i) q^{16} +(-2.30611 - 3.99429i) q^{17} +(-0.445091 + 1.48184i) q^{18} +(5.93904 - 10.2867i) q^{19} +(-13.7526 + 14.3170i) q^{20} +(-3.16123 - 20.7607i) q^{21} -1.99385i q^{22} +(-11.8464 + 20.5186i) q^{23} +(-0.475387 - 4.08316i) q^{24} +(-21.1307 + 13.3601i) q^{25} +(-1.09358 - 0.631380i) q^{26} +(9.20022 + 25.3842i) q^{27} +(14.7351 + 23.5655i) q^{28} +32.7592i q^{29} +(0.323530 - 2.55836i) q^{30} +(-23.4865 - 40.6798i) q^{31} +(4.08541 + 7.07614i) q^{32} +(-20.7646 - 27.9179i) q^{33} -0.792913 q^{34} +(10.9137 + 33.2549i) q^{35} +(-24.4987 - 26.0141i) q^{36} +(-41.2822 - 23.8343i) q^{37} +(-1.02102 - 1.76845i) q^{38} +(-21.8878 + 2.54831i) q^{39} +(1.90590 + 6.58080i) q^{40} -70.7266i q^{41} +(-3.36266 - 1.31389i) q^{42} -14.1244i q^{43} +(39.8791 + 23.0242i) q^{44} +(-22.1136 - 39.1917i) q^{45} +(2.03658 + 3.52747i) q^{46} +(-26.1140 + 45.2307i) q^{47} +(43.0914 + 18.6109i) q^{48} +(48.8786 - 3.44723i) q^{49} +(0.172755 + 4.29442i) q^{50} +(-11.1024 + 8.25766i) q^{51} +(25.2566 - 14.5819i) q^{52} +(-11.5105 - 19.9368i) q^{53} +(4.57012 + 0.812210i) q^{54} +(41.8204 + 40.1718i) q^{55} +(9.58578 - 0.337606i) q^{56} +(-32.7136 - 14.1288i) q^{57} +(4.87730 + 2.81591i) q^{58} +(-1.09721 + 0.633473i) q^{59} +(47.4341 + 36.0140i) q^{60} +(-32.3278 + 55.9933i) q^{61} -8.07541 q^{62} +(-60.7675 + 16.6227i) q^{63} -61.1802 q^{64} +(35.2764 - 10.2166i) q^{65} +(-5.94140 + 0.691735i) q^{66} +(-17.1764 + 9.91678i) q^{67} +(9.15627 - 15.8591i) q^{68} +(65.2526 + 28.1821i) q^{69} +(5.88923 + 1.23366i) q^{70} -48.1993i q^{71} +(-12.0024 + 2.83318i) q^{72} +(107.763 - 62.2168i) q^{73} +(-7.09706 + 4.09749i) q^{74} +(47.1425 + 58.3317i) q^{75} +47.1613 q^{76} +(68.8356 - 43.0418i) q^{77} +(-1.50203 + 3.47778i) q^{78} +(-34.4509 + 59.6707i) q^{79} +(-75.9571 - 18.7246i) q^{80} +(72.4497 - 36.2221i) q^{81} +(-10.5300 - 6.07951i) q^{82} +35.8731 q^{83} +(65.1100 - 52.0845i) q^{84} +(15.9756 - 16.6311i) q^{85} +(-2.10289 - 1.21410i) q^{86} +(97.6181 - 11.3653i) q^{87} +(13.7627 - 7.94592i) q^{88} +(-110.539 - 63.8196i) q^{89} +(-7.73584 - 0.0764914i) q^{90} +(-1.80974 - 51.3846i) q^{91} -94.0709 q^{92} +(-113.072 + 84.1000i) q^{93} +(4.48941 + 7.77588i) q^{94} +(57.6641 + 14.2151i) q^{95} +(19.6686 - 14.6290i) q^{96} +26.9526i q^{97} +(3.68827 - 7.57354i) q^{98} +(-75.9879 + 71.5615i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40q - 44q^{4} + 80q^{6} + 12q^{9} + O(q^{10}) \) \( 40q - 44q^{4} + 80q^{6} + 12q^{9} + 62q^{10} + 84q^{15} - 116q^{16} - 56q^{19} + 36q^{21} - 12q^{24} - 6q^{25} - 20q^{30} - 444q^{31} + 256q^{34} - 688q^{36} + 168q^{39} + 54q^{40} - 40q^{45} + 304q^{46} + 156q^{49} + 156q^{51} - 140q^{54} - 500q^{55} - 130q^{60} + 288q^{61} + 472q^{64} + 340q^{66} - 272q^{69} + 710q^{70} - 524q^{75} + 400q^{76} - 340q^{79} + 496q^{84} + 896q^{85} + 1356q^{90} - 656q^{91} - 560q^{94} + 472q^{96} - 336q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0859580 0.148884i 0.0429790 0.0744418i −0.843736 0.536759i \(-0.819648\pi\)
0.886715 + 0.462317i \(0.152982\pi\)
\(3\) −0.346935 2.97987i −0.115645 0.993291i
\(4\) 1.98522 + 3.43851i 0.496306 + 0.859627i
\(5\) 1.39092 + 4.80264i 0.278183 + 0.960528i
\(6\) −0.473476 0.204491i −0.0789126 0.0340818i
\(7\) 6.99566 0.246384i 0.999380 0.0351977i
\(8\) 1.37025 0.171281
\(9\) −8.75927 + 2.06764i −0.973252 + 0.229738i
\(10\) 0.834595 + 0.205740i 0.0834595 + 0.0205740i
\(11\) 10.0440 5.79890i 0.913089 0.527172i 0.0316655 0.999499i \(-0.489919\pi\)
0.881424 + 0.472326i \(0.156586\pi\)
\(12\) 9.55756 7.10865i 0.796464 0.592387i
\(13\) 7.34521i 0.565016i −0.959265 0.282508i \(-0.908834\pi\)
0.959265 0.282508i \(-0.0911665\pi\)
\(14\) 0.564650 1.06272i 0.0403322 0.0759084i
\(15\) 13.8287 5.81096i 0.921913 0.387397i
\(16\) −7.82311 + 13.5500i −0.488944 + 0.846876i
\(17\) −2.30611 3.99429i −0.135653 0.234958i 0.790194 0.612857i \(-0.209980\pi\)
−0.925847 + 0.377899i \(0.876647\pi\)
\(18\) −0.445091 + 1.48184i −0.0247273 + 0.0823246i
\(19\) 5.93904 10.2867i 0.312581 0.541406i −0.666339 0.745649i \(-0.732140\pi\)
0.978920 + 0.204242i \(0.0654730\pi\)
\(20\) −13.7526 + 14.3170i −0.687631 + 0.715849i
\(21\) −3.16123 20.7607i −0.150535 0.988605i
\(22\) 1.99385i 0.0906293i
\(23\) −11.8464 + 20.5186i −0.515061 + 0.892111i 0.484786 + 0.874633i \(0.338897\pi\)
−0.999847 + 0.0174789i \(0.994436\pi\)
\(24\) −0.475387 4.08316i −0.0198078 0.170132i
\(25\) −21.1307 + 13.3601i −0.845228 + 0.534406i
\(26\) −1.09358 0.631380i −0.0420608 0.0242838i
\(27\) 9.20022 + 25.3842i 0.340749 + 0.940154i
\(28\) 14.7351 + 23.5655i 0.526255 + 0.841625i
\(29\) 32.7592i 1.12963i 0.825219 + 0.564813i \(0.191052\pi\)
−0.825219 + 0.564813i \(0.808948\pi\)
\(30\) 0.323530 2.55836i 0.0107843 0.0852788i
\(31\) −23.4865 40.6798i −0.757629 1.31225i −0.944057 0.329784i \(-0.893024\pi\)
0.186427 0.982469i \(-0.440309\pi\)
\(32\) 4.08541 + 7.07614i 0.127669 + 0.221129i
\(33\) −20.7646 27.9179i −0.629230 0.845998i
\(34\) −0.792913 −0.0233210
\(35\) 10.9137 + 33.2549i 0.311819 + 0.950141i
\(36\) −24.4987 26.0141i −0.680520 0.722613i
\(37\) −41.2822 23.8343i −1.11573 0.644170i −0.175426 0.984493i \(-0.556130\pi\)
−0.940309 + 0.340323i \(0.889464\pi\)
\(38\) −1.02102 1.76845i −0.0268688 0.0465382i
\(39\) −21.8878 + 2.54831i −0.561226 + 0.0653414i
\(40\) 1.90590 + 6.58080i 0.0476475 + 0.164520i
\(41\) 70.7266i 1.72504i −0.506024 0.862520i \(-0.668885\pi\)
0.506024 0.862520i \(-0.331115\pi\)
\(42\) −3.36266 1.31389i −0.0800633 0.0312831i
\(43\) 14.1244i 0.328474i −0.986421 0.164237i \(-0.947484\pi\)
0.986421 0.164237i \(-0.0525162\pi\)
\(44\) 39.8791 + 23.0242i 0.906343 + 0.523277i
\(45\) −22.1136 39.1917i −0.491413 0.870927i
\(46\) 2.03658 + 3.52747i 0.0442736 + 0.0766841i
\(47\) −26.1140 + 45.2307i −0.555616 + 0.962356i 0.442239 + 0.896897i \(0.354184\pi\)
−0.997855 + 0.0654585i \(0.979149\pi\)
\(48\) 43.0914 + 18.6109i 0.897738 + 0.387727i
\(49\) 48.8786 3.44723i 0.997522 0.0703517i
\(50\) 0.172755 + 4.29442i 0.00345509 + 0.0858885i
\(51\) −11.1024 + 8.25766i −0.217694 + 0.161915i
\(52\) 25.2566 14.5819i 0.485703 0.280421i
\(53\) −11.5105 19.9368i −0.217179 0.376166i 0.736765 0.676149i \(-0.236352\pi\)
−0.953945 + 0.299983i \(0.903019\pi\)
\(54\) 4.57012 + 0.812210i 0.0846318 + 0.0150409i
\(55\) 41.8204 + 40.1718i 0.760370 + 0.730397i
\(56\) 9.58578 0.337606i 0.171175 0.00602868i
\(57\) −32.7136 14.1288i −0.573922 0.247873i
\(58\) 4.87730 + 2.81591i 0.0840914 + 0.0485502i
\(59\) −1.09721 + 0.633473i −0.0185967 + 0.0107368i −0.509270 0.860607i \(-0.670084\pi\)
0.490673 + 0.871344i \(0.336751\pi\)
\(60\) 47.4341 + 36.0140i 0.790568 + 0.600233i
\(61\) −32.3278 + 55.9933i −0.529963 + 0.917923i 0.469426 + 0.882972i \(0.344461\pi\)
−0.999389 + 0.0349515i \(0.988872\pi\)
\(62\) −8.07541 −0.130249
\(63\) −60.7675 + 16.6227i −0.964563 + 0.263852i
\(64\) −61.1802 −0.955940
\(65\) 35.2764 10.2166i 0.542714 0.157178i
\(66\) −5.94140 + 0.691735i −0.0900213 + 0.0104808i
\(67\) −17.1764 + 9.91678i −0.256364 + 0.148012i −0.622675 0.782481i \(-0.713954\pi\)
0.366311 + 0.930493i \(0.380621\pi\)
\(68\) 9.15627 15.8591i 0.134651 0.233222i
\(69\) 65.2526 + 28.1821i 0.945690 + 0.408437i
\(70\) 5.88923 + 1.23366i 0.0841319 + 0.0176237i
\(71\) 48.1993i 0.678863i −0.940631 0.339432i \(-0.889765\pi\)
0.940631 0.339432i \(-0.110235\pi\)
\(72\) −12.0024 + 2.83318i −0.166699 + 0.0393498i
\(73\) 107.763 62.2168i 1.47620 0.852285i 0.476562 0.879141i \(-0.341883\pi\)
0.999639 + 0.0268558i \(0.00854949\pi\)
\(74\) −7.09706 + 4.09749i −0.0959063 + 0.0553715i
\(75\) 47.1425 + 58.3317i 0.628567 + 0.777756i
\(76\) 47.1613 0.620543
\(77\) 68.8356 43.0418i 0.893968 0.558984i
\(78\) −1.50203 + 3.47778i −0.0192568 + 0.0445869i
\(79\) −34.4509 + 59.6707i −0.436087 + 0.755325i −0.997384 0.0722896i \(-0.976969\pi\)
0.561296 + 0.827615i \(0.310303\pi\)
\(80\) −75.9571 18.7246i −0.949464 0.234058i
\(81\) 72.4497 36.2221i 0.894441 0.447187i
\(82\) −10.5300 6.07951i −0.128415 0.0741404i
\(83\) 35.8731 0.432206 0.216103 0.976371i \(-0.430665\pi\)
0.216103 + 0.976371i \(0.430665\pi\)
\(84\) 65.1100 52.0845i 0.775120 0.620054i
\(85\) 15.9756 16.6311i 0.187948 0.195660i
\(86\) −2.10289 1.21410i −0.0244522 0.0141175i
\(87\) 97.6181 11.3653i 1.12205 0.130636i
\(88\) 13.7627 7.94592i 0.156395 0.0902945i
\(89\) −110.539 63.8196i −1.24201 0.717074i −0.272506 0.962154i \(-0.587852\pi\)
−0.969503 + 0.245080i \(0.921186\pi\)
\(90\) −7.73584 0.0764914i −0.0859538 0.000849904i
\(91\) −1.80974 51.3846i −0.0198873 0.564666i
\(92\) −94.0709 −1.02251
\(93\) −113.072 + 84.1000i −1.21583 + 0.904302i
\(94\) 4.48941 + 7.77588i 0.0477597 + 0.0827221i
\(95\) 57.6641 + 14.2151i 0.606991 + 0.149633i
\(96\) 19.6686 14.6290i 0.204881 0.152385i
\(97\) 26.9526i 0.277862i 0.990302 + 0.138931i \(0.0443666\pi\)
−0.990302 + 0.138931i \(0.955633\pi\)
\(98\) 3.68827 7.57354i 0.0376354 0.0772810i
\(99\) −75.9879 + 71.5615i −0.767555 + 0.722843i
\(100\) −87.8881 46.1352i −0.878881 0.461352i
\(101\) −15.8571 + 9.15508i −0.157001 + 0.0906444i −0.576442 0.817138i \(-0.695559\pi\)
0.419441 + 0.907782i \(0.362226\pi\)
\(102\) 0.275089 + 2.36278i 0.00269695 + 0.0231645i
\(103\) 26.9167 + 15.5404i 0.261327 + 0.150877i 0.624940 0.780673i \(-0.285123\pi\)
−0.363613 + 0.931550i \(0.618457\pi\)
\(104\) 10.0648i 0.0967765i
\(105\) 95.3091 44.0587i 0.907706 0.419606i
\(106\) −3.95768 −0.0373366
\(107\) 91.2333 158.021i 0.852648 1.47683i −0.0261619 0.999658i \(-0.508329\pi\)
0.878810 0.477172i \(-0.158338\pi\)
\(108\) −69.0191 + 82.0282i −0.639066 + 0.759521i
\(109\) 17.0498 + 29.5311i 0.156420 + 0.270928i 0.933575 0.358381i \(-0.116671\pi\)
−0.777155 + 0.629309i \(0.783338\pi\)
\(110\) 9.57572 2.77327i 0.0870520 0.0252116i
\(111\) −56.7009 + 131.285i −0.510819 + 1.18274i
\(112\) −51.3893 + 96.7188i −0.458833 + 0.863561i
\(113\) 64.0417 0.566740 0.283370 0.959011i \(-0.408547\pi\)
0.283370 + 0.959011i \(0.408547\pi\)
\(114\) −4.91553 + 3.65603i −0.0431187 + 0.0320705i
\(115\) −115.021 28.3544i −1.00018 0.246560i
\(116\) −112.643 + 65.0342i −0.971057 + 0.560640i
\(117\) 15.1873 + 64.3387i 0.129806 + 0.549904i
\(118\) 0.217808i 0.00184583i
\(119\) −17.1169 27.3745i −0.143839 0.230038i
\(120\) 18.9487 7.96245i 0.157906 0.0663537i
\(121\) 6.75440 11.6990i 0.0558215 0.0966857i
\(122\) 5.55766 + 9.62615i 0.0455546 + 0.0789028i
\(123\) −210.756 + 24.5375i −1.71347 + 0.199492i
\(124\) 93.2519 161.517i 0.752031 1.30256i
\(125\) −93.5550 82.9003i −0.748440 0.663202i
\(126\) −2.74860 + 10.4761i −0.0218143 + 0.0831439i
\(127\) 131.997i 1.03934i 0.854366 + 0.519672i \(0.173946\pi\)
−0.854366 + 0.519672i \(0.826054\pi\)
\(128\) −21.6006 + 37.4133i −0.168754 + 0.292291i
\(129\) −42.0889 + 4.90025i −0.326270 + 0.0379864i
\(130\) 1.51121 6.13028i 0.0116247 0.0471560i
\(131\) 69.4990 + 40.1253i 0.530527 + 0.306300i 0.741231 0.671250i \(-0.234242\pi\)
−0.210704 + 0.977550i \(0.567576\pi\)
\(132\) 54.7737 126.822i 0.414952 0.960776i
\(133\) 39.0131 73.4257i 0.293331 0.552073i
\(134\) 3.40971i 0.0254456i
\(135\) −109.114 + 79.4926i −0.808254 + 0.588834i
\(136\) −3.15993 5.47317i −0.0232348 0.0402439i
\(137\) 77.7452 + 134.659i 0.567483 + 0.982909i 0.996814 + 0.0797620i \(0.0254160\pi\)
−0.429331 + 0.903147i \(0.641251\pi\)
\(138\) 9.80484 7.29256i 0.0710496 0.0528447i
\(139\) −131.310 −0.944678 −0.472339 0.881417i \(-0.656590\pi\)
−0.472339 + 0.881417i \(0.656590\pi\)
\(140\) −92.6813 + 103.545i −0.662009 + 0.739609i
\(141\) 143.842 + 62.1242i 1.02015 + 0.440597i
\(142\) −7.17608 4.14311i −0.0505358 0.0291768i
\(143\) −42.5941 73.7752i −0.297861 0.515911i
\(144\) 40.5081 134.864i 0.281306 0.936553i
\(145\) −157.330 + 45.5653i −1.08504 + 0.314243i
\(146\) 21.3921i 0.146521i
\(147\) −27.2300 144.456i −0.185238 0.982694i
\(148\) 189.265i 1.27882i
\(149\) 81.9236 + 47.2986i 0.549823 + 0.317440i 0.749050 0.662513i \(-0.230510\pi\)
−0.199228 + 0.979953i \(0.563843\pi\)
\(150\) 12.7369 2.00467i 0.0849127 0.0133645i
\(151\) 14.8293 + 25.6851i 0.0982074 + 0.170100i 0.910943 0.412533i \(-0.135356\pi\)
−0.812735 + 0.582633i \(0.802022\pi\)
\(152\) 8.13795 14.0953i 0.0535392 0.0927325i
\(153\) 28.4586 + 30.2189i 0.186004 + 0.197509i
\(154\) −0.491251 13.9483i −0.00318994 0.0905732i
\(155\) 162.703 169.379i 1.04970 1.09277i
\(156\) −52.2145 70.2024i −0.334709 0.450015i
\(157\) −39.7991 + 22.9780i −0.253497 + 0.146357i −0.621365 0.783522i \(-0.713421\pi\)
0.367867 + 0.929878i \(0.380088\pi\)
\(158\) 5.92266 + 10.2583i 0.0374852 + 0.0649262i
\(159\) −55.4156 + 41.2166i −0.348526 + 0.259224i
\(160\) −28.3017 + 29.4631i −0.176885 + 0.184144i
\(161\) −77.8180 + 146.460i −0.483341 + 0.909688i
\(162\) 0.834748 13.9001i 0.00515277 0.0858034i
\(163\) 184.229 + 106.364i 1.13024 + 0.652542i 0.943994 0.329962i \(-0.107036\pi\)
0.186242 + 0.982504i \(0.440369\pi\)
\(164\) 243.194 140.408i 1.48289 0.856147i
\(165\) 105.198 138.556i 0.637564 0.839735i
\(166\) 3.08358 5.34092i 0.0185758 0.0321742i
\(167\) −11.5544 −0.0691879 −0.0345940 0.999401i \(-0.511014\pi\)
−0.0345940 + 0.999401i \(0.511014\pi\)
\(168\) −4.33167 28.4473i −0.0257837 0.169329i
\(169\) 115.048 0.680756
\(170\) −1.10288 3.80808i −0.00648751 0.0224004i
\(171\) −30.7524 + 102.384i −0.179839 + 0.598737i
\(172\) 48.5668 28.0401i 0.282365 0.163024i
\(173\) 1.95332 3.38324i 0.0112908 0.0195563i −0.860325 0.509746i \(-0.829739\pi\)
0.871616 + 0.490190i \(0.163073\pi\)
\(174\) 6.69895 15.5107i 0.0384997 0.0891418i
\(175\) −144.532 + 98.6693i −0.825894 + 0.563825i
\(176\) 181.462i 1.03103i
\(177\) 2.26833 + 3.04976i 0.0128154 + 0.0172303i
\(178\) −19.0034 + 10.9716i −0.106761 + 0.0616382i
\(179\) −190.707 + 110.105i −1.06540 + 0.615110i −0.926921 0.375256i \(-0.877555\pi\)
−0.138480 + 0.990365i \(0.544222\pi\)
\(180\) 90.8606 153.842i 0.504781 0.854677i
\(181\) 77.8562 0.430145 0.215072 0.976598i \(-0.431001\pi\)
0.215072 + 0.976598i \(0.431001\pi\)
\(182\) −7.80589 4.14748i −0.0428895 0.0227883i
\(183\) 178.069 + 76.9065i 0.973052 + 0.420254i
\(184\) −16.2325 + 28.1155i −0.0882200 + 0.152802i
\(185\) 57.0474 231.415i 0.308364 1.25089i
\(186\) 2.80164 + 24.0637i 0.0150626 + 0.129375i
\(187\) −46.3250 26.7457i −0.247727 0.143025i
\(188\) −207.368 −1.10302
\(189\) 70.6159 + 175.312i 0.373629 + 0.927578i
\(190\) 7.07309 7.36334i 0.0372268 0.0387544i
\(191\) 205.885 + 118.868i 1.07793 + 0.622345i 0.930338 0.366703i \(-0.119514\pi\)
0.147594 + 0.989048i \(0.452847\pi\)
\(192\) 21.2256 + 182.309i 0.110550 + 0.949526i
\(193\) 182.727 105.498i 0.946773 0.546620i 0.0546961 0.998503i \(-0.482581\pi\)
0.892077 + 0.451883i \(0.149248\pi\)
\(194\) 4.01279 + 2.31679i 0.0206845 + 0.0119422i
\(195\) −42.6827 101.575i −0.218886 0.520896i
\(196\) 108.888 + 161.226i 0.555552 + 0.822581i
\(197\) −378.734 −1.92251 −0.961253 0.275667i \(-0.911101\pi\)
−0.961253 + 0.275667i \(0.911101\pi\)
\(198\) 4.12256 + 17.4646i 0.0208210 + 0.0882052i
\(199\) 95.2314 + 164.946i 0.478550 + 0.828873i 0.999698 0.0245938i \(-0.00782923\pi\)
−0.521148 + 0.853467i \(0.674496\pi\)
\(200\) −28.9543 + 18.3067i −0.144771 + 0.0915335i
\(201\) 35.5098 + 47.7429i 0.176666 + 0.237527i
\(202\) 3.14781i 0.0155832i
\(203\) 8.07132 + 229.172i 0.0397602 + 1.12893i
\(204\) −50.4348 21.7824i −0.247229 0.106777i
\(205\) 339.674 98.3748i 1.65695 0.479877i
\(206\) 4.62741 2.67164i 0.0224632 0.0129691i
\(207\) 61.3407 204.222i 0.296332 0.986579i
\(208\) 99.5278 + 57.4624i 0.478499 + 0.276262i
\(209\) 137.760i 0.659137i
\(210\) 1.63297 17.9772i 0.00777603 0.0856055i
\(211\) 56.9073 0.269703 0.134851 0.990866i \(-0.456944\pi\)
0.134851 + 0.990866i \(0.456944\pi\)
\(212\) 45.7018 79.1579i 0.215575 0.373386i
\(213\) −143.628 + 16.7220i −0.674308 + 0.0785072i
\(214\) −15.6845 27.1663i −0.0732919 0.126945i
\(215\) 67.8344 19.6459i 0.315509 0.0913761i
\(216\) 12.6066 + 34.7826i 0.0583637 + 0.161030i
\(217\) −174.327 278.796i −0.803348 1.28477i
\(218\) 5.86227 0.0268911
\(219\) −222.785 299.534i −1.01728 1.36773i
\(220\) −55.1084 + 223.550i −0.250493 + 1.01613i
\(221\) −29.3389 + 16.9388i −0.132755 + 0.0766464i
\(222\) 14.6722 + 19.7268i 0.0660911 + 0.0888594i
\(223\) 105.559i 0.473357i −0.971588 0.236679i \(-0.923941\pi\)
0.971588 0.236679i \(-0.0760589\pi\)
\(224\) 30.3236 + 48.4957i 0.135373 + 0.216499i
\(225\) 157.465 160.716i 0.699847 0.714293i
\(226\) 5.50489 9.53475i 0.0243579 0.0421892i
\(227\) 193.360 + 334.909i 0.851805 + 1.47537i 0.879577 + 0.475756i \(0.157825\pi\)
−0.0277721 + 0.999614i \(0.508841\pi\)
\(228\) −16.3619 140.535i −0.0717628 0.616380i
\(229\) −14.0913 + 24.4068i −0.0615340 + 0.106580i −0.895151 0.445762i \(-0.852933\pi\)
0.833617 + 0.552343i \(0.186266\pi\)
\(230\) −14.1084 + 14.6874i −0.0613410 + 0.0638582i
\(231\) −152.141 190.188i −0.658617 0.823327i
\(232\) 44.8881i 0.193483i
\(233\) 171.016 296.208i 0.733974 1.27128i −0.221199 0.975229i \(-0.570997\pi\)
0.955172 0.296051i \(-0.0956698\pi\)
\(234\) 10.8844 + 3.26929i 0.0465147 + 0.0139713i
\(235\) −253.549 62.5038i −1.07893 0.265974i
\(236\) −4.35640 2.51517i −0.0184593 0.0106575i
\(237\) 189.763 + 81.9574i 0.800689 + 0.345812i
\(238\) −5.54695 + 0.195361i −0.0233065 + 0.000820844i
\(239\) 105.588i 0.441791i −0.975298 0.220895i \(-0.929102\pi\)
0.975298 0.220895i \(-0.0708979\pi\)
\(240\) −29.4447 + 232.839i −0.122686 + 0.970162i
\(241\) −9.53578 16.5165i −0.0395675 0.0685330i 0.845563 0.533875i \(-0.179265\pi\)
−0.885131 + 0.465342i \(0.845931\pi\)
\(242\) −1.16119 2.01124i −0.00479830 0.00831090i
\(243\) −133.073 203.324i −0.547624 0.836725i
\(244\) −256.711 −1.05210
\(245\) 84.5419 + 229.951i 0.345069 + 0.938577i
\(246\) −14.4629 + 33.4873i −0.0587924 + 0.136127i
\(247\) −75.5582 43.6235i −0.305904 0.176614i
\(248\) −32.1823 55.7414i −0.129767 0.224764i
\(249\) −12.4456 106.897i −0.0499825 0.429306i
\(250\) −20.3843 + 6.80287i −0.0815372 + 0.0272115i
\(251\) 222.387i 0.886003i 0.896521 + 0.443001i \(0.146086\pi\)
−0.896521 + 0.443001i \(0.853914\pi\)
\(252\) −177.794 175.950i −0.705532 0.698213i
\(253\) 274.784i 1.08610i
\(254\) 19.6521 + 11.3462i 0.0773706 + 0.0446699i
\(255\) −55.1011 41.8352i −0.216083 0.164059i
\(256\) −118.647 205.502i −0.463464 0.802744i
\(257\) −182.147 + 315.488i −0.708743 + 1.22758i 0.256581 + 0.966523i \(0.417404\pi\)
−0.965324 + 0.261056i \(0.915929\pi\)
\(258\) −2.88831 + 6.68756i −0.0111950 + 0.0259208i
\(259\) −294.669 156.565i −1.13772 0.604499i
\(260\) 105.161 + 101.016i 0.404467 + 0.388523i
\(261\) −67.7343 286.946i −0.259519 1.09941i
\(262\) 11.9480 6.89817i 0.0456030 0.0263289i
\(263\) 181.221 + 313.884i 0.689054 + 1.19348i 0.972144 + 0.234383i \(0.0753070\pi\)
−0.283090 + 0.959093i \(0.591360\pi\)
\(264\) −28.4526 38.2545i −0.107775 0.144903i
\(265\) 79.7390 83.0112i 0.300902 0.313250i
\(266\) −7.57840 12.1199i −0.0284902 0.0455636i
\(267\) −151.824 + 351.533i −0.568631 + 1.31660i
\(268\) −68.1978 39.3740i −0.254470 0.146918i
\(269\) −274.148 + 158.279i −1.01914 + 0.588399i −0.913854 0.406043i \(-0.866908\pi\)
−0.105283 + 0.994442i \(0.533575\pi\)
\(270\) 2.45590 + 23.0783i 0.00909593 + 0.0854754i
\(271\) 24.8208 42.9910i 0.0915898 0.158638i −0.816590 0.577218i \(-0.804138\pi\)
0.908180 + 0.418579i \(0.137472\pi\)
\(272\) 72.1637 0.265308
\(273\) −152.492 + 23.2199i −0.558578 + 0.0850547i
\(274\) 26.7313 0.0975594
\(275\) −134.762 + 256.724i −0.490045 + 0.933541i
\(276\) 32.6365 + 280.319i 0.118248 + 1.01565i
\(277\) −95.4077 + 55.0836i −0.344432 + 0.198858i −0.662230 0.749300i \(-0.730390\pi\)
0.317798 + 0.948158i \(0.397057\pi\)
\(278\) −11.2872 + 19.5499i −0.0406013 + 0.0703235i
\(279\) 289.836 + 307.764i 1.03884 + 1.10310i
\(280\) 14.9544 + 45.5675i 0.0534087 + 0.162741i
\(281\) 400.249i 1.42437i −0.701990 0.712187i \(-0.747705\pi\)
0.701990 0.712187i \(-0.252295\pi\)
\(282\) 21.6136 16.0756i 0.0766440 0.0570056i
\(283\) −277.081 + 159.973i −0.979086 + 0.565276i −0.901994 0.431748i \(-0.857897\pi\)
−0.0770921 + 0.997024i \(0.524564\pi\)
\(284\) 165.734 95.6863i 0.583569 0.336924i
\(285\) 22.3535 176.763i 0.0784332 0.620223i
\(286\) −14.6452 −0.0512071
\(287\) −17.4259 494.779i −0.0607173 1.72397i
\(288\) −50.4161 53.5346i −0.175056 0.185884i
\(289\) 133.864 231.859i 0.463196 0.802280i
\(290\) −6.73989 + 27.3406i −0.0232410 + 0.0942780i
\(291\) 80.3152 9.35080i 0.275997 0.0321333i
\(292\) 427.866 + 247.028i 1.46529 + 0.845988i
\(293\) −328.719 −1.12191 −0.560954 0.827847i \(-0.689566\pi\)
−0.560954 + 0.827847i \(0.689566\pi\)
\(294\) −23.8478 8.36304i −0.0811148 0.0284457i
\(295\) −4.56847 4.38838i −0.0154863 0.0148759i
\(296\) −56.5668 32.6588i −0.191104 0.110334i
\(297\) 239.607 + 201.607i 0.806758 + 0.678812i
\(298\) 14.0840 8.13138i 0.0472616 0.0272865i
\(299\) 150.713 + 87.0143i 0.504058 + 0.291018i
\(300\) −106.985 + 277.901i −0.356618 + 0.926337i
\(301\) −3.48002 98.8095i −0.0115615 0.328271i
\(302\) 5.09879 0.0168834
\(303\) 32.7823 + 44.0758i 0.108193 + 0.145465i
\(304\) 92.9235 + 160.948i 0.305669 + 0.529435i
\(305\) −313.881 77.3765i −1.02912 0.253694i
\(306\) 6.94534 1.63946i 0.0226972 0.00535772i
\(307\) 433.637i 1.41250i −0.707963 0.706250i \(-0.750386\pi\)
0.707963 0.706250i \(-0.249614\pi\)
\(308\) 284.653 + 151.244i 0.924199 + 0.491052i
\(309\) 36.9700 85.5998i 0.119644 0.277022i
\(310\) −11.2322 38.7833i −0.0362330 0.125107i
\(311\) 310.113 179.044i 0.997148 0.575704i 0.0897451 0.995965i \(-0.471395\pi\)
0.907403 + 0.420261i \(0.138061\pi\)
\(312\) −29.9917 + 3.49182i −0.0961272 + 0.0111917i
\(313\) −193.637 111.796i −0.618647 0.357176i 0.157695 0.987488i \(-0.449594\pi\)
−0.776342 + 0.630312i \(0.782927\pi\)
\(314\) 7.90057i 0.0251610i
\(315\) −164.355 268.724i −0.521763 0.853091i
\(316\) −273.571 −0.865730
\(317\) 268.012 464.210i 0.845462 1.46438i −0.0397565 0.999209i \(-0.512658\pi\)
0.885219 0.465175i \(-0.154008\pi\)
\(318\) 1.37306 + 11.7934i 0.00431779 + 0.0370861i
\(319\) 189.967 + 329.033i 0.595508 + 1.03145i
\(320\) −85.0965 293.826i −0.265927 0.918207i
\(321\) −502.534 217.041i −1.56553 0.676139i
\(322\) 15.1164 + 24.1752i 0.0469452 + 0.0750782i
\(323\) −54.7843 −0.169611
\(324\) 268.379 + 177.210i 0.828330 + 0.546944i
\(325\) 98.1332 + 155.210i 0.301948 + 0.477568i
\(326\) 31.6718 18.2857i 0.0971528 0.0560912i
\(327\) 82.0838 61.0516i 0.251021 0.186702i
\(328\) 96.9129i 0.295466i
\(329\) −171.540 + 322.853i −0.521399 + 0.981316i
\(330\) −11.5862 27.5723i −0.0351096 0.0835523i
\(331\) −107.615 + 186.394i −0.325120 + 0.563124i −0.981537 0.191274i \(-0.938738\pi\)
0.656417 + 0.754398i \(0.272071\pi\)
\(332\) 71.2161 + 123.350i 0.214506 + 0.371536i
\(333\) 410.883 + 123.414i 1.23388 + 0.370613i
\(334\) −0.993191 + 1.72026i −0.00297363 + 0.00515047i
\(335\) −71.5177 68.6985i −0.213486 0.205070i
\(336\) 306.038 + 119.578i 0.910829 + 0.355888i
\(337\) 203.340i 0.603381i 0.953406 + 0.301691i \(0.0975510\pi\)
−0.953406 + 0.301691i \(0.902449\pi\)
\(338\) 9.88928 17.1287i 0.0292582 0.0506767i
\(339\) −22.2183 190.836i −0.0655407 0.562938i
\(340\) 88.9013 + 21.9155i 0.261474 + 0.0644575i
\(341\) −471.796 272.392i −1.38357 0.798802i
\(342\) 12.5999 + 13.3792i 0.0368418 + 0.0391206i
\(343\) 341.089 36.1586i 0.994428 0.105419i
\(344\) 19.3539i 0.0562613i
\(345\) −44.5877 + 352.584i −0.129240 + 1.02198i
\(346\) −0.335806 0.581633i −0.000970538 0.00168102i
\(347\) −9.76578 16.9148i −0.0281435 0.0487459i 0.851611 0.524175i \(-0.175626\pi\)
−0.879754 + 0.475429i \(0.842293\pi\)
\(348\) 232.873 + 313.098i 0.669176 + 0.899706i
\(349\) −19.4121 −0.0556219 −0.0278110 0.999613i \(-0.508854\pi\)
−0.0278110 + 0.999613i \(0.508854\pi\)
\(350\) 2.26661 + 29.9998i 0.00647603 + 0.0857137i
\(351\) 186.452 67.5776i 0.531203 0.192529i
\(352\) 82.0676 + 47.3817i 0.233146 + 0.134607i
\(353\) −160.280 277.612i −0.454050 0.786437i 0.544583 0.838707i \(-0.316688\pi\)
−0.998633 + 0.0522696i \(0.983354\pi\)
\(354\) 0.649040 0.0755653i 0.00183345 0.000213461i
\(355\) 231.484 67.0412i 0.652067 0.188848i
\(356\) 506.784i 1.42355i
\(357\) −75.6342 + 60.5033i −0.211860 + 0.169477i
\(358\) 37.8575i 0.105747i
\(359\) 16.9213 + 9.76951i 0.0471345 + 0.0272131i 0.523382 0.852098i \(-0.324670\pi\)
−0.476248 + 0.879311i \(0.658003\pi\)
\(360\) −30.3010 53.7023i −0.0841696 0.149173i
\(361\) 109.956 + 190.449i 0.304586 + 0.527558i
\(362\) 6.69236 11.5915i 0.0184872 0.0320207i
\(363\) −37.2048 16.0685i −0.102492 0.0442657i
\(364\) 173.094 108.233i 0.475532 0.297343i
\(365\) 448.694 + 431.007i 1.22930 + 1.18084i
\(366\) 26.7565 19.9008i 0.0731053 0.0543737i
\(367\) 369.737 213.468i 1.00746 0.581656i 0.0970116 0.995283i \(-0.469072\pi\)
0.910446 + 0.413627i \(0.135738\pi\)
\(368\) −185.351 321.038i −0.503672 0.872385i
\(369\) 146.237 + 619.514i 0.396308 + 1.67890i
\(370\) −29.5502 28.3854i −0.0798654 0.0767172i
\(371\) −85.4357 136.635i −0.230285 0.368288i
\(372\) −513.652 221.843i −1.38079 0.596351i
\(373\) −194.156 112.096i −0.520525 0.300525i 0.216625 0.976255i \(-0.430495\pi\)
−0.737149 + 0.675730i \(0.763829\pi\)
\(374\) −7.96400 + 4.59802i −0.0212941 + 0.0122942i
\(375\) −214.575 + 307.543i −0.572199 + 0.820115i
\(376\) −35.7826 + 61.9772i −0.0951664 + 0.164833i
\(377\) 240.623 0.638258
\(378\) 32.1711 + 4.55595i 0.0851088 + 0.0120528i
\(379\) 441.863 1.16586 0.582932 0.812521i \(-0.301905\pi\)
0.582932 + 0.812521i \(0.301905\pi\)
\(380\) 65.5974 + 226.499i 0.172625 + 0.596049i
\(381\) 393.333 45.7943i 1.03237 0.120195i
\(382\) 35.3949 20.4353i 0.0926569 0.0534955i
\(383\) 71.4848 123.815i 0.186644 0.323277i −0.757485 0.652853i \(-0.773572\pi\)
0.944129 + 0.329575i \(0.106905\pi\)
\(384\) 118.981 + 51.3869i 0.309846 + 0.133820i
\(385\) 302.459 + 270.725i 0.785607 + 0.703181i
\(386\) 36.2734i 0.0939726i
\(387\) 29.2042 + 123.719i 0.0754631 + 0.319688i
\(388\) −92.6766 + 53.5069i −0.238857 + 0.137904i
\(389\) −35.6423 + 20.5781i −0.0916256 + 0.0529000i −0.545113 0.838363i \(-0.683513\pi\)
0.453487 + 0.891263i \(0.350180\pi\)
\(390\) −18.7917 2.37640i −0.0481839 0.00609332i
\(391\) 109.276 0.279479
\(392\) 66.9757 4.72356i 0.170856 0.0120499i
\(393\) 95.4565 221.019i 0.242892 0.562389i
\(394\) −32.5552 + 56.3872i −0.0826274 + 0.143115i
\(395\) −334.495 82.4582i −0.846823 0.208755i
\(396\) −396.918 119.219i −1.00232 0.301059i
\(397\) −326.923 188.749i −0.823484 0.475439i 0.0281322 0.999604i \(-0.491044\pi\)
−0.851617 + 0.524165i \(0.824377\pi\)
\(398\) 32.7436 0.0822704
\(399\) −232.334 90.7799i −0.582291 0.227519i
\(400\) −15.7225 390.839i −0.0393063 0.977098i
\(401\) −81.6070 47.1158i −0.203509 0.117496i 0.394782 0.918775i \(-0.370820\pi\)
−0.598291 + 0.801279i \(0.704153\pi\)
\(402\) 10.1605 1.18295i 0.0252748 0.00294265i
\(403\) −298.802 + 172.513i −0.741444 + 0.428073i
\(404\) −62.9596 36.3497i −0.155841 0.0899746i
\(405\) 274.733 + 297.568i 0.678354 + 0.734735i
\(406\) 34.8138 + 18.4975i 0.0857482 + 0.0455603i
\(407\) −552.850 −1.35835
\(408\) −15.2130 + 11.3150i −0.0372869 + 0.0277329i
\(409\) −264.873 458.773i −0.647611 1.12169i −0.983692 0.179862i \(-0.942435\pi\)
0.336081 0.941833i \(-0.390898\pi\)
\(410\) 14.5513 59.0280i 0.0354910 0.143971i
\(411\) 374.293 278.388i 0.910688 0.677344i
\(412\) 123.404i 0.299525i
\(413\) −7.51962 + 4.70190i −0.0182073 + 0.0113847i
\(414\) −25.1325 26.6871i −0.0607066 0.0644616i
\(415\) 49.8965 + 172.286i 0.120233 + 0.415146i
\(416\) 51.9757 30.0082i 0.124942 0.0721351i
\(417\) 45.5561 + 391.288i 0.109247 + 0.938339i
\(418\) −20.5101 11.8415i −0.0490673 0.0283290i
\(419\) 208.590i 0.497828i −0.968526 0.248914i \(-0.919926\pi\)
0.968526 0.248914i \(-0.0800736\pi\)
\(420\) 340.706 + 240.255i 0.811204 + 0.572035i
\(421\) −382.542 −0.908650 −0.454325 0.890836i \(-0.650120\pi\)
−0.454325 + 0.890836i \(0.650120\pi\)
\(422\) 4.89164 8.47256i 0.0115916 0.0200772i
\(423\) 135.218 450.183i 0.319665 1.06426i
\(424\) −15.7722 27.3183i −0.0371987 0.0644300i
\(425\) 102.094 + 53.5923i 0.240221 + 0.126100i
\(426\) −9.85631 + 22.8212i −0.0231369 + 0.0535709i
\(427\) −212.358 + 399.675i −0.497326 + 0.936008i
\(428\) 724.474 1.69270
\(429\) −205.063 + 152.520i −0.478003 + 0.355525i
\(430\) 2.90596 11.7881i 0.00675804 0.0274143i
\(431\) 403.517 232.971i 0.936234 0.540535i 0.0474561 0.998873i \(-0.484889\pi\)
0.888778 + 0.458338i \(0.151555\pi\)
\(432\) −415.930 73.9200i −0.962801 0.171111i
\(433\) 769.033i 1.77606i 0.459788 + 0.888029i \(0.347926\pi\)
−0.459788 + 0.888029i \(0.652074\pi\)
\(434\) −56.4928 + 1.98965i −0.130168 + 0.00458444i
\(435\) 190.362 + 453.016i 0.437614 + 1.04142i
\(436\) −67.6953 + 117.252i −0.155265 + 0.268926i
\(437\) 140.713 + 243.721i 0.321997 + 0.557714i
\(438\) −63.7458 + 7.42168i −0.145538 + 0.0169445i
\(439\) −129.054 + 223.528i −0.293973 + 0.509176i −0.974745 0.223319i \(-0.928311\pi\)
0.680773 + 0.732495i \(0.261644\pi\)
\(440\) 57.3042 + 55.0453i 0.130237 + 0.125103i
\(441\) −421.013 + 131.259i −0.954678 + 0.297639i
\(442\) 5.82412i 0.0131767i
\(443\) −202.227 + 350.267i −0.456493 + 0.790670i −0.998773 0.0495286i \(-0.984228\pi\)
0.542279 + 0.840198i \(0.317561\pi\)
\(444\) −563.987 + 65.6628i −1.27024 + 0.147889i
\(445\) 152.752 619.646i 0.343263 1.39246i
\(446\) −15.7160 9.07361i −0.0352376 0.0203444i
\(447\) 112.522 260.531i 0.251726 0.582844i
\(448\) −427.996 + 15.0738i −0.955348 + 0.0336469i
\(449\) 24.0690i 0.0536058i −0.999641 0.0268029i \(-0.991467\pi\)
0.999641 0.0268029i \(-0.00853266\pi\)
\(450\) −10.3925 37.2588i −0.0230946 0.0827974i
\(451\) −410.136 710.377i −0.909393 1.57511i
\(452\) 127.137 + 220.208i 0.281276 + 0.487185i
\(453\) 71.3936 53.1005i 0.157602 0.117220i
\(454\) 66.4833 0.146439
\(455\) 244.265 80.1633i 0.536846 0.176183i
\(456\) −44.8257 19.3599i −0.0983019 0.0424559i
\(457\) −183.663 106.038i −0.401888 0.232030i 0.285410 0.958405i \(-0.407870\pi\)
−0.687298 + 0.726375i \(0.741204\pi\)
\(458\) 2.42252 + 4.19592i 0.00528934 + 0.00916140i
\(459\) 80.1751 95.2870i 0.174674 0.207597i
\(460\) −130.845 451.789i −0.284445 0.982150i
\(461\) 315.604i 0.684608i 0.939589 + 0.342304i \(0.111207\pi\)
−0.939589 + 0.342304i \(0.888793\pi\)
\(462\) −41.3936 + 6.30301i −0.0895966 + 0.0136429i
\(463\) 612.544i 1.32299i −0.749950 0.661495i \(-0.769922\pi\)
0.749950 0.661495i \(-0.230078\pi\)
\(464\) −443.887 256.278i −0.956654 0.552324i
\(465\) −561.176 426.070i −1.20683 0.916279i
\(466\) −29.4003 50.9229i −0.0630909 0.109277i
\(467\) −201.374 + 348.790i −0.431208 + 0.746874i −0.996978 0.0776892i \(-0.975246\pi\)
0.565770 + 0.824563i \(0.308579\pi\)
\(468\) −191.079 + 179.948i −0.408288 + 0.384505i
\(469\) −117.717 + 73.6064i −0.250995 + 0.156943i
\(470\) −31.1004 + 32.3766i −0.0661710 + 0.0688864i
\(471\) 82.2792 + 110.624i 0.174690 + 0.234871i
\(472\) −1.50344 + 0.868014i −0.00318526 + 0.00183901i
\(473\) −81.9059 141.865i −0.173163 0.299926i
\(474\) 28.5138 21.2077i 0.0601556 0.0447421i
\(475\) 11.9360 + 296.712i 0.0251285 + 0.624657i
\(476\) 60.1467 113.201i 0.126359 0.237817i
\(477\) 142.046 + 150.832i 0.297790 + 0.316210i
\(478\) −15.7203 9.07612i −0.0328877 0.0189877i
\(479\) −232.441 + 134.200i −0.485263 + 0.280167i −0.722607 0.691259i \(-0.757056\pi\)
0.237344 + 0.971426i \(0.423723\pi\)
\(480\) 97.6150 + 74.1136i 0.203365 + 0.154403i
\(481\) −175.068 + 303.226i −0.363967 + 0.630408i
\(482\) −3.27870 −0.00680229
\(483\) 463.429 + 181.076i 0.959480 + 0.374898i
\(484\) 53.6359 0.110818
\(485\) −129.443 + 37.4888i −0.266894 + 0.0772965i
\(486\) −41.7103 + 2.33501i −0.0858236 + 0.00480454i
\(487\) 60.9309 35.1785i 0.125115 0.0722351i −0.436136 0.899881i \(-0.643653\pi\)
0.561251 + 0.827645i \(0.310320\pi\)
\(488\) −44.2970 + 76.7247i −0.0907726 + 0.157223i
\(489\) 253.037 585.879i 0.517458 1.19812i
\(490\) 41.5030 + 7.17926i 0.0847001 + 0.0146516i
\(491\) 573.554i 1.16814i 0.811705 + 0.584068i \(0.198540\pi\)
−0.811705 + 0.584068i \(0.801460\pi\)
\(492\) −502.770 675.974i −1.02189 1.37393i
\(493\) 130.850 75.5461i 0.265415 0.153238i
\(494\) −12.9897 + 7.49958i −0.0262948 + 0.0151813i
\(495\) −449.377 265.407i −0.907832 0.536175i
\(496\) 734.950 1.48175
\(497\) −11.8755 337.186i −0.0238944 0.678443i
\(498\) −16.9851 7.33572i −0.0341065 0.0147304i
\(499\) −19.6456 + 34.0272i −0.0393700 + 0.0681909i −0.885039 0.465517i \(-0.845868\pi\)
0.845669 + 0.533708i \(0.179202\pi\)
\(500\) 99.3256 486.265i 0.198651 0.972530i
\(501\) 4.00862 + 34.4306i 0.00800124 + 0.0687237i
\(502\) 33.1097 + 19.1159i 0.0659556 + 0.0380795i
\(503\) 377.200 0.749901 0.374951 0.927045i \(-0.377660\pi\)
0.374951 + 0.927045i \(0.377660\pi\)
\(504\) −83.2664 + 22.7772i −0.165211 + 0.0451928i
\(505\) −66.0244 63.4218i −0.130741 0.125588i
\(506\) 40.9108 + 23.6199i 0.0808515 + 0.0466796i
\(507\) −39.9141 342.828i −0.0787261 0.676189i
\(508\) −453.871 + 262.043i −0.893447 + 0.515832i
\(509\) 581.066 + 335.479i 1.14158 + 0.659094i 0.946822 0.321757i \(-0.104273\pi\)
0.194762 + 0.980851i \(0.437607\pi\)
\(510\) −10.9649 + 4.60758i −0.0214999 + 0.00903448i
\(511\) 738.542 461.799i 1.44529 0.903716i
\(512\) −213.599 −0.417186
\(513\) 315.760 + 56.1176i 0.615517 + 0.109391i
\(514\) 31.3140 + 54.2374i 0.0609221 + 0.105520i
\(515\) −37.1959 + 150.887i −0.0722250 + 0.292984i
\(516\) −100.405 134.995i −0.194584 0.261618i
\(517\) 605.729i 1.17162i
\(518\) −48.6391 + 30.4133i −0.0938979 + 0.0587129i
\(519\) −10.7593 4.64686i −0.0207308 0.00895350i
\(520\) 48.3374 13.9992i 0.0929565 0.0269216i
\(521\) −663.160 + 382.876i −1.27286 + 0.734886i −0.975525 0.219887i \(-0.929431\pi\)
−0.297335 + 0.954773i \(0.596098\pi\)
\(522\) −48.5439 14.5808i −0.0929960 0.0279326i
\(523\) −169.809 98.0393i −0.324683 0.187456i 0.328795 0.944401i \(-0.393357\pi\)
−0.653478 + 0.756946i \(0.726691\pi\)
\(524\) 318.630i 0.608073i
\(525\) 344.165 + 396.454i 0.655553 + 0.755150i
\(526\) 62.3096 0.118459
\(527\) −108.325 + 187.624i −0.205550 + 0.356023i
\(528\) 540.732 62.9554i 1.02411 0.119234i
\(529\) −16.1743 28.0146i −0.0305752 0.0529577i
\(530\) −5.50480 19.0073i −0.0103864 0.0358628i
\(531\) 8.30094 7.81740i 0.0156327 0.0147220i
\(532\) 329.924 11.6198i 0.620159 0.0218417i
\(533\) −519.502 −0.974676
\(534\) 39.2869 + 52.8212i 0.0735710 + 0.0989161i
\(535\) 885.815 + 218.367i 1.65573 + 0.408163i
\(536\) −23.5359 + 13.5884i −0.0439102 + 0.0253516i
\(537\) 394.261 + 530.083i 0.734191 + 0.987118i
\(538\) 54.4215i 0.101155i
\(539\) 470.946 318.066i 0.873740 0.590104i
\(540\) −489.952 217.380i −0.907318 0.402555i
\(541\) −422.140 + 731.167i −0.780295 + 1.35151i 0.151475 + 0.988461i \(0.451598\pi\)
−0.931770 + 0.363050i \(0.881736\pi\)
\(542\) −4.26710 7.39083i −0.00787288 0.0136362i
\(543\) −27.0111 232.001i −0.0497441 0.427259i
\(544\) 18.8428 32.6367i 0.0346375 0.0599938i
\(545\) −118.113 + 122.959i −0.216720 + 0.225614i
\(546\) −9.65082 + 24.6995i −0.0176755 + 0.0452371i
\(547\) 160.122i 0.292727i −0.989231 0.146363i \(-0.953243\pi\)
0.989231 0.146363i \(-0.0467569\pi\)
\(548\) −308.683 + 534.654i −0.563290 + 0.975647i
\(549\) 167.393 557.303i 0.304906 1.01512i
\(550\) 26.6381 + 42.1313i 0.0484329 + 0.0766024i
\(551\) 336.985 + 194.558i 0.611587 + 0.353100i
\(552\) 89.4122 + 38.6165i 0.161979 + 0.0699574i
\(553\) −226.305 + 425.924i −0.409231 + 0.770206i
\(554\) 18.9395i 0.0341868i
\(555\) −709.379 89.7078i −1.27816 0.161636i
\(556\) −260.680 451.511i −0.468849 0.812070i
\(557\) −142.397 246.638i −0.255649 0.442797i 0.709422 0.704784i \(-0.248956\pi\)
−0.965072 + 0.261986i \(0.915623\pi\)
\(558\) 70.7347 16.6971i 0.126765 0.0299231i
\(559\) −103.747 −0.185593
\(560\) −535.984 112.276i −0.957114 0.200494i
\(561\) −63.6271 + 147.322i −0.113417 + 0.262605i
\(562\) −59.5905 34.4046i −0.106033 0.0612181i
\(563\) 90.7228 + 157.136i 0.161142 + 0.279106i 0.935278 0.353913i \(-0.115149\pi\)
−0.774137 + 0.633018i \(0.781816\pi\)
\(564\) 71.9433 + 617.931i 0.127559 + 1.09562i
\(565\) 89.0767 + 307.569i 0.157658 + 0.544370i
\(566\) 55.0038i 0.0971799i
\(567\) 497.909 271.248i 0.878146 0.478392i
\(568\) 66.0449i 0.116276i
\(569\) 350.000 + 202.073i 0.615115 + 0.355137i 0.774965 0.632005i \(-0.217768\pi\)
−0.159850 + 0.987141i \(0.551101\pi\)
\(570\) −24.3957 18.5223i −0.0427995 0.0324952i
\(571\) 369.018 + 639.158i 0.646267 + 1.11937i 0.984007 + 0.178127i \(0.0570039\pi\)
−0.337741 + 0.941239i \(0.609663\pi\)
\(572\) 169.118 292.920i 0.295660 0.512099i
\(573\) 282.782 654.751i 0.493511 1.14267i
\(574\) −75.1624 39.9358i −0.130945 0.0695746i
\(575\) −23.8084 591.841i −0.0414059 1.02929i
\(576\) 535.894 126.499i 0.930371 0.219616i
\(577\) 569.531 328.819i 0.987056 0.569877i 0.0826627 0.996578i \(-0.473658\pi\)
0.904393 + 0.426701i \(0.140324\pi\)
\(578\) −23.0133 39.8602i −0.0398154 0.0689623i
\(579\) −377.764 507.903i −0.652442 0.877207i
\(580\) −469.013 450.525i −0.808642 0.776767i
\(581\) 250.956 8.83855i 0.431938 0.0152126i
\(582\) 5.51155 12.7614i 0.00947002 0.0219268i
\(583\) −231.223 133.496i −0.396608 0.228982i
\(584\) 147.661 85.2524i 0.252845 0.145980i
\(585\) −287.871 + 162.429i −0.492088 + 0.277656i
\(586\) −28.2560 + 48.9409i −0.0482185 + 0.0835168i
\(587\) 339.097 0.577679 0.288839 0.957378i \(-0.406731\pi\)
0.288839 + 0.957378i \(0.406731\pi\)
\(588\) 442.655 380.408i 0.752815 0.646952i
\(589\) −557.949 −0.947283
\(590\) −1.04605 + 0.302953i −0.00177297 + 0.000513480i
\(591\) 131.396 + 1128.58i 0.222328 + 1.90961i
\(592\) 645.910 372.916i 1.09106 0.629926i
\(593\) 163.991 284.041i 0.276545 0.478990i −0.693979 0.719995i \(-0.744144\pi\)
0.970524 + 0.241006i \(0.0774772\pi\)
\(594\) 50.6121 18.3438i 0.0852056 0.0308818i
\(595\) 107.662 120.282i 0.180944 0.202154i
\(596\) 375.593i 0.630190i
\(597\) 458.478 341.003i 0.767970 0.571194i
\(598\) 25.9100 14.9591i 0.0433278 0.0250153i
\(599\) 726.655 419.534i 1.21311 0.700391i 0.249677 0.968329i \(-0.419676\pi\)
0.963436 + 0.267938i \(0.0863422\pi\)
\(600\) 64.5969 + 79.9288i 0.107661 + 0.133215i
\(601\) 347.260 0.577804 0.288902 0.957359i \(-0.406710\pi\)
0.288902 + 0.957359i \(0.406710\pi\)
\(602\) −15.0102 7.97534i −0.0249340 0.0132481i
\(603\) 129.948 122.378i 0.215503 0.202949i
\(604\) −58.8790 + 101.981i −0.0974818 + 0.168843i
\(605\) 65.5807 + 16.1667i 0.108398 + 0.0267218i
\(606\) 9.38007 1.09209i 0.0154787 0.00180212i
\(607\) 277.758 + 160.363i 0.457591 + 0.264190i 0.711031 0.703161i \(-0.248229\pi\)
−0.253440 + 0.967351i \(0.581562\pi\)
\(608\) 97.0537 0.159628
\(609\) 680.103 103.559i 1.11675 0.170048i
\(610\) −38.5007 + 40.0806i −0.0631159 + 0.0657059i
\(611\) 332.229 + 191.813i 0.543747 + 0.313932i
\(612\) −47.4112 + 157.846i −0.0774693 + 0.257919i
\(613\) −220.529 + 127.323i −0.359754 + 0.207704i −0.668973 0.743287i \(-0.733266\pi\)
0.309219 + 0.950991i \(0.399932\pi\)
\(614\) −64.5615 37.2746i −0.105149 0.0607078i
\(615\) −410.989 978.056i −0.668275 1.59034i
\(616\) 94.3217 58.9779i 0.153120 0.0957433i
\(617\) −126.508 −0.205037 −0.102519 0.994731i \(-0.532690\pi\)
−0.102519 + 0.994731i \(0.532690\pi\)
\(618\) −9.56655 12.8622i −0.0154798 0.0208126i
\(619\) 183.100 + 317.138i 0.295799 + 0.512339i 0.975170 0.221456i \(-0.0710808\pi\)
−0.679372 + 0.733794i \(0.737748\pi\)
\(620\) 905.414 + 223.198i 1.46034 + 0.359997i
\(621\) −629.836 111.936i −1.01423 0.180251i
\(622\) 61.5610i 0.0989727i
\(623\) −789.016 419.225i −1.26648 0.672914i
\(624\) 136.701 316.516i 0.219072 0.507237i
\(625\) 268.013 564.619i 0.428821 0.903390i
\(626\) −33.2892 + 19.2195i −0.0531777 + 0.0307021i
\(627\) −410.506 + 47.7936i −0.654714 + 0.0762259i
\(628\) −158.020 91.2329i −0.251624 0.145275i
\(629\) 219.858i 0.349535i
\(630\) −54.1362 + 1.37088i −0.0859304 + 0.00217599i
\(631\) 66.0739 0.104713 0.0523565 0.998628i \(-0.483327\pi\)
0.0523565 + 0.998628i \(0.483327\pi\)
\(632\) −47.2062 + 81.7636i −0.0746934 + 0.129373i
\(633\) −19.7431 169.576i −0.0311898 0.267893i
\(634\) −46.0755 79.8050i −0.0726742 0.125875i
\(635\) −633.932 + 183.596i −0.998319 + 0.289128i
\(636\) −251.736 108.723i −0.395811 0.170948i
\(637\) −25.3207 359.024i −0.0397499 0.563617i
\(638\) 65.3167 0.102377
\(639\) 99.6590 + 422.191i 0.155961 + 0.660705i
\(640\) −209.727 51.7010i −0.327698 0.0807827i
\(641\) −803.605 + 463.961i −1.25367 + 0.723809i −0.971837 0.235654i \(-0.924277\pi\)
−0.281837 + 0.959462i \(0.590944\pi\)
\(642\) −75.5106 + 56.1626i −0.117618 + 0.0874807i
\(643\) 455.224i 0.707968i −0.935251 0.353984i \(-0.884827\pi\)
0.935251 0.353984i \(-0.115173\pi\)
\(644\) −658.089 + 23.1775i −1.02188 + 0.0359900i
\(645\) −82.0763 195.322i −0.127250 0.302825i
\(646\) −4.70914 + 8.15648i −0.00728970 + 0.0126261i
\(647\) 321.902 + 557.551i 0.497530 + 0.861747i 0.999996 0.00284968i \(-0.000907083\pi\)
−0.502466 + 0.864597i \(0.667574\pi\)
\(648\) 99.2739 49.6332i 0.153201 0.0765945i
\(649\) −7.34689 + 12.7252i −0.0113203 + 0.0196074i
\(650\) 31.5435 1.26892i 0.0485284 0.00195218i
\(651\) −770.295 + 616.195i −1.18325 + 0.946536i
\(652\) 844.628i 1.29544i
\(653\) −285.108 + 493.822i −0.436613 + 0.756236i −0.997426 0.0717069i \(-0.977155\pi\)
0.560813 + 0.827943i \(0.310489\pi\)
\(654\) −2.03383 17.4688i −0.00310983 0.0267107i
\(655\) −96.0398 + 389.590i −0.146626 + 0.594793i
\(656\) 958.347 + 553.302i 1.46089 + 0.843448i
\(657\) −815.280 + 767.789i −1.24091 + 1.16863i
\(658\) 33.3222 + 53.2913i 0.0506417 + 0.0809899i
\(659\) 629.009i 0.954491i −0.878770 0.477245i \(-0.841635\pi\)
0.878770 0.477245i \(-0.158365\pi\)
\(660\) 685.268 + 86.6588i 1.03829 + 0.131301i
\(661\) −199.704 345.897i −0.302124 0.523294i 0.674493 0.738281i \(-0.264362\pi\)
−0.976617 + 0.214987i \(0.931029\pi\)
\(662\) 18.5007 + 32.0441i 0.0279466 + 0.0484050i
\(663\) 60.6543 + 81.5496i 0.0914846 + 0.123001i
\(664\) 49.1550 0.0740286
\(665\) 406.901 + 85.2366i 0.611882 + 0.128175i
\(666\) 53.6930 50.5653i 0.0806201 0.0759238i
\(667\) −672.171 388.078i −1.00775 0.581826i
\(668\) −22.9380 39.7298i −0.0343384 0.0594758i
\(669\) −314.551 + 36.6220i −0.470181 + 0.0547414i
\(670\) −16.3756 + 4.74262i −0.0244412 + 0.00707854i
\(671\) 749.861i 1.11753i
\(672\) 133.991 107.185i 0.199391 0.159502i
\(673\) 1005.37i 1.49387i 0.664900 + 0.746933i \(0.268474\pi\)
−0.664900 + 0.746933i \(0.731526\pi\)
\(674\) 30.2739 + 17.4787i 0.0449168 + 0.0259327i
\(675\) −533.543 413.469i −0.790434 0.612547i
\(676\) 228.396 + 395.593i 0.337863 + 0.585196i
\(677\) 134.300 232.614i 0.198375 0.343595i −0.749627 0.661861i \(-0.769767\pi\)
0.948002 + 0.318266i \(0.103100\pi\)
\(678\) −30.3222 13.0959i −0.0447230 0.0193155i
\(679\) 6.64067 + 188.551i 0.00978008 + 0.277689i
\(680\) 21.8904 22.7887i 0.0321918 0.0335129i
\(681\) 930.903 692.379i 1.36696 1.01671i
\(682\) −81.1093 + 46.8285i −0.118929 + 0.0686634i
\(683\) 158.562 + 274.638i 0.232156 + 0.402105i 0.958442 0.285287i \(-0.0920888\pi\)
−0.726287 + 0.687392i \(0.758755\pi\)
\(684\) −413.098 + 97.5128i −0.603945 + 0.142563i
\(685\) −538.580 + 560.681i −0.786247 + 0.818512i
\(686\) 23.9359 53.8906i 0.0348920 0.0785578i
\(687\) 77.6180 + 33.5226i 0.112981 + 0.0487957i
\(688\) 191.386 + 110.497i 0.278177 + 0.160606i
\(689\) −146.440 + 84.5471i −0.212540 + 0.122710i
\(690\) 48.6613 + 36.9458i 0.0705236 + 0.0535446i
\(691\) 449.553 778.648i 0.650583 1.12684i −0.332399 0.943139i \(-0.607858\pi\)
0.982982 0.183704i \(-0.0588087\pi\)
\(692\) 15.5111 0.0224148
\(693\) −513.954 + 519.342i −0.741637 + 0.749412i
\(694\) −3.35779 −0.00483831
\(695\) −182.642 630.636i −0.262794 0.907389i
\(696\) 133.761 15.5733i 0.192185 0.0223754i
\(697\) −282.503 + 163.103i −0.405313 + 0.234007i
\(698\) −1.66862 + 2.89014i −0.00239057 + 0.00414060i
\(699\) −941.994 406.840i −1.34763 0.582032i
\(700\) −626.202 301.092i −0.894575 0.430131i
\(701\) 430.110i 0.613566i −0.951779 0.306783i \(-0.900747\pi\)
0.951779 0.306783i \(-0.0992526\pi\)
\(702\) 5.96586 33.5685i 0.00849838 0.0478184i
\(703\) −490.353 + 283.106i −0.697515 + 0.402711i
\(704\) −614.492 + 354.777i −0.872859 + 0.503945i
\(705\) −98.2882 + 777.229i −0.139416 + 1.10245i
\(706\) −55.1092 −0.0780584
\(707\) −108.675 + 67.9528i −0.153713 + 0.0961143i
\(708\) −5.98349 + 13.8541i −0.00845126 + 0.0195680i
\(709\) 354.562 614.119i 0.500087 0.866176i −0.499913 0.866076i \(-0.666635\pi\)
1.00000 0.000100361i \(-3.19460e-5\pi\)
\(710\) 9.91654 40.2269i 0.0139670 0.0566575i
\(711\) 178.387 593.904i 0.250896 0.835308i
\(712\) −151.465 87.4486i −0.212732 0.122821i
\(713\) 1112.92 1.56090
\(714\) 2.50658 + 16.4614i 0.00351062 + 0.0230552i
\(715\) 295.071 307.180i 0.412687 0.429622i
\(716\) −757.191 437.164i −1.05753 0.610565i
\(717\) −314.639 + 36.6322i −0.438826 + 0.0510909i
\(718\) 2.90904 1.67953i 0.00405159 0.00233918i
\(719\) −740.112 427.304i −1.02936 0.594303i −0.112561 0.993645i \(-0.535905\pi\)
−0.916802 + 0.399342i \(0.869239\pi\)
\(720\) 704.045 + 6.96155i 0.977840 + 0.00966882i
\(721\) 192.129 + 102.083i 0.266476 + 0.141586i
\(722\) 37.8062 0.0523632
\(723\) −45.9086 + 34.1455i −0.0634974 + 0.0472276i
\(724\) 154.562 + 267.709i 0.213483 + 0.369764i
\(725\) −437.667 692.224i −0.603679 0.954792i
\(726\) −5.59038 + 4.15796i −0.00770024 + 0.00572722i
\(727\) 1136.87i 1.56378i −0.623413 0.781892i \(-0.714255\pi\)
0.623413 0.781892i \(-0.285745\pi\)
\(728\) −2.47979 70.4096i −0.00340631 0.0967165i
\(729\) −559.712 + 467.080i −0.767781 + 0.640713i
\(730\) 102.739 29.7547i 0.140738 0.0407598i
\(731\) −56.4170 + 32.5724i −0.0771778 + 0.0445586i
\(732\) 89.0622 + 764.967i 0.121670 + 1.04504i
\(733\) −158.068 91.2606i −0.215645 0.124503i 0.388287 0.921539i \(-0.373067\pi\)
−0.603932 + 0.797036i \(0.706400\pi\)
\(734\) 73.3970i 0.0999960i
\(735\) 655.895 331.702i 0.892375 0.451296i
\(736\) −193.590 −0.263029
\(737\) −115.013 + 199.208i −0.156055 + 0.270296i
\(738\) 104.806 + 31.4798i 0.142013 + 0.0426555i
\(739\) −692.467 1199.39i −0.937032 1.62299i −0.770969 0.636872i \(-0.780228\pi\)
−0.166063 0.986115i \(-0.553105\pi\)
\(740\) 908.974 263.252i 1.22834 0.355747i
\(741\) −103.779 + 240.288i −0.140052 + 0.324276i
\(742\) −27.6866 + 0.975107i −0.0373135 + 0.00131416i
\(743\) −82.8544 −0.111513 −0.0557566 0.998444i \(-0.517757\pi\)
−0.0557566 + 0.998444i \(0.517757\pi\)
\(744\) −154.937 + 115.238i −0.208249 + 0.154889i
\(745\) −113.209 + 459.238i −0.151959 + 0.616427i
\(746\) −33.3785 + 19.2711i −0.0447432 + 0.0258325i
\(747\) −314.222 + 74.1729i −0.420646 + 0.0992943i
\(748\) 212.385i 0.283937i
\(749\) 599.304 1127.94i 0.800139 1.50593i
\(750\) 27.3437 + 58.3824i 0.0364583 + 0.0778432i
\(751\) −193.183 + 334.603i −0.257234 + 0.445543i −0.965500 0.260403i \(-0.916145\pi\)
0.708266 + 0.705946i \(0.249478\pi\)
\(752\) −408.585 707.689i −0.543331 0.941076i
\(753\) 662.684 77.1538i 0.880058 0.102462i
\(754\) 20.6835 35.8248i 0.0274317 0.0475130i
\(755\) −102.730 + 106.946i −0.136066 + 0.141650i
\(756\) −462.624 + 590.847i −0.611937 + 0.781544i
\(757\) 1387.66i 1.83311i −0.399908 0.916555i \(-0.630958\pi\)
0.399908 0.916555i \(-0.369042\pi\)
\(758\) 37.9816 65.7861i 0.0501077 0.0867891i
\(759\) 818.821 95.3323i 1.07882 0.125602i
\(760\) 79.0141 + 19.4782i 0.103966 + 0.0256292i
\(761\) −500.579 289.009i −0.657791 0.379776i 0.133644 0.991029i \(-0.457332\pi\)
−0.791435 + 0.611254i \(0.790666\pi\)
\(762\) 26.9921 62.4972i 0.0354227 0.0820173i
\(763\) 126.551 + 202.389i 0.165859 <