Properties

Label 105.3.o.b.44.11
Level 105
Weight 3
Character 105.44
Analytic conductor 2.861
Analytic rank 0
Dimension 40
CM no
Inner twists 8

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.o (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 44.11
Character \(\chi\) \(=\) 105.44
Dual form 105.3.o.b.74.11

$q$-expansion

\(f(q)\) \(=\) \(q+(0.0859580 - 0.148884i) q^{2} +(-2.40718 - 1.79039i) q^{3} +(1.98522 + 3.43851i) q^{4} +(-4.85467 + 1.19675i) q^{5} +(-0.473476 + 0.204491i) q^{6} +(-6.99566 + 0.246384i) q^{7} +1.37025 q^{8} +(2.58900 + 8.61957i) q^{9} +O(q^{10})\) \(q+(0.0859580 - 0.148884i) q^{2} +(-2.40718 - 1.79039i) q^{3} +(1.98522 + 3.43851i) q^{4} +(-4.85467 + 1.19675i) q^{5} +(-0.473476 + 0.204491i) q^{6} +(-6.99566 + 0.246384i) q^{7} +1.37025 q^{8} +(2.58900 + 8.61957i) q^{9} +(-0.239121 + 0.825650i) q^{10} +(-10.0440 + 5.79890i) q^{11} +(1.37749 - 11.8314i) q^{12} +7.34521i q^{13} +(-0.564650 + 1.06272i) q^{14} +(13.8287 + 5.81096i) q^{15} +(-7.82311 + 13.5500i) q^{16} +(-2.30611 - 3.99429i) q^{17} +(1.50586 + 0.355461i) q^{18} +(5.93904 - 10.2867i) q^{19} +(-13.7526 - 14.3170i) q^{20} +(17.2809 + 11.9319i) q^{21} +1.99385i q^{22} +(-11.8464 + 20.5186i) q^{23} +(-3.29843 - 2.45328i) q^{24} +(22.1356 - 11.6196i) q^{25} +(1.09358 + 0.631380i) q^{26} +(9.20022 - 25.3842i) q^{27} +(-14.7351 - 23.5655i) q^{28} -32.7592i q^{29} +(2.05384 - 1.55937i) q^{30} +(-23.4865 - 40.6798i) q^{31} +(4.08541 + 7.07614i) q^{32} +(34.5599 + 4.02368i) q^{33} -0.792913 q^{34} +(33.6668 - 9.56817i) q^{35} +(-24.4987 + 26.0141i) q^{36} +(41.2822 + 23.8343i) q^{37} +(-1.02102 - 1.76845i) q^{38} +(13.1508 - 17.6812i) q^{39} +(-6.65209 + 1.63984i) q^{40} +70.7266i q^{41} +(3.26189 - 1.54721i) q^{42} +14.1244i q^{43} +(-39.8791 - 23.0242i) q^{44} +(-22.8842 - 38.7468i) q^{45} +(2.03658 + 3.52747i) q^{46} +(-26.1140 + 45.2307i) q^{47} +(43.0914 - 18.6109i) q^{48} +(48.8786 - 3.44723i) q^{49} +(0.172755 - 4.29442i) q^{50} +(-1.60014 + 13.7438i) q^{51} +(-25.2566 + 14.5819i) q^{52} +(-11.5105 - 19.9368i) q^{53} +(-2.98845 - 3.55173i) q^{54} +(41.8204 - 40.1718i) q^{55} +(-9.58578 + 0.337606i) q^{56} +(-32.7136 + 14.1288i) q^{57} +(-4.87730 - 2.81591i) q^{58} +(1.09721 - 0.633473i) q^{59} +(7.47201 + 59.0861i) q^{60} +(-32.3278 + 55.9933i) q^{61} -8.07541 q^{62} +(-20.2355 - 59.6617i) q^{63} -61.1802 q^{64} +(-8.79039 - 35.6586i) q^{65} +(3.56976 - 4.79954i) q^{66} +(17.1764 - 9.91678i) q^{67} +(9.15627 - 15.8591i) q^{68} +(65.2526 - 28.1821i) q^{69} +(1.46938 - 5.83489i) q^{70} +48.1993i q^{71} +(3.54757 + 11.8109i) q^{72} +(-107.763 + 62.2168i) q^{73} +(7.09706 - 4.09749i) q^{74} +(-74.0880 - 11.6608i) q^{75} +47.1613 q^{76} +(68.8356 - 43.0418i) q^{77} +(-1.50203 - 3.47778i) q^{78} +(-34.4509 + 59.6707i) q^{79} +(21.7626 - 75.1431i) q^{80} +(-67.5941 + 44.6322i) q^{81} +(10.5300 + 6.07951i) q^{82} +35.8731 q^{83} +(-6.72137 + 83.1080i) q^{84} +(15.9756 + 16.6311i) q^{85} +(2.10289 + 1.21410i) q^{86} +(-58.6517 + 78.8571i) q^{87} +(-13.7627 + 7.94592i) q^{88} +(110.539 + 63.8196i) q^{89} +(-7.73584 + 0.0764914i) q^{90} +(-1.80974 - 51.3846i) q^{91} -94.0709 q^{92} +(-16.2966 + 139.974i) q^{93} +(4.48941 + 7.77588i) q^{94} +(-16.5214 + 57.0462i) q^{95} +(2.83474 - 24.3480i) q^{96} -26.9526i q^{97} +(3.68827 - 7.57354i) q^{98} +(-75.9879 - 71.5615i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40q - 44q^{4} + 80q^{6} + 12q^{9} + O(q^{10}) \) \( 40q - 44q^{4} + 80q^{6} + 12q^{9} + 62q^{10} + 84q^{15} - 116q^{16} - 56q^{19} + 36q^{21} - 12q^{24} - 6q^{25} - 20q^{30} - 444q^{31} + 256q^{34} - 688q^{36} + 168q^{39} + 54q^{40} - 40q^{45} + 304q^{46} + 156q^{49} + 156q^{51} - 140q^{54} - 500q^{55} - 130q^{60} + 288q^{61} + 472q^{64} + 340q^{66} - 272q^{69} + 710q^{70} - 524q^{75} + 400q^{76} - 340q^{79} + 496q^{84} + 896q^{85} + 1356q^{90} - 656q^{91} - 560q^{94} + 472q^{96} - 336q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0859580 0.148884i 0.0429790 0.0744418i −0.843736 0.536759i \(-0.819648\pi\)
0.886715 + 0.462317i \(0.152982\pi\)
\(3\) −2.40718 1.79039i −0.802392 0.596797i
\(4\) 1.98522 + 3.43851i 0.496306 + 0.859627i
\(5\) −4.85467 + 1.19675i −0.970933 + 0.239350i
\(6\) −0.473476 + 0.204491i −0.0789126 + 0.0340818i
\(7\) −6.99566 + 0.246384i −0.999380 + 0.0351977i
\(8\) 1.37025 0.171281
\(9\) 2.58900 + 8.61957i 0.287667 + 0.957730i
\(10\) −0.239121 + 0.825650i −0.0239121 + 0.0825650i
\(11\) −10.0440 + 5.79890i −0.913089 + 0.527172i −0.881424 0.472326i \(-0.843414\pi\)
−0.0316655 + 0.999499i \(0.510081\pi\)
\(12\) 1.37749 11.8314i 0.114791 0.985951i
\(13\) 7.34521i 0.565016i 0.959265 + 0.282508i \(0.0911665\pi\)
−0.959265 + 0.282508i \(0.908834\pi\)
\(14\) −0.564650 + 1.06272i −0.0403322 + 0.0759084i
\(15\) 13.8287 + 5.81096i 0.921913 + 0.387397i
\(16\) −7.82311 + 13.5500i −0.488944 + 0.846876i
\(17\) −2.30611 3.99429i −0.135653 0.234958i 0.790194 0.612857i \(-0.209980\pi\)
−0.925847 + 0.377899i \(0.876647\pi\)
\(18\) 1.50586 + 0.355461i 0.0836588 + 0.0197478i
\(19\) 5.93904 10.2867i 0.312581 0.541406i −0.666339 0.745649i \(-0.732140\pi\)
0.978920 + 0.204242i \(0.0654730\pi\)
\(20\) −13.7526 14.3170i −0.687631 0.715849i
\(21\) 17.2809 + 11.9319i 0.822901 + 0.568185i
\(22\) 1.99385i 0.0906293i
\(23\) −11.8464 + 20.5186i −0.515061 + 0.892111i 0.484786 + 0.874633i \(0.338897\pi\)
−0.999847 + 0.0174789i \(0.994436\pi\)
\(24\) −3.29843 2.45328i −0.137434 0.102220i
\(25\) 22.1356 11.6196i 0.885423 0.464786i
\(26\) 1.09358 + 0.631380i 0.0420608 + 0.0242838i
\(27\) 9.20022 25.3842i 0.340749 0.940154i
\(28\) −14.7351 23.5655i −0.526255 0.841625i
\(29\) 32.7592i 1.12963i −0.825219 0.564813i \(-0.808948\pi\)
0.825219 0.564813i \(-0.191052\pi\)
\(30\) 2.05384 1.55937i 0.0684614 0.0519789i
\(31\) −23.4865 40.6798i −0.757629 1.31225i −0.944057 0.329784i \(-0.893024\pi\)
0.186427 0.982469i \(-0.440309\pi\)
\(32\) 4.08541 + 7.07614i 0.127669 + 0.221129i
\(33\) 34.5599 + 4.02368i 1.04727 + 0.121930i
\(34\) −0.792913 −0.0233210
\(35\) 33.6668 9.56817i 0.961907 0.273376i
\(36\) −24.4987 + 26.0141i −0.680520 + 0.722613i
\(37\) 41.2822 + 23.8343i 1.11573 + 0.644170i 0.940309 0.340323i \(-0.110536\pi\)
0.175426 + 0.984493i \(0.443870\pi\)
\(38\) −1.02102 1.76845i −0.0268688 0.0465382i
\(39\) 13.1508 17.6812i 0.337200 0.453365i
\(40\) −6.65209 + 1.63984i −0.166302 + 0.0409961i
\(41\) 70.7266i 1.72504i 0.506024 + 0.862520i \(0.331115\pi\)
−0.506024 + 0.862520i \(0.668885\pi\)
\(42\) 3.26189 1.54721i 0.0776641 0.0368382i
\(43\) 14.1244i 0.328474i 0.986421 + 0.164237i \(0.0525162\pi\)
−0.986421 + 0.164237i \(0.947484\pi\)
\(44\) −39.8791 23.0242i −0.906343 0.523277i
\(45\) −22.8842 38.7468i −0.508538 0.861039i
\(46\) 2.03658 + 3.52747i 0.0442736 + 0.0766841i
\(47\) −26.1140 + 45.2307i −0.555616 + 0.962356i 0.442239 + 0.896897i \(0.354184\pi\)
−0.997855 + 0.0654585i \(0.979149\pi\)
\(48\) 43.0914 18.6109i 0.897738 0.387727i
\(49\) 48.8786 3.44723i 0.997522 0.0703517i
\(50\) 0.172755 4.29442i 0.00345509 0.0858885i
\(51\) −1.60014 + 13.7438i −0.0313753 + 0.269486i
\(52\) −25.2566 + 14.5819i −0.485703 + 0.280421i
\(53\) −11.5105 19.9368i −0.217179 0.376166i 0.736765 0.676149i \(-0.236352\pi\)
−0.953945 + 0.299983i \(0.903019\pi\)
\(54\) −2.98845 3.55173i −0.0553417 0.0657728i
\(55\) 41.8204 40.1718i 0.760370 0.730397i
\(56\) −9.58578 + 0.337606i −0.171175 + 0.00602868i
\(57\) −32.7136 + 14.1288i −0.573922 + 0.247873i
\(58\) −4.87730 2.81591i −0.0840914 0.0485502i
\(59\) 1.09721 0.633473i 0.0185967 0.0107368i −0.490673 0.871344i \(-0.663249\pi\)
0.509270 + 0.860607i \(0.329916\pi\)
\(60\) 7.47201 + 59.0861i 0.124534 + 0.984768i
\(61\) −32.3278 + 55.9933i −0.529963 + 0.917923i 0.469426 + 0.882972i \(0.344461\pi\)
−0.999389 + 0.0349515i \(0.988872\pi\)
\(62\) −8.07541 −0.130249
\(63\) −20.2355 59.6617i −0.321199 0.947012i
\(64\) −61.1802 −0.955940
\(65\) −8.79039 35.6586i −0.135237 0.548593i
\(66\) 3.56976 4.79954i 0.0540873 0.0727203i
\(67\) 17.1764 9.91678i 0.256364 0.148012i −0.366311 0.930493i \(-0.619379\pi\)
0.622675 + 0.782481i \(0.286046\pi\)
\(68\) 9.15627 15.8591i 0.134651 0.233222i
\(69\) 65.2526 28.1821i 0.945690 0.408437i
\(70\) 1.46938 5.83489i 0.0209912 0.0833555i
\(71\) 48.1993i 0.678863i 0.940631 + 0.339432i \(0.110235\pi\)
−0.940631 + 0.339432i \(0.889765\pi\)
\(72\) 3.54757 + 11.8109i 0.0492718 + 0.164041i
\(73\) −107.763 + 62.2168i −1.47620 + 0.852285i −0.999639 0.0268558i \(-0.991451\pi\)
−0.476562 + 0.879141i \(0.658117\pi\)
\(74\) 7.09706 4.09749i 0.0959063 0.0553715i
\(75\) −74.0880 11.6608i −0.987840 0.155477i
\(76\) 47.1613 0.620543
\(77\) 68.8356 43.0418i 0.893968 0.558984i
\(78\) −1.50203 3.47778i −0.0192568 0.0445869i
\(79\) −34.4509 + 59.6707i −0.436087 + 0.755325i −0.997384 0.0722896i \(-0.976969\pi\)
0.561296 + 0.827615i \(0.310303\pi\)
\(80\) 21.7626 75.1431i 0.272032 0.939289i
\(81\) −67.5941 + 44.6322i −0.834495 + 0.551015i
\(82\) 10.5300 + 6.07951i 0.128415 + 0.0741404i
\(83\) 35.8731 0.432206 0.216103 0.976371i \(-0.430665\pi\)
0.216103 + 0.976371i \(0.430665\pi\)
\(84\) −6.72137 + 83.1080i −0.0800163 + 0.989381i
\(85\) 15.9756 + 16.6311i 0.187948 + 0.195660i
\(86\) 2.10289 + 1.21410i 0.0244522 + 0.0141175i
\(87\) −58.6517 + 78.8571i −0.674158 + 0.906404i
\(88\) −13.7627 + 7.94592i −0.156395 + 0.0902945i
\(89\) 110.539 + 63.8196i 1.24201 + 0.717074i 0.969503 0.245080i \(-0.0788143\pi\)
0.272506 + 0.962154i \(0.412148\pi\)
\(90\) −7.73584 + 0.0764914i −0.0859538 + 0.000849904i
\(91\) −1.80974 51.3846i −0.0198873 0.564666i
\(92\) −94.0709 −1.02251
\(93\) −16.2966 + 139.974i −0.175232 + 1.50509i
\(94\) 4.48941 + 7.77588i 0.0477597 + 0.0827221i
\(95\) −16.5214 + 57.0462i −0.173910 + 0.600486i
\(96\) 2.83474 24.3480i 0.0295286 0.253625i
\(97\) 26.9526i 0.277862i −0.990302 0.138931i \(-0.955633\pi\)
0.990302 0.138931i \(-0.0443666\pi\)
\(98\) 3.68827 7.57354i 0.0376354 0.0772810i
\(99\) −75.9879 71.5615i −0.767555 0.722843i
\(100\) 83.8983 + 53.0457i 0.838983 + 0.530457i
\(101\) 15.8571 9.15508i 0.157001 0.0906444i −0.419441 0.907782i \(-0.637774\pi\)
0.576442 + 0.817138i \(0.304441\pi\)
\(102\) 1.90868 + 1.41962i 0.0187126 + 0.0139179i
\(103\) −26.9167 15.5404i −0.261327 0.150877i 0.363613 0.931550i \(-0.381543\pi\)
−0.624940 + 0.780673i \(0.714877\pi\)
\(104\) 10.0648i 0.0967765i
\(105\) −98.1726 37.2443i −0.934977 0.354708i
\(106\) −3.95768 −0.0373366
\(107\) 91.2333 158.021i 0.852648 1.47683i −0.0261619 0.999658i \(-0.508329\pi\)
0.878810 0.477172i \(-0.158338\pi\)
\(108\) 105.548 18.7582i 0.977297 0.173687i
\(109\) 17.0498 + 29.5311i 0.156420 + 0.270928i 0.933575 0.358381i \(-0.116671\pi\)
−0.777155 + 0.629309i \(0.783338\pi\)
\(110\) −2.38614 9.67945i −0.0216921 0.0879950i
\(111\) −56.7009 131.285i −0.510819 1.18274i
\(112\) 51.3893 96.7188i 0.458833 0.863561i
\(113\) 64.0417 0.566740 0.283370 0.959011i \(-0.408547\pi\)
0.283370 + 0.959011i \(0.408547\pi\)
\(114\) −0.708453 + 6.08499i −0.00621450 + 0.0533771i
\(115\) 32.9547 113.788i 0.286563 0.989461i
\(116\) 112.643 65.0342i 0.971057 0.560640i
\(117\) −63.3126 + 19.0168i −0.541134 + 0.162537i
\(118\) 0.217808i 0.00184583i
\(119\) 17.1169 + 27.3745i 0.143839 + 0.230038i
\(120\) 18.9487 + 7.96245i 0.157906 + 0.0663537i
\(121\) 6.75440 11.6990i 0.0558215 0.0966857i
\(122\) 5.55766 + 9.62615i 0.0455546 + 0.0789028i
\(123\) 126.628 170.251i 1.02950 1.38416i
\(124\) 93.2519 161.517i 0.752031 1.30256i
\(125\) −93.5550 + 82.9003i −0.748440 + 0.663202i
\(126\) −10.6221 2.11567i −0.0843020 0.0167910i
\(127\) 131.997i 1.03934i −0.854366 0.519672i \(-0.826054\pi\)
0.854366 0.519672i \(-0.173946\pi\)
\(128\) −21.6006 + 37.4133i −0.168754 + 0.292291i
\(129\) 25.2882 33.9999i 0.196032 0.263565i
\(130\) −6.06458 1.75639i −0.0466506 0.0135107i
\(131\) −69.4990 40.1253i −0.530527 0.306300i 0.210704 0.977550i \(-0.432424\pi\)
−0.741231 + 0.671250i \(0.765758\pi\)
\(132\) 54.7737 + 126.822i 0.414952 + 0.960776i
\(133\) −39.0131 + 73.4257i −0.293331 + 0.552073i
\(134\) 3.40971i 0.0254456i
\(135\) −14.2855 + 134.242i −0.105818 + 0.994385i
\(136\) −3.15993 5.47317i −0.0232348 0.0402439i
\(137\) 77.7452 + 134.659i 0.567483 + 0.982909i 0.996814 + 0.0797620i \(0.0254160\pi\)
−0.429331 + 0.903147i \(0.641251\pi\)
\(138\) 1.41313 12.1375i 0.0102400 0.0879530i
\(139\) −131.310 −0.944678 −0.472339 0.881417i \(-0.656590\pi\)
−0.472339 + 0.881417i \(0.656590\pi\)
\(140\) 99.7362 + 96.7684i 0.712401 + 0.691203i
\(141\) 143.842 62.1242i 1.02015 0.440597i
\(142\) 7.17608 + 4.14311i 0.0505358 + 0.0291768i
\(143\) −42.5941 73.7752i −0.297861 0.515911i
\(144\) −137.049 32.3508i −0.951732 0.224658i
\(145\) 39.2045 + 159.035i 0.270376 + 1.09679i
\(146\) 21.3921i 0.146521i
\(147\) −123.831 79.2137i −0.842390 0.538868i
\(148\) 189.265i 1.27882i
\(149\) −81.9236 47.2986i −0.549823 0.317440i 0.199228 0.979953i \(-0.436157\pi\)
−0.749050 + 0.662513i \(0.769490\pi\)
\(150\) −8.10455 + 10.0281i −0.0540303 + 0.0668543i
\(151\) 14.8293 + 25.6851i 0.0982074 + 0.170100i 0.910943 0.412533i \(-0.135356\pi\)
−0.812735 + 0.582633i \(0.802022\pi\)
\(152\) 8.13795 14.0953i 0.0535392 0.0927325i
\(153\) 28.4586 30.2189i 0.186004 0.197509i
\(154\) −0.491251 13.9483i −0.00318994 0.0905732i
\(155\) 162.703 + 169.379i 1.04970 + 1.09277i
\(156\) 86.9043 + 10.1179i 0.557079 + 0.0648586i
\(157\) 39.7991 22.9780i 0.253497 0.146357i −0.367867 0.929878i \(-0.619912\pi\)
0.621365 + 0.783522i \(0.286579\pi\)
\(158\) 5.92266 + 10.2583i 0.0374852 + 0.0649262i
\(159\) −7.98680 + 68.5997i −0.0502314 + 0.431444i
\(160\) −28.3017 29.4631i −0.176885 0.184144i
\(161\) 77.8180 146.460i 0.483341 0.909688i
\(162\) 0.834748 + 13.9001i 0.00515277 + 0.0858034i
\(163\) −184.229 106.364i −1.13024 0.652542i −0.186242 0.982504i \(-0.559631\pi\)
−0.943994 + 0.329962i \(0.892964\pi\)
\(164\) −243.194 + 140.408i −1.48289 + 0.856147i
\(165\) −172.592 + 21.8260i −1.04601 + 0.132279i
\(166\) 3.08358 5.34092i 0.0185758 0.0321742i
\(167\) −11.5544 −0.0691879 −0.0345940 0.999401i \(-0.511014\pi\)
−0.0345940 + 0.999401i \(0.511014\pi\)
\(168\) 23.6791 + 16.3496i 0.140947 + 0.0973191i
\(169\) 115.048 0.680756
\(170\) 3.84933 0.948919i 0.0226431 0.00558188i
\(171\) 104.043 + 24.5597i 0.608441 + 0.143624i
\(172\) −48.5668 + 28.0401i −0.282365 + 0.163024i
\(173\) 1.95332 3.38324i 0.0112908 0.0195563i −0.860325 0.509746i \(-0.829739\pi\)
0.871616 + 0.490190i \(0.163073\pi\)
\(174\) 6.69895 + 15.5107i 0.0384997 + 0.0891418i
\(175\) −151.990 + 86.7410i −0.868515 + 0.495663i
\(176\) 181.462i 1.03103i
\(177\) −3.77534 0.439548i −0.0213296 0.00248332i
\(178\) 19.0034 10.9716i 0.106761 0.0616382i
\(179\) 190.707 110.105i 1.06540 0.615110i 0.138480 0.990365i \(-0.455778\pi\)
0.926921 + 0.375256i \(0.122445\pi\)
\(180\) 87.8007 155.609i 0.487782 0.864492i
\(181\) 77.8562 0.430145 0.215072 0.976598i \(-0.431001\pi\)
0.215072 + 0.976598i \(0.431001\pi\)
\(182\) −7.80589 4.14748i −0.0428895 0.0227883i
\(183\) 178.069 76.9065i 0.973052 0.420254i
\(184\) −16.2325 + 28.1155i −0.0882200 + 0.152802i
\(185\) −228.935 66.3030i −1.23749 0.358395i
\(186\) 19.4389 + 14.4581i 0.104510 + 0.0777319i
\(187\) 46.3250 + 26.7457i 0.247727 + 0.143025i
\(188\) −207.368 −1.10302
\(189\) −58.1074 + 179.846i −0.307446 + 0.951565i
\(190\) 7.07309 + 7.36334i 0.0372268 + 0.0387544i
\(191\) −205.885 118.868i −1.07793 0.622345i −0.147594 0.989048i \(-0.547153\pi\)
−0.930338 + 0.366703i \(0.880486\pi\)
\(192\) 147.271 + 109.536i 0.767039 + 0.570502i
\(193\) −182.727 + 105.498i −0.946773 + 0.546620i −0.892077 0.451883i \(-0.850752\pi\)
−0.0546961 + 0.998503i \(0.517419\pi\)
\(194\) −4.01279 2.31679i −0.0206845 0.0119422i
\(195\) −42.6827 + 101.575i −0.218886 + 0.520896i
\(196\) 108.888 + 161.226i 0.555552 + 0.822581i
\(197\) −378.734 −1.92251 −0.961253 0.275667i \(-0.911101\pi\)
−0.961253 + 0.275667i \(0.911101\pi\)
\(198\) −17.1861 + 5.16207i −0.0867985 + 0.0260711i
\(199\) 95.2314 + 164.946i 0.478550 + 0.828873i 0.999698 0.0245938i \(-0.00782923\pi\)
−0.521148 + 0.853467i \(0.674496\pi\)
\(200\) 30.3312 15.9218i 0.151656 0.0796089i
\(201\) −59.1015 6.88096i −0.294037 0.0342336i
\(202\) 3.14781i 0.0155832i
\(203\) 8.07132 + 229.172i 0.0397602 + 1.12893i
\(204\) −50.4348 + 21.7824i −0.247229 + 0.106777i
\(205\) −84.6421 343.354i −0.412888 1.67490i
\(206\) −4.62741 + 2.67164i −0.0224632 + 0.0129691i
\(207\) −207.532 48.9883i −1.00257 0.236658i
\(208\) −99.5278 57.4624i −0.478499 0.276262i
\(209\) 137.760i 0.659137i
\(210\) −13.9838 + 11.4148i −0.0665895 + 0.0543564i
\(211\) 56.9073 0.269703 0.134851 0.990866i \(-0.456944\pi\)
0.134851 + 0.990866i \(0.456944\pi\)
\(212\) 45.7018 79.1579i 0.215575 0.373386i
\(213\) 86.2955 116.024i 0.405143 0.544715i
\(214\) −15.6845 27.1663i −0.0732919 0.126945i
\(215\) −16.9034 68.5692i −0.0786203 0.318927i
\(216\) 12.6066 34.7826i 0.0583637 0.161030i
\(217\) 174.327 + 278.796i 0.803348 + 1.28477i
\(218\) 5.86227 0.0268911
\(219\) 370.796 + 43.1704i 1.69313 + 0.197125i
\(220\) 221.154 + 64.0495i 1.00524 + 0.291134i
\(221\) 29.3389 16.9388i 0.132755 0.0766464i
\(222\) −24.4200 2.84313i −0.110000 0.0128069i
\(223\) 105.559i 0.473357i 0.971588 + 0.236679i \(0.0760589\pi\)
−0.971588 + 0.236679i \(0.923941\pi\)
\(224\) −30.3236 48.4957i −0.135373 0.216499i
\(225\) 157.465 + 160.716i 0.699847 + 0.714293i
\(226\) 5.50489 9.53475i 0.0243579 0.0421892i
\(227\) 193.360 + 334.909i 0.851805 + 1.47537i 0.879577 + 0.475756i \(0.157825\pi\)
−0.0277721 + 0.999614i \(0.508841\pi\)
\(228\) −113.526 84.4371i −0.497919 0.370338i
\(229\) −14.0913 + 24.4068i −0.0615340 + 0.106580i −0.895151 0.445762i \(-0.852933\pi\)
0.833617 + 0.552343i \(0.186266\pi\)
\(230\) −14.1084 14.6874i −0.0613410 0.0638582i
\(231\) −242.761 19.6333i −1.05091 0.0849927i
\(232\) 44.8881i 0.193483i
\(233\) 171.016 296.208i 0.733974 1.27128i −0.221199 0.975229i \(-0.570997\pi\)
0.955172 0.296051i \(-0.0956698\pi\)
\(234\) −2.61094 + 11.0609i −0.0111579 + 0.0472686i
\(235\) 72.6447 250.832i 0.309127 1.06737i
\(236\) 4.35640 + 2.51517i 0.0184593 + 0.0106575i
\(237\) 189.763 81.9574i 0.800689 0.345812i
\(238\) 5.54695 0.195361i 0.0233065 0.000820844i
\(239\) 105.588i 0.441791i 0.975298 + 0.220895i \(0.0708979\pi\)
−0.975298 + 0.220895i \(0.929102\pi\)
\(240\) −186.922 + 141.919i −0.778841 + 0.591330i
\(241\) −9.53578 16.5165i −0.0395675 0.0685330i 0.845563 0.533875i \(-0.179265\pi\)
−0.885131 + 0.465342i \(0.845931\pi\)
\(242\) −1.16119 2.01124i −0.00479830 0.00831090i
\(243\) 242.620 + 13.5823i 0.998437 + 0.0558941i
\(244\) −256.711 −1.05210
\(245\) −233.164 + 75.2306i −0.951689 + 0.307064i
\(246\) −14.4629 33.4873i −0.0587924 0.136127i
\(247\) 75.5582 + 43.6235i 0.305904 + 0.176614i
\(248\) −32.1823 55.7414i −0.129767 0.224764i
\(249\) −86.3529 64.2269i −0.346799 0.257939i
\(250\) 4.30069 + 21.0547i 0.0172028 + 0.0842190i
\(251\) 222.387i 0.886003i −0.896521 0.443001i \(-0.853914\pi\)
0.896521 0.443001i \(-0.146086\pi\)
\(252\) 164.975 188.022i 0.654664 0.746118i
\(253\) 274.784i 1.08610i
\(254\) −19.6521 11.3462i −0.0773706 0.0446699i
\(255\) −8.67976 68.6366i −0.0340383 0.269163i
\(256\) −118.647 205.502i −0.463464 0.802744i
\(257\) −182.147 + 315.488i −0.708743 + 1.22758i 0.256581 + 0.966523i \(0.417404\pi\)
−0.965324 + 0.261056i \(0.915929\pi\)
\(258\) −2.88831 6.68756i −0.0111950 0.0259208i
\(259\) −294.669 156.565i −1.13772 0.604499i
\(260\) 105.161 101.016i 0.404467 0.388523i
\(261\) 282.370 84.8136i 1.08188 0.324956i
\(262\) −11.9480 + 6.89817i −0.0456030 + 0.0263289i
\(263\) 181.221 + 313.884i 0.689054 + 1.19348i 0.972144 + 0.234383i \(0.0753070\pi\)
−0.283090 + 0.959093i \(0.591360\pi\)
\(264\) 47.3556 + 5.51344i 0.179377 + 0.0208842i
\(265\) 79.7390 + 83.0112i 0.300902 + 0.313250i
\(266\) 7.57840 + 12.1199i 0.0284902 + 0.0455636i
\(267\) −151.824 351.533i −0.568631 1.31660i
\(268\) 68.1978 + 39.3740i 0.254470 + 0.146918i
\(269\) 274.148 158.279i 1.01914 0.588399i 0.105283 0.994442i \(-0.466425\pi\)
0.913854 + 0.406043i \(0.133092\pi\)
\(270\) 18.7585 + 13.6660i 0.0694759 + 0.0506150i
\(271\) 24.8208 42.9910i 0.0915898 0.158638i −0.816590 0.577218i \(-0.804138\pi\)
0.908180 + 0.418579i \(0.137472\pi\)
\(272\) 72.1637 0.265308
\(273\) −87.6422 + 126.932i −0.321034 + 0.464953i
\(274\) 26.7313 0.0975594
\(275\) −154.948 + 245.069i −0.563448 + 0.891162i
\(276\) 226.445 + 168.424i 0.820454 + 0.610231i
\(277\) 95.4077 55.0836i 0.344432 0.198858i −0.317798 0.948158i \(-0.602943\pi\)
0.662230 + 0.749300i \(0.269610\pi\)
\(278\) −11.2872 + 19.5499i −0.0406013 + 0.0703235i
\(279\) 289.836 307.764i 1.03884 1.10310i
\(280\) 46.1317 13.1108i 0.164756 0.0468241i
\(281\) 400.249i 1.42437i 0.701990 + 0.712187i \(0.252295\pi\)
−0.701990 + 0.712187i \(0.747705\pi\)
\(282\) 3.11507 26.7557i 0.0110463 0.0948784i
\(283\) 277.081 159.973i 0.979086 0.565276i 0.0770921 0.997024i \(-0.475436\pi\)
0.901994 + 0.431748i \(0.142103\pi\)
\(284\) −165.734 + 95.6863i −0.583569 + 0.336924i
\(285\) 141.905 107.740i 0.497912 0.378036i
\(286\) −14.6452 −0.0512071
\(287\) −17.4259 494.779i −0.0607173 1.72397i
\(288\) −50.4161 + 53.5346i −0.175056 + 0.185884i
\(289\) 133.864 231.859i 0.463196 0.802280i
\(290\) 27.0476 + 7.83340i 0.0932676 + 0.0270117i
\(291\) −48.2556 + 64.8796i −0.165827 + 0.222954i
\(292\) −427.866 247.028i −1.46529 0.845988i
\(293\) −328.719 −1.12191 −0.560954 0.827847i \(-0.689566\pi\)
−0.560954 + 0.827847i \(0.689566\pi\)
\(294\) −22.4379 + 11.6274i −0.0763194 + 0.0395490i
\(295\) −4.56847 + 4.38838i −0.0154863 + 0.0148759i
\(296\) 56.5668 + 32.6588i 0.191104 + 0.110334i
\(297\) 54.7933 + 308.309i 0.184489 + 1.03808i
\(298\) −14.0840 + 8.13138i −0.0472616 + 0.0272865i
\(299\) −150.713 87.0143i −0.504058 0.291018i
\(300\) −106.985 277.901i −0.356618 0.926337i
\(301\) −3.48002 98.8095i −0.0115615 0.328271i
\(302\) 5.09879 0.0168834
\(303\) −54.5619 6.35244i −0.180072 0.0209651i
\(304\) 92.9235 + 160.948i 0.305669 + 0.529435i
\(305\) 89.9305 310.517i 0.294854 1.01809i
\(306\) −2.05285 6.83457i −0.00670867 0.0223352i
\(307\) 433.637i 1.41250i 0.707963 + 0.706250i \(0.249614\pi\)
−0.707963 + 0.706250i \(0.750386\pi\)
\(308\) 284.653 + 151.244i 0.924199 + 0.491052i
\(309\) 36.9700 + 85.5998i 0.119644 + 0.277022i
\(310\) 39.2034 9.66425i 0.126463 0.0311750i
\(311\) −310.113 + 179.044i −0.997148 + 0.575704i −0.907403 0.420261i \(-0.861939\pi\)
−0.0897451 + 0.995965i \(0.528605\pi\)
\(312\) 18.0198 24.2276i 0.0577559 0.0776527i
\(313\) 193.637 + 111.796i 0.618647 + 0.357176i 0.776342 0.630312i \(-0.217073\pi\)
−0.157695 + 0.987488i \(0.550406\pi\)
\(314\) 7.90057i 0.0251610i
\(315\) 169.637 + 265.421i 0.538530 + 0.842606i
\(316\) −273.571 −0.865730
\(317\) 268.012 464.210i 0.845462 1.46438i −0.0397565 0.999209i \(-0.512658\pi\)
0.885219 0.465175i \(-0.154008\pi\)
\(318\) 9.52683 + 7.08579i 0.0299586 + 0.0222824i
\(319\) 189.967 + 329.033i 0.595508 + 1.03145i
\(320\) 297.009 73.2174i 0.928154 0.228804i
\(321\) −502.534 + 217.041i −1.56553 + 0.676139i
\(322\) −15.1164 24.1752i −0.0469452 0.0750782i
\(323\) −54.7843 −0.169611
\(324\) −287.658 143.818i −0.887832 0.443883i
\(325\) 85.3488 + 162.591i 0.262612 + 0.500279i
\(326\) −31.6718 + 18.2857i −0.0971528 + 0.0560912i
\(327\) 11.8304 101.613i 0.0361785 0.310742i
\(328\) 96.9129i 0.295466i
\(329\) 171.540 322.853i 0.521399 0.981316i
\(330\) −11.5862 + 27.5723i −0.0351096 + 0.0835523i
\(331\) −107.615 + 186.394i −0.325120 + 0.563124i −0.981537 0.191274i \(-0.938738\pi\)
0.656417 + 0.754398i \(0.272071\pi\)
\(332\) 71.2161 + 123.350i 0.214506 + 0.371536i
\(333\) −98.5617 + 417.542i −0.295981 + 1.25388i
\(334\) −0.993191 + 1.72026i −0.00297363 + 0.00515047i
\(335\) −71.5177 + 68.6985i −0.213486 + 0.205070i
\(336\) −296.868 + 140.812i −0.883535 + 0.419085i
\(337\) 203.340i 0.603381i −0.953406 0.301691i \(-0.902449\pi\)
0.953406 0.301691i \(-0.0975510\pi\)
\(338\) 9.88928 17.1287i 0.0292582 0.0506767i
\(339\) −154.160 114.660i −0.454748 0.338229i
\(340\) −25.4712 + 87.9485i −0.0749154 + 0.258672i
\(341\) 471.796 + 272.392i 1.38357 + 0.798802i
\(342\) 12.5999 13.3792i 0.0368418 0.0391206i
\(343\) −341.089 + 36.1586i −0.994428 + 0.105419i
\(344\) 19.3539i 0.0562613i
\(345\) −283.053 + 214.906i −0.820443 + 0.622916i
\(346\) −0.335806 0.581633i −0.000970538 0.00168102i
\(347\) −9.76578 16.9148i −0.0281435 0.0487459i 0.851611 0.524175i \(-0.175626\pi\)
−0.879754 + 0.475429i \(0.842293\pi\)
\(348\) −387.587 45.1253i −1.11376 0.129670i
\(349\) −19.4121 −0.0556219 −0.0278110 0.999613i \(-0.508854\pi\)
−0.0278110 + 0.999613i \(0.508854\pi\)
\(350\) −0.150457 + 30.0849i −0.000429876 + 0.0859569i
\(351\) 186.452 + 67.5776i 0.531203 + 0.192529i
\(352\) −82.0676 47.3817i −0.233146 0.134607i
\(353\) −160.280 277.612i −0.454050 0.786437i 0.544583 0.838707i \(-0.316688\pi\)
−0.998633 + 0.0522696i \(0.983354\pi\)
\(354\) −0.389962 + 0.524303i −0.00110159 + 0.00148108i
\(355\) −57.6825 233.991i −0.162486 0.659131i
\(356\) 506.784i 1.42355i
\(357\) 7.80778 96.5413i 0.0218705 0.270424i
\(358\) 37.8575i 0.105747i
\(359\) −16.9213 9.76951i −0.0471345 0.0272131i 0.476248 0.879311i \(-0.341997\pi\)
−0.523382 + 0.852098i \(0.675330\pi\)
\(360\) −31.3570 53.0926i −0.0871029 0.147480i
\(361\) 109.956 + 190.449i 0.304586 + 0.527558i
\(362\) 6.69236 11.5915i 0.0184872 0.0320207i
\(363\) −37.2048 + 16.0685i −0.102492 + 0.0442657i
\(364\) 173.094 108.233i 0.475532 0.297343i
\(365\) 448.694 431.007i 1.22930 1.18084i
\(366\) 3.85629 33.1222i 0.0105363 0.0904979i
\(367\) −369.737 + 213.468i −1.00746 + 0.581656i −0.910446 0.413627i \(-0.864262\pi\)
−0.0970116 + 0.995283i \(0.530928\pi\)
\(368\) −185.351 321.038i −0.503672 0.872385i
\(369\) −609.633 + 183.111i −1.65212 + 0.496237i
\(370\) −29.5502 + 28.3854i −0.0798654 + 0.0767172i
\(371\) 85.4357 + 136.635i 0.230285 + 0.368288i
\(372\) −513.652 + 221.843i −1.38079 + 0.596351i
\(373\) 194.156 + 112.096i 0.520525 + 0.300525i 0.737149 0.675730i \(-0.236171\pi\)
−0.216625 + 0.976255i \(0.569505\pi\)
\(374\) 7.96400 4.59802i 0.0212941 0.0122942i
\(375\) 373.627 32.0556i 0.996340 0.0854816i
\(376\) −35.7826 + 61.9772i −0.0951664 + 0.164833i
\(377\) 240.623 0.638258
\(378\) 21.7813 + 24.1104i 0.0576225 + 0.0637842i
\(379\) 441.863 1.16586 0.582932 0.812521i \(-0.301905\pi\)
0.582932 + 0.812521i \(0.301905\pi\)
\(380\) −228.952 + 56.4403i −0.602506 + 0.148527i
\(381\) −236.326 + 317.739i −0.620277 + 0.833961i
\(382\) −35.3949 + 20.4353i −0.0926569 + 0.0534955i
\(383\) 71.4848 123.815i 0.186644 0.323277i −0.757485 0.652853i \(-0.773572\pi\)
0.944129 + 0.329575i \(0.106905\pi\)
\(384\) 118.981 51.3869i 0.309846 0.133820i
\(385\) −282.663 + 291.333i −0.734191 + 0.756708i
\(386\) 36.2734i 0.0939726i
\(387\) −121.746 + 36.5681i −0.314590 + 0.0944912i
\(388\) 92.6766 53.5069i 0.238857 0.137904i
\(389\) 35.6423 20.5781i 0.0916256 0.0529000i −0.453487 0.891263i \(-0.649820\pi\)
0.545113 + 0.838363i \(0.316487\pi\)
\(390\) 11.4539 + 15.0859i 0.0293689 + 0.0386818i
\(391\) 109.276 0.279479
\(392\) 66.9757 4.72356i 0.170856 0.0120499i
\(393\) 95.4565 + 221.019i 0.242892 + 0.562389i
\(394\) −32.5552 + 56.3872i −0.0826274 + 0.143115i
\(395\) 95.8367 330.910i 0.242624 0.837748i
\(396\) 95.2117 403.350i 0.240434 1.01856i
\(397\) 326.923 + 188.749i 0.823484 + 0.475439i 0.851617 0.524165i \(-0.175623\pi\)
−0.0281322 + 0.999604i \(0.508956\pi\)
\(398\) 32.7436 0.0822704
\(399\) 225.372 106.900i 0.564842 0.267920i
\(400\) −15.7225 + 390.839i −0.0393063 + 0.977098i
\(401\) 81.6070 + 47.1158i 0.203509 + 0.117496i 0.598291 0.801279i \(-0.295847\pi\)
−0.394782 + 0.918775i \(0.629180\pi\)
\(402\) −6.10471 + 8.20777i −0.0151858 + 0.0204173i
\(403\) 298.802 172.513i 0.741444 0.428073i
\(404\) 62.9596 + 36.3497i 0.155841 + 0.0899746i
\(405\) 274.733 297.568i 0.678354 0.734735i
\(406\) 34.8138 + 18.4975i 0.0857482 + 0.0455603i
\(407\) −552.850 −1.35835
\(408\) −2.19258 + 18.8324i −0.00537398 + 0.0461578i
\(409\) −264.873 458.773i −0.647611 1.12169i −0.983692 0.179862i \(-0.942435\pi\)
0.336081 0.941833i \(-0.390898\pi\)
\(410\) −58.3954 16.9122i −0.142428 0.0412493i
\(411\) 53.9451 463.341i 0.131253 1.12735i
\(412\) 123.404i 0.299525i
\(413\) −7.51962 + 4.70190i −0.0182073 + 0.0113847i
\(414\) −25.1325 + 26.6871i −0.0607066 + 0.0644616i
\(415\) −174.152 + 42.9312i −0.419643 + 0.103449i
\(416\) −51.9757 + 30.0082i −0.124942 + 0.0721351i
\(417\) 316.087 + 235.097i 0.758002 + 0.563781i
\(418\) 20.5101 + 11.8415i 0.0490673 + 0.0283290i
\(419\) 208.590i 0.497828i 0.968526 + 0.248914i \(0.0800736\pi\)
−0.968526 + 0.248914i \(0.919926\pi\)
\(420\) −66.8295 411.505i −0.159118 0.979775i
\(421\) −382.542 −0.908650 −0.454325 0.890836i \(-0.650120\pi\)
−0.454325 + 0.890836i \(0.650120\pi\)
\(422\) 4.89164 8.47256i 0.0115916 0.0200772i
\(423\) −457.479 107.989i −1.08151 0.255293i
\(424\) −15.7722 27.3183i −0.0371987 0.0644300i
\(425\) −97.4593 61.6199i −0.229316 0.144988i
\(426\) −9.85631 22.8212i −0.0231369 0.0535709i
\(427\) 212.358 399.675i 0.497326 0.936008i
\(428\) 724.474 1.69270
\(429\) −29.5548 + 253.850i −0.0688923 + 0.591725i
\(430\) −11.6618 3.37744i −0.0271205 0.00785450i
\(431\) −403.517 + 232.971i −0.936234 + 0.540535i −0.888778 0.458338i \(-0.848445\pi\)
−0.0474561 + 0.998873i \(0.515111\pi\)
\(432\) 271.982 + 323.246i 0.629587 + 0.748255i
\(433\) 769.033i 1.77606i −0.459788 0.888029i \(-0.652074\pi\)
0.459788 0.888029i \(-0.347926\pi\)
\(434\) 56.4928 1.98965i 0.130168 0.00458444i
\(435\) 190.362 453.016i 0.437614 1.04142i
\(436\) −67.6953 + 117.252i −0.155265 + 0.268926i
\(437\) 140.713 + 243.721i 0.321997 + 0.557714i
\(438\) 38.3003 51.4946i 0.0874435 0.117568i
\(439\) −129.054 + 223.528i −0.293973 + 0.509176i −0.974745 0.223319i \(-0.928311\pi\)
0.680773 + 0.732495i \(0.261644\pi\)
\(440\) 57.3042 55.0453i 0.130237 0.125103i
\(441\) 156.261 + 412.388i 0.354332 + 0.935120i
\(442\) 5.82412i 0.0131767i
\(443\) −202.227 + 350.267i −0.456493 + 0.790670i −0.998773 0.0495286i \(-0.984228\pi\)
0.542279 + 0.840198i \(0.317561\pi\)
\(444\) 338.859 455.595i 0.763196 1.02612i
\(445\) −613.005 177.536i −1.37754 0.398956i
\(446\) 15.7160 + 9.07361i 0.0352376 + 0.0203444i
\(447\) 112.522 + 260.531i 0.251726 + 0.582844i
\(448\) 427.996 15.0738i 0.955348 0.0336469i
\(449\) 24.0690i 0.0536058i 0.999641 + 0.0268029i \(0.00853266\pi\)
−0.999641 + 0.0268029i \(0.991467\pi\)
\(450\) 37.4634 9.62921i 0.0832519 0.0213982i
\(451\) −410.136 710.377i −0.909393 1.57511i
\(452\) 127.137 + 220.208i 0.281276 + 0.487185i
\(453\) 10.2896 88.3789i 0.0227144 0.195097i
\(454\) 66.4833 0.146439
\(455\) 70.2803 + 247.289i 0.154462 + 0.543493i
\(456\) −44.8257 + 19.3599i −0.0983019 + 0.0424559i
\(457\) 183.663 + 106.038i 0.401888 + 0.232030i 0.687298 0.726375i \(-0.258796\pi\)
−0.285410 + 0.958405i \(0.592130\pi\)
\(458\) 2.42252 + 4.19592i 0.00528934 + 0.00916140i
\(459\) −122.609 + 21.7902i −0.267121 + 0.0474733i
\(460\) 456.683 112.579i 0.992789 0.244738i
\(461\) 315.604i 0.684608i −0.939589 0.342304i \(-0.888793\pi\)
0.939589 0.342304i \(-0.111207\pi\)
\(462\) −23.7903 + 34.4555i −0.0514942 + 0.0745790i
\(463\) 612.544i 1.32299i 0.749950 + 0.661495i \(0.230078\pi\)
−0.749950 + 0.661495i \(0.769922\pi\)
\(464\) 443.887 + 256.278i 0.956654 + 0.552324i
\(465\) −88.3989 699.028i −0.190105 1.50329i
\(466\) −29.4003 50.9229i −0.0630909 0.109277i
\(467\) −201.374 + 348.790i −0.431208 + 0.746874i −0.996978 0.0776892i \(-0.975246\pi\)
0.565770 + 0.824563i \(0.308579\pi\)
\(468\) −191.079 179.948i −0.408288 0.384505i
\(469\) −117.717 + 73.6064i −0.250995 + 0.156943i
\(470\) −31.1004 32.3766i −0.0661710 0.0688864i
\(471\) −136.943 15.9438i −0.290749 0.0338509i
\(472\) 1.50344 0.868014i 0.00318526 0.00183901i
\(473\) −81.9059 141.865i −0.173163 0.299926i
\(474\) 4.10956 35.2975i 0.00866995 0.0744673i
\(475\) 11.9360 296.712i 0.0251285 0.624657i
\(476\) −60.1467 + 113.201i −0.126359 + 0.237817i
\(477\) 142.046 150.832i 0.297790 0.316210i
\(478\) 15.7203 + 9.07612i 0.0328877 + 0.0189877i
\(479\) 232.441 134.200i 0.485263 0.280167i −0.237344 0.971426i \(-0.576277\pi\)
0.722607 + 0.691259i \(0.242944\pi\)
\(480\) 15.3767 + 121.594i 0.0320348 + 0.253321i
\(481\) −175.068 + 303.226i −0.363967 + 0.630408i
\(482\) −3.27870 −0.00680229
\(483\) −449.542 + 213.230i −0.930728 + 0.441470i
\(484\) 53.6359 0.110818
\(485\) 32.2555 + 130.846i 0.0665062 + 0.269785i
\(486\) 22.8773 34.9546i 0.0470726 0.0719231i
\(487\) −60.9309 + 35.1785i −0.125115 + 0.0722351i −0.561251 0.827645i \(-0.689680\pi\)
0.436136 + 0.899881i \(0.356347\pi\)
\(488\) −44.2970 + 76.7247i −0.0907726 + 0.157223i
\(489\) 253.037 + 585.879i 0.517458 + 1.19812i
\(490\) −8.84168 + 41.1809i −0.0180442 + 0.0840427i
\(491\) 573.554i 1.16814i −0.811705 0.584068i \(-0.801460\pi\)
0.811705 0.584068i \(-0.198540\pi\)
\(492\) 836.796 + 97.4250i 1.70080 + 0.198018i
\(493\) −130.850 + 75.5461i −0.265415 + 0.153238i
\(494\) 12.9897 7.49958i 0.0262948 0.0151813i
\(495\) 454.537 + 256.469i 0.918257 + 0.518119i
\(496\) 734.950 1.48175
\(497\) −11.8755 337.186i −0.0238944 0.678443i
\(498\) −16.9851 + 7.33572i −0.0341065 + 0.0147304i
\(499\) −19.6456 + 34.0272i −0.0393700 + 0.0681909i −0.885039 0.465517i \(-0.845868\pi\)
0.845669 + 0.533708i \(0.179202\pi\)
\(500\) −470.781 157.114i −0.941561 0.314228i
\(501\) 27.8135 + 20.6869i 0.0555159 + 0.0412911i
\(502\) −33.1097 19.1159i −0.0659556 0.0380795i
\(503\) 377.200 0.749901 0.374951 0.927045i \(-0.377660\pi\)
0.374951 + 0.927045i \(0.377660\pi\)
\(504\) −27.7276 81.7513i −0.0550152 0.162205i
\(505\) −66.0244 + 63.4218i −0.130741 + 0.125588i
\(506\) −40.9108 23.6199i −0.0808515 0.0466796i
\(507\) −276.940 205.981i −0.546234 0.406273i
\(508\) 453.871 262.043i 0.893447 0.515832i
\(509\) −581.066 335.479i −1.14158 0.659094i −0.194762 0.980851i \(-0.562393\pi\)
−0.946822 + 0.321757i \(0.895727\pi\)
\(510\) −10.9649 4.60758i −0.0214999 0.00903448i
\(511\) 738.542 461.799i 1.44529 0.903716i
\(512\) −213.599 −0.417186
\(513\) −206.479 245.398i −0.402494 0.478358i
\(514\) 31.3140 + 54.2374i 0.0609221 + 0.105520i
\(515\) 149.270 + 43.2307i 0.289844 + 0.0839432i
\(516\) 167.112 + 19.4562i 0.323860 + 0.0377058i
\(517\) 605.729i 1.17162i
\(518\) −48.6391 + 30.4133i −0.0938979 + 0.0587129i
\(519\) −10.7593 + 4.64686i −0.0207308 + 0.00895350i
\(520\) −12.0450 48.8610i −0.0231635 0.0939635i
\(521\) 663.160 382.876i 1.27286 0.734886i 0.297335 0.954773i \(-0.403902\pi\)
0.975525 + 0.219887i \(0.0705689\pi\)
\(522\) 11.6446 49.3307i 0.0223077 0.0945032i
\(523\) 169.809 + 98.0393i 0.324683 + 0.187456i 0.653478 0.756946i \(-0.273309\pi\)
−0.328795 + 0.944401i \(0.606643\pi\)
\(524\) 318.630i 0.608073i
\(525\) 521.167 + 63.3208i 0.992700 + 0.120611i
\(526\) 62.3096 0.118459
\(527\) −108.325 + 187.624i −0.205550 + 0.356023i
\(528\) −324.887 + 436.810i −0.615316 + 0.827292i
\(529\) −16.1743 28.0146i −0.0305752 0.0529577i
\(530\) 19.2132 4.73635i 0.0362513 0.00893651i
\(531\) 8.30094 + 7.81740i 0.0156327 + 0.0147220i
\(532\) −329.924 + 11.6198i −0.620159 + 0.0218417i
\(533\) −519.502 −0.974676
\(534\) −65.3879 7.61287i −0.122449 0.0142563i
\(535\) −253.796 + 876.322i −0.474385 + 1.63798i
\(536\) 23.5359 13.5884i 0.0439102 0.0253516i
\(537\) −656.195 76.3983i −1.22197 0.142269i
\(538\) 54.4215i 0.101155i
\(539\) −470.946 + 318.066i −0.873740 + 0.590104i
\(540\) −489.952 + 217.380i −0.907318 + 0.402555i
\(541\) −422.140 + 731.167i −0.780295 + 1.35151i 0.151475 + 0.988461i \(0.451598\pi\)
−0.931770 + 0.363050i \(0.881736\pi\)
\(542\) −4.26710 7.39083i −0.00787288 0.0136362i
\(543\) −187.414 139.393i −0.345145 0.256709i
\(544\) 18.8428 32.6367i 0.0346375 0.0599938i
\(545\) −118.113 122.959i −0.216720 0.225614i
\(546\) 11.3646 + 23.9593i 0.0208142 + 0.0438815i
\(547\) 160.122i 0.292727i 0.989231 + 0.146363i \(0.0467569\pi\)
−0.989231 + 0.146363i \(0.953243\pi\)
\(548\) −308.683 + 534.654i −0.563290 + 0.975647i
\(549\) −566.335 133.685i −1.03158 0.243506i
\(550\) 23.1678 + 44.1349i 0.0421232 + 0.0802453i
\(551\) −336.985 194.558i −0.611587 0.353100i
\(552\) 89.4122 38.6165i 0.161979 0.0699574i
\(553\) 226.305 425.924i 0.409231 0.770206i
\(554\) 18.9395i 0.0341868i
\(555\) 432.379 + 569.486i 0.779061 + 1.02610i
\(556\) −260.680 451.511i −0.468849 0.812070i
\(557\) −142.397 246.638i −0.255649 0.442797i 0.709422 0.704784i \(-0.248956\pi\)
−0.965072 + 0.261986i \(0.915623\pi\)
\(558\) −20.9073 69.6066i −0.0374682 0.124743i
\(559\) −103.747 −0.185593
\(560\) −133.730 + 531.038i −0.238803 + 0.948282i
\(561\) −63.6271 147.322i −0.113417 0.262605i
\(562\) 59.5905 + 34.4046i 0.106033 + 0.0612181i
\(563\) 90.7228 + 157.136i 0.161142 + 0.279106i 0.935278 0.353913i \(-0.115149\pi\)
−0.774137 + 0.633018i \(0.781816\pi\)
\(564\) 499.172 + 371.270i 0.885057 + 0.658280i
\(565\) −310.901 + 76.6419i −0.550267 + 0.135649i
\(566\) 55.0038i 0.0971799i
\(567\) 461.869 328.886i 0.814584 0.580046i
\(568\) 66.0449i 0.116276i
\(569\) −350.000 202.073i −0.615115 0.355137i 0.159850 0.987141i \(-0.448899\pi\)
−0.774965 + 0.632005i \(0.782232\pi\)
\(570\) −3.84292 30.3885i −0.00674196 0.0533131i
\(571\) 369.018 + 639.158i 0.646267 + 1.11937i 0.984007 + 0.178127i \(0.0570039\pi\)
−0.337741 + 0.941239i \(0.609663\pi\)
\(572\) 169.118 292.920i 0.295660 0.512099i
\(573\) 282.782 + 654.751i 0.493511 + 1.14267i
\(574\) −75.1624 39.9358i −0.130945 0.0695746i
\(575\) −23.8084 + 591.841i −0.0414059 + 1.02929i
\(576\) −158.396 527.347i −0.274992 0.915533i
\(577\) −569.531 + 328.819i −0.987056 + 0.569877i −0.904393 0.426701i \(-0.859676\pi\)
−0.0826627 + 0.996578i \(0.526342\pi\)
\(578\) −23.0133 39.8602i −0.0398154 0.0689623i
\(579\) 628.739 + 73.2017i 1.08590 + 0.126428i
\(580\) −469.013 + 450.525i −0.808642 + 0.776767i
\(581\) −250.956 + 8.83855i −0.431938 + 0.0152126i
\(582\) 5.51155 + 12.7614i 0.00947002 + 0.0219268i
\(583\) 231.223 + 133.496i 0.396608 + 0.228982i
\(584\) −147.661 + 85.2524i −0.252845 + 0.145980i
\(585\) 284.603 168.090i 0.486501 0.287333i
\(586\) −28.2560 + 48.9409i −0.0482185 + 0.0835168i
\(587\) 339.097 0.577679 0.288839 0.957378i \(-0.406731\pi\)
0.288839 + 0.957378i \(0.406731\pi\)
\(588\) 26.5440 583.051i 0.0451428 0.991584i
\(589\) −557.949 −0.947283
\(590\) 0.260662 + 1.05739i 0.000441800 + 0.00179218i
\(591\) 911.679 + 678.081i 1.54260 + 1.14735i
\(592\) −645.910 + 372.916i −1.09106 + 0.629926i
\(593\) 163.991 284.041i 0.276545 0.478990i −0.693979 0.719995i \(-0.744144\pi\)
0.970524 + 0.241006i \(0.0774772\pi\)
\(594\) 50.6121 + 18.3438i 0.0852056 + 0.0308818i
\(595\) −115.857 112.410i −0.194718 0.188924i
\(596\) 375.593i 0.630190i
\(597\) 66.0783 567.555i 0.110684 0.950678i
\(598\) −25.9100 + 14.9591i −0.0433278 + 0.0250153i
\(599\) −726.655 + 419.534i −1.21311 + 0.700391i −0.963436 0.267938i \(-0.913658\pi\)
−0.249677 + 0.968329i \(0.580324\pi\)
\(600\) −101.519 15.9781i −0.169198 0.0266302i
\(601\) 347.260 0.577804 0.288902 0.957359i \(-0.406710\pi\)
0.288902 + 0.957359i \(0.406710\pi\)
\(602\) −15.0102 7.97534i −0.0249340 0.0132481i
\(603\) 129.948 + 122.378i 0.215503 + 0.202949i
\(604\) −58.8790 + 101.981i −0.0974818 + 0.168843i
\(605\) −18.7896 + 64.8779i −0.0310572 + 0.107236i
\(606\) −5.63581 + 7.57733i −0.00930001 + 0.0125038i
\(607\) −277.758 160.363i −0.457591 0.264190i 0.253440 0.967351i \(-0.418438\pi\)
−0.711031 + 0.703161i \(0.751771\pi\)
\(608\) 97.0537 0.159628
\(609\) 390.878 566.109i 0.641837 0.929571i
\(610\) −38.5007 40.0806i −0.0631159 0.0657059i
\(611\) −332.229 191.813i −0.543747 0.313932i
\(612\) 160.405 + 37.8638i 0.262099 + 0.0618690i
\(613\) 220.529 127.323i 0.359754 0.207704i −0.309219 0.950991i \(-0.600068\pi\)
0.668973 + 0.743287i \(0.266734\pi\)
\(614\) 64.5615 + 37.2746i 0.105149 + 0.0607078i
\(615\) −410.989 + 978.056i −0.668275 + 1.59034i
\(616\) 94.3217 58.9779i 0.153120 0.0957433i
\(617\) −126.508 −0.205037 −0.102519 0.994731i \(-0.532690\pi\)
−0.102519 + 0.994731i \(0.532690\pi\)
\(618\) 15.9223 + 1.85377i 0.0257642 + 0.00299963i
\(619\) 183.100 + 317.138i 0.295799 + 0.512339i 0.975170 0.221456i \(-0.0710808\pi\)
−0.679372 + 0.733794i \(0.737748\pi\)
\(620\) −259.411 + 895.710i −0.418405 + 1.44469i
\(621\) 411.857 + 489.486i 0.663216 + 0.788222i
\(622\) 61.5610i 0.0989727i
\(623\) −789.016 419.225i −1.26648 0.672914i
\(624\) 136.701 + 316.516i 0.219072 + 0.507237i
\(625\) 354.968 514.415i 0.567948 0.823064i
\(626\) 33.2892 19.2195i 0.0531777 0.0307021i
\(627\) 246.643 331.612i 0.393371 0.528886i
\(628\) 158.020 + 91.2329i 0.251624 + 0.145275i
\(629\) 219.858i 0.349535i
\(630\) 54.0985 2.44109i 0.0858706 0.00387475i
\(631\) 66.0739 0.104713 0.0523565 0.998628i \(-0.483327\pi\)
0.0523565 + 0.998628i \(0.483327\pi\)
\(632\) −47.2062 + 81.7636i −0.0746934 + 0.129373i
\(633\) −136.986 101.886i −0.216408 0.160958i
\(634\) −46.0755 79.8050i −0.0726742 0.125875i
\(635\) 157.967 + 640.800i 0.248767 + 1.00913i
\(636\) −251.736 + 108.723i −0.395811 + 0.170948i
\(637\) 25.3207 + 359.024i 0.0397499 + 0.563617i
\(638\) 65.3167 0.102377
\(639\) −415.457 + 124.788i −0.650168 + 0.195287i
\(640\) 60.0892 207.479i 0.0938893 0.324187i
\(641\) 803.605 463.961i 1.25367 0.723809i 0.281837 0.959462i \(-0.409056\pi\)
0.971837 + 0.235654i \(0.0757231\pi\)
\(642\) −10.8830 + 93.4754i −0.0169517 + 0.145600i
\(643\) 455.224i 0.707968i 0.935251 + 0.353984i \(0.115173\pi\)
−0.935251 + 0.353984i \(0.884827\pi\)
\(644\) 658.089 23.1775i 1.02188 0.0359900i
\(645\) −82.0763 + 195.322i −0.127250 + 0.302825i
\(646\) −4.70914 + 8.15648i −0.00728970 + 0.0126261i
\(647\) 321.902 + 557.551i 0.497530 + 0.861747i 0.999996 0.00284968i \(-0.000907083\pi\)
−0.502466 + 0.864597i \(0.667574\pi\)
\(648\) −92.6206 + 61.1571i −0.142933 + 0.0943783i
\(649\) −7.34689 + 12.7252i −0.0113203 + 0.0196074i
\(650\) 31.5435 + 1.26892i 0.0485284 + 0.00195218i
\(651\) 79.5183 983.223i 0.122148 1.51033i
\(652\) 844.628i 1.29544i
\(653\) −285.108 + 493.822i −0.436613 + 0.756236i −0.997426 0.0717069i \(-0.977155\pi\)
0.560813 + 0.827943i \(0.310489\pi\)
\(654\) −14.1115 10.4958i −0.0215772 0.0160485i
\(655\) 385.414 + 111.622i 0.588419 + 0.170415i
\(656\) −958.347 553.302i −1.46089 0.843448i
\(657\) −815.280 767.789i −1.24091 1.16863i
\(658\) −33.3222 53.2913i −0.0506417 0.0809899i
\(659\) 629.009i 0.954491i 0.878770 + 0.477245i \(0.158365\pi\)
−0.878770 + 0.477245i \(0.841635\pi\)
\(660\) −417.683 550.130i −0.632853 0.833531i
\(661\) −199.704 345.897i −0.302124 0.523294i 0.674493 0.738281i \(-0.264362\pi\)
−0.976617 + 0.214987i \(0.931029\pi\)
\(662\) 18.5007 + 32.0441i 0.0279466 + 0.0484050i
\(663\) −100.951 11.7534i −0.152264 0.0177275i
\(664\) 49.1550 0.0740286
\(665\) 101.523 403.146i 0.152666 0.606235i
\(666\) 53.6930 + 50.5653i 0.0806201 + 0.0759238i
\(667\) 672.171 + 388.078i 1.00775 + 0.581826i
\(668\) −22.9380 39.7298i −0.0343384 0.0594758i
\(669\) 188.991 254.098i 0.282498 0.379818i
\(670\) 4.08057 + 16.5530i 0.00609040 + 0.0247059i
\(671\) 749.861i 1.11753i
\(672\) −13.8320 + 171.029i −0.0205833 + 0.254507i
\(673\) 1005.37i 1.49387i −0.664900 0.746933i \(-0.731526\pi\)
0.664900 0.746933i \(-0.268474\pi\)
\(674\) −30.2739 17.4787i −0.0449168 0.0259327i
\(675\) −91.3030 668.797i −0.135264 0.990810i
\(676\) 228.396 + 395.593i 0.337863 + 0.585196i
\(677\) 134.300 232.614i 0.198375 0.343595i −0.749627 0.661861i \(-0.769767\pi\)
0.948002 + 0.318266i \(0.103100\pi\)
\(678\) −30.3222 + 13.0959i −0.0447230 + 0.0193155i
\(679\) 6.64067 + 188.551i 0.00978008 + 0.277689i
\(680\) 21.8904 + 22.7887i 0.0321918 + 0.0335129i
\(681\) 134.167 1152.37i 0.197014 1.69218i
\(682\) 81.1093 46.8285i 0.118929 0.0686634i
\(683\) 158.562 + 274.638i 0.232156 + 0.402105i 0.958442 0.285287i \(-0.0920888\pi\)
−0.726287 + 0.687392i \(0.758755\pi\)
\(684\) 122.101 + 406.510i 0.178510 + 0.594313i
\(685\) −538.580 560.681i −0.786247 0.818512i
\(686\) −23.9359 + 53.8906i −0.0348920 + 0.0785578i
\(687\) 77.6180 33.5226i 0.112981 0.0487957i
\(688\) −191.386 110.497i −0.278177 0.160606i
\(689\) 146.440 84.5471i 0.212540 0.122710i
\(690\) 7.66533 + 60.6148i 0.0111092 + 0.0878475i
\(691\) 449.553 778.648i 0.650583 1.12684i −0.332399 0.943139i \(-0.607858\pi\)
0.982982 0.183704i \(-0.0588087\pi\)
\(692\) 15.5111 0.0224148
\(693\) 549.217 + 481.898i 0.792522 + 0.695379i
\(694\) −3.35779 −0.00483831
\(695\) 637.467 157.146i 0.917219 0.226109i
\(696\) −80.3673 + 108.054i −0.115470 + 0.155250i
\(697\) 282.503 163.103i 0.405313 0.234007i
\(698\) −1.66862 + 2.89014i −0.00239057 + 0.00414060i
\(699\) −941.994 + 406.840i −1.34763 + 0.582032i
\(700\) −599.994 350.419i −0.857134 0.500598i
\(701\) 430.110i 0.613566i 0.951779 + 0.306783i \(0.0992526\pi\)
−0.951779 + 0.306783i \(0.900747\pi\)
\(702\) 26.0882 21.9508i 0.0371627 0.0312690i
\(703\) 490.353 283.106i 0.697515 0.402711i
\(704\) 614.492 354.777i 0.872859 0.503945i
\(705\) −623.956 + 473.735i −0.885044 + 0.671964i
\(706\) −55.1092 −0.0780584
\(707\) −108.675 + 67.9528i −0.153713 + 0.0961143i
\(708\) −5.98349 13.8541i −0.00845126 0.0195680i
\(709\) 354.562 614.119i 0.500087 0.866176i −0.499913 0.866076i \(-0.666635\pi\)
1.00000 0.000100361i \(-3.19460e-5\pi\)
\(710\) −39.7958 11.5255i −0.0560504 0.0162330i
\(711\) −603.529 142.464i −0.848846 0.200372i
\(712\) 151.465 + 87.4486i 0.212732 + 0.122821i
\(713\) 1112.92 1.56090
\(714\) −13.7023 9.46094i −0.0191908 0.0132506i
\(715\) 295.071 + 307.180i 0.412687 + 0.429622i
\(716\) 757.191 + 437.164i 1.05753 + 0.610565i
\(717\) 189.044 254.169i 0.263659 0.354489i
\(718\) −2.90904 + 1.67953i −0.00405159 + 0.00233918i
\(719\) 740.112 + 427.304i 1.02936 + 0.594303i 0.916802 0.399342i \(-0.130761\pi\)
0.112561 + 0.993645i \(0.464095\pi\)
\(720\) 704.045 6.96155i 0.977840 0.00966882i
\(721\) 192.129 + 102.083i 0.266476 + 0.141586i
\(722\) 37.8062 0.0523632
\(723\) −6.61659 + 56.8308i −0.00915158 + 0.0786041i
\(724\) 154.562 + 267.709i 0.213483 + 0.369764i
\(725\) −380.650 725.143i −0.525035 1.00020i
\(726\) −0.805715 + 6.92039i −0.00110980 + 0.00953222i
\(727\) 1136.87i 1.56378i 0.623413 + 0.781892i \(0.285745\pi\)
−0.623413 + 0.781892i \(0.714255\pi\)
\(728\) −2.47979 70.4096i −0.00340631 0.0967165i
\(729\) −559.712 467.080i −0.767781 0.640713i
\(730\) −25.6010 103.852i −0.0350699 0.142263i
\(731\) 56.4170 32.5724i 0.0771778 0.0445586i
\(732\) 617.949 + 459.613i 0.844193 + 0.627887i
\(733\) 158.068 + 91.2606i 0.215645 + 0.124503i 0.603932 0.797036i \(-0.293600\pi\)
−0.388287 + 0.921539i \(0.626933\pi\)
\(734\) 73.3970i 0.0999960i
\(735\) 695.959 + 236.361i 0.946883 + 0.321579i
\(736\) −193.590 −0.263029
\(737\) −115.013 + 199.208i −0.156055 + 0.270296i
\(738\) −25.1406 + 106.504i −0.0340658 + 0.144315i
\(739\) −692.467 1199.39i −0.937032 1.62299i −0.770969 0.636872i \(-0.780228\pi\)
−0.166063 0.986115i \(-0.553105\pi\)
\(740\) −226.503 918.820i −0.306086 1.24165i
\(741\) −103.779 240.288i −0.140052 0.324276i
\(742\) 27.6866 0.975107i 0.0373135 0.00131416i
\(743\) −82.8544 −0.111513 −0.0557566 0.998444i \(-0.517757\pi\)
−0.0557566 + 0.998444i \(0.517757\pi\)
\(744\) −22.3303 + 191.798i −0.0300139 + 0.257793i
\(745\) 454.316 + 131.577i 0.609821 + 0.176613i
\(746\) 33.3785 19.2711i 0.0447432 0.0258325i
\(747\) 92.8756 + 309.211i 0.124331 + 0.413937i
\(748\) 212.385i 0.283937i
\(749\) −599.304 + 1127.94i −0.800139 + 1.50593i
\(750\) 27.3437 58.3824i 0.0364583 0.0778432i
\(751\) −193.183 + 334.603i −0.257234 + 0.445543i −0.965500 0.260403i \(-0.916145\pi\)
0.708266 + 0.705946i \(0.249478\pi\)
\(752\) −408.585 707.689i −0.543331 0.941076i
\(753\) −398.159 + 535.324i −0.528764 + 0.710922i
\(754\) 20.6835 35.8248i 0.0274317 0.0475130i
\(755\) −102.730 106.946i −0.136066 0.141650i
\(756\) −733.757 + 157.232i −0.970578 + 0.207978i
\(757\) 1387.66i 1.83311i 0.399908 + 0.916555i \(0.369042\pi\)
−0.399908 + 0.916555i \(0.630958\pi\)
\(758\) 37.9816 65.7861i 0.0501077 0.0867891i
\(759\) −491.971 + 661.454i −0.648183 + 0.871481i
\(760\) −22.6384 + 78.1673i −0.0297874 + 0.102852i
\(761\) 500.579 + 289.009i 0.657791 + 0.379776i 0.791435 0.611254i \(-0.209334\pi\)
−0.133644 + 0.991029i \(0.542668\pi\)
\(762\) 26.9921 + 62.4972i 0.0354227 + 0.0820173i
\(763\) −126.551 202.389i −0.165859 0.265254i
\(764\) 943.916i 1.23549i
\(765\)