Properties

Label 105.3.o.b.44.10
Level 105
Weight 3
Character 105.44
Analytic conductor 2.861
Analytic rank 0
Dimension 40
CM no
Inner twists 8

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.o (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 44.10
Character \(\chi\) \(=\) 105.44
Dual form 105.3.o.b.74.10

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.0859580 + 0.148884i) q^{2} +(2.40718 + 1.79039i) q^{3} +(1.98522 + 3.43851i) q^{4} +(-1.39092 - 4.80264i) q^{5} +(-0.473476 + 0.204491i) q^{6} +(6.99566 - 0.246384i) q^{7} -1.37025 q^{8} +(2.58900 + 8.61957i) q^{9} +O(q^{10})\) \(q+(-0.0859580 + 0.148884i) q^{2} +(2.40718 + 1.79039i) q^{3} +(1.98522 + 3.43851i) q^{4} +(-1.39092 - 4.80264i) q^{5} +(-0.473476 + 0.204491i) q^{6} +(6.99566 - 0.246384i) q^{7} -1.37025 q^{8} +(2.58900 + 8.61957i) q^{9} +(0.834595 + 0.205740i) q^{10} +(-10.0440 + 5.79890i) q^{11} +(-1.37749 + 11.8314i) q^{12} -7.34521i q^{13} +(-0.564650 + 1.06272i) q^{14} +(5.25042 - 14.0511i) q^{15} +(-7.82311 + 13.5500i) q^{16} +(2.30611 + 3.99429i) q^{17} +(-1.50586 - 0.355461i) q^{18} +(5.93904 - 10.2867i) q^{19} +(13.7526 - 14.3170i) q^{20} +(17.2809 + 11.9319i) q^{21} -1.99385i q^{22} +(11.8464 - 20.5186i) q^{23} +(-3.29843 - 2.45328i) q^{24} +(-21.1307 + 13.3601i) q^{25} +(1.09358 + 0.631380i) q^{26} +(-9.20022 + 25.3842i) q^{27} +(14.7351 + 23.5655i) q^{28} -32.7592i q^{29} +(1.64066 + 1.98950i) q^{30} +(-23.4865 - 40.6798i) q^{31} +(-4.08541 - 7.07614i) q^{32} +(-34.5599 - 4.02368i) q^{33} -0.792913 q^{34} +(-10.9137 - 33.2549i) q^{35} +(-24.4987 + 26.0141i) q^{36} +(-41.2822 - 23.8343i) q^{37} +(1.02102 + 1.76845i) q^{38} +(13.1508 - 17.6812i) q^{39} +(1.90590 + 6.58080i) q^{40} +70.7266i q^{41} +(-3.26189 + 1.54721i) q^{42} -14.1244i q^{43} +(-39.8791 - 23.0242i) q^{44} +(37.7956 - 24.4232i) q^{45} +(2.03658 + 3.52747i) q^{46} +(26.1140 - 45.2307i) q^{47} +(-43.0914 + 18.6109i) q^{48} +(48.8786 - 3.44723i) q^{49} +(-0.172755 - 4.29442i) q^{50} +(-1.60014 + 13.7438i) q^{51} +(25.2566 - 14.5819i) q^{52} +(11.5105 + 19.9368i) q^{53} +(-2.98845 - 3.55173i) q^{54} +(41.8204 + 40.1718i) q^{55} +(-9.58578 + 0.337606i) q^{56} +(32.7136 - 14.1288i) q^{57} +(4.87730 + 2.81591i) q^{58} +(1.09721 - 0.633473i) q^{59} +(58.7380 - 9.84095i) q^{60} +(-32.3278 + 55.9933i) q^{61} +8.07541 q^{62} +(20.2355 + 59.6617i) q^{63} -61.1802 q^{64} +(-35.2764 + 10.2166i) q^{65} +(3.56976 - 4.79954i) q^{66} +(-17.1764 + 9.91678i) q^{67} +(-9.15627 + 15.8591i) q^{68} +(65.2526 - 28.1821i) q^{69} +(5.88923 + 1.23366i) q^{70} +48.1993i q^{71} +(-3.54757 - 11.8109i) q^{72} +(107.763 - 62.2168i) q^{73} +(7.09706 - 4.09749i) q^{74} +(-74.7852 - 5.67196i) q^{75} +47.1613 q^{76} +(-68.8356 + 43.0418i) q^{77} +(1.50203 + 3.47778i) q^{78} +(-34.4509 + 59.6707i) q^{79} +(75.9571 + 18.7246i) q^{80} +(-67.5941 + 44.6322i) q^{81} +(-10.5300 - 6.07951i) q^{82} -35.8731 q^{83} +(-6.72137 + 83.1080i) q^{84} +(15.9756 - 16.6311i) q^{85} +(2.10289 + 1.21410i) q^{86} +(58.6517 - 78.8571i) q^{87} +(13.7627 - 7.94592i) q^{88} +(110.539 + 63.8196i) q^{89} +(0.387373 + 7.72651i) q^{90} +(-1.80974 - 51.3846i) q^{91} +94.0709 q^{92} +(16.2966 - 139.974i) q^{93} +(4.48941 + 7.77588i) q^{94} +(-57.6641 - 14.2151i) q^{95} +(2.83474 - 24.3480i) q^{96} +26.9526i q^{97} +(-3.68827 + 7.57354i) q^{98} +(-75.9879 - 71.5615i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40q - 44q^{4} + 80q^{6} + 12q^{9} + O(q^{10}) \) \( 40q - 44q^{4} + 80q^{6} + 12q^{9} + 62q^{10} + 84q^{15} - 116q^{16} - 56q^{19} + 36q^{21} - 12q^{24} - 6q^{25} - 20q^{30} - 444q^{31} + 256q^{34} - 688q^{36} + 168q^{39} + 54q^{40} - 40q^{45} + 304q^{46} + 156q^{49} + 156q^{51} - 140q^{54} - 500q^{55} - 130q^{60} + 288q^{61} + 472q^{64} + 340q^{66} - 272q^{69} + 710q^{70} - 524q^{75} + 400q^{76} - 340q^{79} + 496q^{84} + 896q^{85} + 1356q^{90} - 656q^{91} - 560q^{94} + 472q^{96} - 336q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0859580 + 0.148884i −0.0429790 + 0.0744418i −0.886715 0.462317i \(-0.847018\pi\)
0.843736 + 0.536759i \(0.180352\pi\)
\(3\) 2.40718 + 1.79039i 0.802392 + 0.596797i
\(4\) 1.98522 + 3.43851i 0.496306 + 0.859627i
\(5\) −1.39092 4.80264i −0.278183 0.960528i
\(6\) −0.473476 + 0.204491i −0.0789126 + 0.0340818i
\(7\) 6.99566 0.246384i 0.999380 0.0351977i
\(8\) −1.37025 −0.171281
\(9\) 2.58900 + 8.61957i 0.287667 + 0.957730i
\(10\) 0.834595 + 0.205740i 0.0834595 + 0.0205740i
\(11\) −10.0440 + 5.79890i −0.913089 + 0.527172i −0.881424 0.472326i \(-0.843414\pi\)
−0.0316655 + 0.999499i \(0.510081\pi\)
\(12\) −1.37749 + 11.8314i −0.114791 + 0.985951i
\(13\) 7.34521i 0.565016i −0.959265 0.282508i \(-0.908834\pi\)
0.959265 0.282508i \(-0.0911665\pi\)
\(14\) −0.564650 + 1.06272i −0.0403322 + 0.0759084i
\(15\) 5.25042 14.0511i 0.350028 0.936739i
\(16\) −7.82311 + 13.5500i −0.488944 + 0.846876i
\(17\) 2.30611 + 3.99429i 0.135653 + 0.234958i 0.925847 0.377899i \(-0.123353\pi\)
−0.790194 + 0.612857i \(0.790020\pi\)
\(18\) −1.50586 0.355461i −0.0836588 0.0197478i
\(19\) 5.93904 10.2867i 0.312581 0.541406i −0.666339 0.745649i \(-0.732140\pi\)
0.978920 + 0.204242i \(0.0654730\pi\)
\(20\) 13.7526 14.3170i 0.687631 0.715849i
\(21\) 17.2809 + 11.9319i 0.822901 + 0.568185i
\(22\) 1.99385i 0.0906293i
\(23\) 11.8464 20.5186i 0.515061 0.892111i −0.484786 0.874633i \(-0.661103\pi\)
0.999847 0.0174789i \(-0.00556398\pi\)
\(24\) −3.29843 2.45328i −0.137434 0.102220i
\(25\) −21.1307 + 13.3601i −0.845228 + 0.534406i
\(26\) 1.09358 + 0.631380i 0.0420608 + 0.0242838i
\(27\) −9.20022 + 25.3842i −0.340749 + 0.940154i
\(28\) 14.7351 + 23.5655i 0.526255 + 0.841625i
\(29\) 32.7592i 1.12963i −0.825219 0.564813i \(-0.808948\pi\)
0.825219 0.564813i \(-0.191052\pi\)
\(30\) 1.64066 + 1.98950i 0.0546887 + 0.0663168i
\(31\) −23.4865 40.6798i −0.757629 1.31225i −0.944057 0.329784i \(-0.893024\pi\)
0.186427 0.982469i \(-0.440309\pi\)
\(32\) −4.08541 7.07614i −0.127669 0.221129i
\(33\) −34.5599 4.02368i −1.04727 0.121930i
\(34\) −0.792913 −0.0233210
\(35\) −10.9137 33.2549i −0.311819 0.950141i
\(36\) −24.4987 + 26.0141i −0.680520 + 0.722613i
\(37\) −41.2822 23.8343i −1.11573 0.644170i −0.175426 0.984493i \(-0.556130\pi\)
−0.940309 + 0.340323i \(0.889464\pi\)
\(38\) 1.02102 + 1.76845i 0.0268688 + 0.0465382i
\(39\) 13.1508 17.6812i 0.337200 0.453365i
\(40\) 1.90590 + 6.58080i 0.0476475 + 0.164520i
\(41\) 70.7266i 1.72504i 0.506024 + 0.862520i \(0.331115\pi\)
−0.506024 + 0.862520i \(0.668885\pi\)
\(42\) −3.26189 + 1.54721i −0.0776641 + 0.0368382i
\(43\) 14.1244i 0.328474i −0.986421 0.164237i \(-0.947484\pi\)
0.986421 0.164237i \(-0.0525162\pi\)
\(44\) −39.8791 23.0242i −0.906343 0.523277i
\(45\) 37.7956 24.4232i 0.839903 0.542737i
\(46\) 2.03658 + 3.52747i 0.0442736 + 0.0766841i
\(47\) 26.1140 45.2307i 0.555616 0.962356i −0.442239 0.896897i \(-0.645816\pi\)
0.997855 0.0654585i \(-0.0208510\pi\)
\(48\) −43.0914 + 18.6109i −0.897738 + 0.387727i
\(49\) 48.8786 3.44723i 0.997522 0.0703517i
\(50\) −0.172755 4.29442i −0.00345509 0.0858885i
\(51\) −1.60014 + 13.7438i −0.0313753 + 0.269486i
\(52\) 25.2566 14.5819i 0.485703 0.280421i
\(53\) 11.5105 + 19.9368i 0.217179 + 0.376166i 0.953945 0.299983i \(-0.0969810\pi\)
−0.736765 + 0.676149i \(0.763648\pi\)
\(54\) −2.98845 3.55173i −0.0553417 0.0657728i
\(55\) 41.8204 + 40.1718i 0.760370 + 0.730397i
\(56\) −9.58578 + 0.337606i −0.171175 + 0.00602868i
\(57\) 32.7136 14.1288i 0.573922 0.247873i
\(58\) 4.87730 + 2.81591i 0.0840914 + 0.0485502i
\(59\) 1.09721 0.633473i 0.0185967 0.0107368i −0.490673 0.871344i \(-0.663249\pi\)
0.509270 + 0.860607i \(0.329916\pi\)
\(60\) 58.7380 9.84095i 0.978967 0.164016i
\(61\) −32.3278 + 55.9933i −0.529963 + 0.917923i 0.469426 + 0.882972i \(0.344461\pi\)
−0.999389 + 0.0349515i \(0.988872\pi\)
\(62\) 8.07541 0.130249
\(63\) 20.2355 + 59.6617i 0.321199 + 0.947012i
\(64\) −61.1802 −0.955940
\(65\) −35.2764 + 10.2166i −0.542714 + 0.157178i
\(66\) 3.56976 4.79954i 0.0540873 0.0727203i
\(67\) −17.1764 + 9.91678i −0.256364 + 0.148012i −0.622675 0.782481i \(-0.713954\pi\)
0.366311 + 0.930493i \(0.380621\pi\)
\(68\) −9.15627 + 15.8591i −0.134651 + 0.233222i
\(69\) 65.2526 28.1821i 0.945690 0.408437i
\(70\) 5.88923 + 1.23366i 0.0841319 + 0.0176237i
\(71\) 48.1993i 0.678863i 0.940631 + 0.339432i \(0.110235\pi\)
−0.940631 + 0.339432i \(0.889765\pi\)
\(72\) −3.54757 11.8109i −0.0492718 0.164041i
\(73\) 107.763 62.2168i 1.47620 0.852285i 0.476562 0.879141i \(-0.341883\pi\)
0.999639 + 0.0268558i \(0.00854949\pi\)
\(74\) 7.09706 4.09749i 0.0959063 0.0553715i
\(75\) −74.7852 5.67196i −0.997136 0.0756262i
\(76\) 47.1613 0.620543
\(77\) −68.8356 + 43.0418i −0.893968 + 0.558984i
\(78\) 1.50203 + 3.47778i 0.0192568 + 0.0445869i
\(79\) −34.4509 + 59.6707i −0.436087 + 0.755325i −0.997384 0.0722896i \(-0.976969\pi\)
0.561296 + 0.827615i \(0.310303\pi\)
\(80\) 75.9571 + 18.7246i 0.949464 + 0.234058i
\(81\) −67.5941 + 44.6322i −0.834495 + 0.551015i
\(82\) −10.5300 6.07951i −0.128415 0.0741404i
\(83\) −35.8731 −0.432206 −0.216103 0.976371i \(-0.569335\pi\)
−0.216103 + 0.976371i \(0.569335\pi\)
\(84\) −6.72137 + 83.1080i −0.0800163 + 0.989381i
\(85\) 15.9756 16.6311i 0.187948 0.195660i
\(86\) 2.10289 + 1.21410i 0.0244522 + 0.0141175i
\(87\) 58.6517 78.8571i 0.674158 0.906404i
\(88\) 13.7627 7.94592i 0.156395 0.0902945i
\(89\) 110.539 + 63.8196i 1.24201 + 0.717074i 0.969503 0.245080i \(-0.0788143\pi\)
0.272506 + 0.962154i \(0.412148\pi\)
\(90\) 0.387373 + 7.72651i 0.00430414 + 0.0858501i
\(91\) −1.80974 51.3846i −0.0198873 0.564666i
\(92\) 94.0709 1.02251
\(93\) 16.2966 139.974i 0.175232 1.50509i
\(94\) 4.48941 + 7.77588i 0.0477597 + 0.0827221i
\(95\) −57.6641 14.2151i −0.606991 0.149633i
\(96\) 2.83474 24.3480i 0.0295286 0.253625i
\(97\) 26.9526i 0.277862i 0.990302 + 0.138931i \(0.0443666\pi\)
−0.990302 + 0.138931i \(0.955633\pi\)
\(98\) −3.68827 + 7.57354i −0.0376354 + 0.0772810i
\(99\) −75.9879 71.5615i −0.767555 0.722843i
\(100\) −87.8881 46.1352i −0.878881 0.461352i
\(101\) 15.8571 9.15508i 0.157001 0.0906444i −0.419441 0.907782i \(-0.637774\pi\)
0.576442 + 0.817138i \(0.304441\pi\)
\(102\) −1.90868 1.41962i −0.0187126 0.0139179i
\(103\) 26.9167 + 15.5404i 0.261327 + 0.150877i 0.624940 0.780673i \(-0.285123\pi\)
−0.363613 + 0.931550i \(0.618457\pi\)
\(104\) 10.0648i 0.0967765i
\(105\) 33.2682 99.5903i 0.316840 0.948479i
\(106\) −3.95768 −0.0373366
\(107\) −91.2333 + 158.021i −0.852648 + 1.47683i 0.0261619 + 0.999658i \(0.491671\pi\)
−0.878810 + 0.477172i \(0.841662\pi\)
\(108\) −105.548 + 18.7582i −0.977297 + 0.173687i
\(109\) 17.0498 + 29.5311i 0.156420 + 0.270928i 0.933575 0.358381i \(-0.116671\pi\)
−0.777155 + 0.629309i \(0.783338\pi\)
\(110\) −9.57572 + 2.77327i −0.0870520 + 0.0252116i
\(111\) −56.7009 131.285i −0.510819 1.18274i
\(112\) −51.3893 + 96.7188i −0.458833 + 0.863561i
\(113\) −64.0417 −0.566740 −0.283370 0.959011i \(-0.591453\pi\)
−0.283370 + 0.959011i \(0.591453\pi\)
\(114\) −0.708453 + 6.08499i −0.00621450 + 0.0533771i
\(115\) −115.021 28.3544i −1.00018 0.246560i
\(116\) 112.643 65.0342i 0.971057 0.560640i
\(117\) 63.3126 19.0168i 0.541134 0.162537i
\(118\) 0.217808i 0.00184583i
\(119\) 17.1169 + 27.3745i 0.143839 + 0.230038i
\(120\) −7.19437 + 19.2535i −0.0599530 + 0.160445i
\(121\) 6.75440 11.6990i 0.0558215 0.0966857i
\(122\) −5.55766 9.62615i −0.0455546 0.0789028i
\(123\) −126.628 + 170.251i −1.02950 + 1.38416i
\(124\) 93.2519 161.517i 0.752031 1.30256i
\(125\) 93.5550 + 82.9003i 0.748440 + 0.663202i
\(126\) −10.6221 2.11567i −0.0843020 0.0167910i
\(127\) 131.997i 1.03934i 0.854366 + 0.519672i \(0.173946\pi\)
−0.854366 + 0.519672i \(0.826054\pi\)
\(128\) 21.6006 37.4133i 0.168754 0.292291i
\(129\) 25.2882 33.9999i 0.196032 0.263565i
\(130\) 1.51121 6.13028i 0.0116247 0.0471560i
\(131\) −69.4990 40.1253i −0.530527 0.306300i 0.210704 0.977550i \(-0.432424\pi\)
−0.741231 + 0.671250i \(0.765758\pi\)
\(132\) −54.7737 126.822i −0.414952 0.960776i
\(133\) 39.0131 73.4257i 0.293331 0.552073i
\(134\) 3.40971i 0.0254456i
\(135\) 134.708 + 8.87805i 0.997835 + 0.0657633i
\(136\) −3.15993 5.47317i −0.0232348 0.0402439i
\(137\) −77.7452 134.659i −0.567483 0.982909i −0.996814 0.0797620i \(-0.974584\pi\)
0.429331 0.903147i \(-0.358749\pi\)
\(138\) −1.41313 + 12.1375i −0.0102400 + 0.0879530i
\(139\) −131.310 −0.944678 −0.472339 0.881417i \(-0.656590\pi\)
−0.472339 + 0.881417i \(0.656590\pi\)
\(140\) 92.6813 103.545i 0.662009 0.739609i
\(141\) 143.842 62.1242i 1.02015 0.440597i
\(142\) −7.17608 4.14311i −0.0505358 0.0291768i
\(143\) 42.5941 + 73.7752i 0.297861 + 0.515911i
\(144\) −137.049 32.3508i −0.951732 0.224658i
\(145\) −157.330 + 45.5653i −1.08504 + 0.314243i
\(146\) 21.3921i 0.146521i
\(147\) 123.831 + 79.2137i 0.842390 + 0.538868i
\(148\) 189.265i 1.27882i
\(149\) −81.9236 47.2986i −0.549823 0.317440i 0.199228 0.979953i \(-0.436157\pi\)
−0.749050 + 0.662513i \(0.769490\pi\)
\(150\) 7.27285 10.6467i 0.0484856 0.0709783i
\(151\) 14.8293 + 25.6851i 0.0982074 + 0.170100i 0.910943 0.412533i \(-0.135356\pi\)
−0.812735 + 0.582633i \(0.802022\pi\)
\(152\) −8.13795 + 14.0953i −0.0535392 + 0.0927325i
\(153\) −28.4586 + 30.2189i −0.186004 + 0.197509i
\(154\) −0.491251 13.9483i −0.00318994 0.0905732i
\(155\) −162.703 + 169.379i −1.04970 + 1.09277i
\(156\) 86.9043 + 10.1179i 0.557079 + 0.0648586i
\(157\) −39.7991 + 22.9780i −0.253497 + 0.146357i −0.621365 0.783522i \(-0.713421\pi\)
0.367867 + 0.929878i \(0.380088\pi\)
\(158\) −5.92266 10.2583i −0.0374852 0.0649262i
\(159\) −7.98680 + 68.5997i −0.0502314 + 0.431444i
\(160\) −28.3017 + 29.4631i −0.176885 + 0.184144i
\(161\) 77.8180 146.460i 0.483341 0.909688i
\(162\) −0.834748 13.9001i −0.00515277 0.0858034i
\(163\) 184.229 + 106.364i 1.13024 + 0.652542i 0.943994 0.329962i \(-0.107036\pi\)
0.186242 + 0.982504i \(0.440369\pi\)
\(164\) −243.194 + 140.408i −1.48289 + 0.856147i
\(165\) 28.7457 + 171.576i 0.174216 + 1.03985i
\(166\) 3.08358 5.34092i 0.0185758 0.0321742i
\(167\) 11.5544 0.0691879 0.0345940 0.999401i \(-0.488986\pi\)
0.0345940 + 0.999401i \(0.488986\pi\)
\(168\) −23.6791 16.3496i −0.140947 0.0973191i
\(169\) 115.048 0.680756
\(170\) 1.10288 + 3.80808i 0.00648751 + 0.0224004i
\(171\) 104.043 + 24.5597i 0.608441 + 0.143624i
\(172\) 48.5668 28.0401i 0.282365 0.163024i
\(173\) −1.95332 + 3.38324i −0.0112908 + 0.0195563i −0.871616 0.490190i \(-0.836927\pi\)
0.860325 + 0.509746i \(0.170261\pi\)
\(174\) 6.69895 + 15.5107i 0.0384997 + 0.0891418i
\(175\) −144.532 + 98.6693i −0.825894 + 0.563825i
\(176\) 181.462i 1.03103i
\(177\) 3.77534 + 0.439548i 0.0213296 + 0.00248332i
\(178\) −19.0034 + 10.9716i −0.106761 + 0.0616382i
\(179\) 190.707 110.105i 1.06540 0.615110i 0.138480 0.990365i \(-0.455778\pi\)
0.926921 + 0.375256i \(0.122445\pi\)
\(180\) 159.012 + 81.4751i 0.883400 + 0.452639i
\(181\) 77.8562 0.430145 0.215072 0.976598i \(-0.431001\pi\)
0.215072 + 0.976598i \(0.431001\pi\)
\(182\) 7.80589 + 4.14748i 0.0428895 + 0.0227883i
\(183\) −178.069 + 76.9065i −0.973052 + 0.420254i
\(184\) −16.2325 + 28.1155i −0.0882200 + 0.152802i
\(185\) −57.0474 + 231.415i −0.308364 + 1.25089i
\(186\) 19.4389 + 14.4581i 0.104510 + 0.0777319i
\(187\) −46.3250 26.7457i −0.247727 0.143025i
\(188\) 207.368 1.10302
\(189\) −58.1074 + 179.846i −0.307446 + 0.951565i
\(190\) 7.07309 7.36334i 0.0372268 0.0387544i
\(191\) −205.885 118.868i −1.07793 0.622345i −0.147594 0.989048i \(-0.547153\pi\)
−0.930338 + 0.366703i \(0.880486\pi\)
\(192\) −147.271 109.536i −0.767039 0.570502i
\(193\) 182.727 105.498i 0.946773 0.546620i 0.0546961 0.998503i \(-0.482581\pi\)
0.892077 + 0.451883i \(0.149248\pi\)
\(194\) −4.01279 2.31679i −0.0206845 0.0119422i
\(195\) −103.208 38.5654i −0.529273 0.197771i
\(196\) 108.888 + 161.226i 0.555552 + 0.822581i
\(197\) 378.734 1.92251 0.961253 0.275667i \(-0.0888987\pi\)
0.961253 + 0.275667i \(0.0888987\pi\)
\(198\) 17.1861 5.16207i 0.0867985 0.0260711i
\(199\) 95.2314 + 164.946i 0.478550 + 0.828873i 0.999698 0.0245938i \(-0.00782923\pi\)
−0.521148 + 0.853467i \(0.674496\pi\)
\(200\) 28.9543 18.3067i 0.144771 0.0915335i
\(201\) −59.1015 6.88096i −0.294037 0.0342336i
\(202\) 3.14781i 0.0155832i
\(203\) −8.07132 229.172i −0.0397602 1.12893i
\(204\) −50.4348 + 21.7824i −0.247229 + 0.106777i
\(205\) 339.674 98.3748i 1.65695 0.479877i
\(206\) −4.62741 + 2.67164i −0.0224632 + 0.0129691i
\(207\) 207.532 + 48.9883i 1.00257 + 0.236658i
\(208\) 99.5278 + 57.4624i 0.478499 + 0.276262i
\(209\) 137.760i 0.659137i
\(210\) 11.9677 + 13.5137i 0.0569890 + 0.0643508i
\(211\) 56.9073 0.269703 0.134851 0.990866i \(-0.456944\pi\)
0.134851 + 0.990866i \(0.456944\pi\)
\(212\) −45.7018 + 79.1579i −0.215575 + 0.373386i
\(213\) −86.2955 + 116.024i −0.405143 + 0.544715i
\(214\) −15.6845 27.1663i −0.0732919 0.126945i
\(215\) −67.8344 + 19.6459i −0.315509 + 0.0913761i
\(216\) 12.6066 34.7826i 0.0583637 0.161030i
\(217\) −174.327 278.796i −0.803348 1.28477i
\(218\) −5.86227 −0.0268911
\(219\) 370.796 + 43.1704i 1.69313 + 0.197125i
\(220\) −55.1084 + 223.550i −0.250493 + 1.01613i
\(221\) 29.3389 16.9388i 0.132755 0.0766464i
\(222\) 24.4200 + 2.84313i 0.110000 + 0.0128069i
\(223\) 105.559i 0.473357i −0.971588 0.236679i \(-0.923941\pi\)
0.971588 0.236679i \(-0.0760589\pi\)
\(224\) −30.3236 48.4957i −0.135373 0.216499i
\(225\) −169.866 147.548i −0.754961 0.655770i
\(226\) 5.50489 9.53475i 0.0243579 0.0421892i
\(227\) −193.360 334.909i −0.851805 1.47537i −0.879577 0.475756i \(-0.842175\pi\)
0.0277721 0.999614i \(-0.491159\pi\)
\(228\) 113.526 + 84.4371i 0.497919 + 0.370338i
\(229\) −14.0913 + 24.4068i −0.0615340 + 0.106580i −0.895151 0.445762i \(-0.852933\pi\)
0.833617 + 0.552343i \(0.186266\pi\)
\(230\) 14.1084 14.6874i 0.0613410 0.0638582i
\(231\) −242.761 19.6333i −1.05091 0.0849927i
\(232\) 44.8881i 0.193483i
\(233\) −171.016 + 296.208i −0.733974 + 1.27128i 0.221199 + 0.975229i \(0.429003\pi\)
−0.955172 + 0.296051i \(0.904330\pi\)
\(234\) −2.61094 + 11.0609i −0.0111579 + 0.0472686i
\(235\) −253.549 62.5038i −1.07893 0.265974i
\(236\) 4.35640 + 2.51517i 0.0184593 + 0.0106575i
\(237\) −189.763 + 81.9574i −0.800689 + 0.345812i
\(238\) −5.54695 + 0.195361i −0.0233065 + 0.000820844i
\(239\) 105.588i 0.441791i 0.975298 + 0.220895i \(0.0708979\pi\)
−0.975298 + 0.220895i \(0.929102\pi\)
\(240\) 149.318 + 181.066i 0.622158 + 0.754443i
\(241\) −9.53578 16.5165i −0.0395675 0.0685330i 0.845563 0.533875i \(-0.179265\pi\)
−0.885131 + 0.465342i \(0.845931\pi\)
\(242\) 1.16119 + 2.01124i 0.00479830 + 0.00831090i
\(243\) −242.620 13.5823i −0.998437 0.0558941i
\(244\) −256.711 −1.05210
\(245\) −84.5419 229.951i −0.345069 0.938577i
\(246\) −14.4629 33.4873i −0.0587924 0.136127i
\(247\) −75.5582 43.6235i −0.305904 0.176614i
\(248\) 32.1823 + 55.7414i 0.129767 + 0.224764i
\(249\) −86.3529 64.2269i −0.346799 0.257939i
\(250\) −20.3843 + 6.80287i −0.0815372 + 0.0272115i
\(251\) 222.387i 0.886003i −0.896521 0.443001i \(-0.853914\pi\)
0.896521 0.443001i \(-0.146086\pi\)
\(252\) −164.975 + 188.022i −0.654664 + 0.746118i
\(253\) 274.784i 1.08610i
\(254\) −19.6521 11.3462i −0.0773706 0.0446699i
\(255\) 68.2322 11.4316i 0.267577 0.0448298i
\(256\) −118.647 205.502i −0.463464 0.802744i
\(257\) 182.147 315.488i 0.708743 1.22758i −0.256581 0.966523i \(-0.582596\pi\)
0.965324 0.261056i \(-0.0840707\pi\)
\(258\) 2.88831 + 6.68756i 0.0111950 + 0.0259208i
\(259\) −294.669 156.565i −1.13772 0.604499i
\(260\) −105.161 101.016i −0.404467 0.388523i
\(261\) 282.370 84.8136i 1.08188 0.324956i
\(262\) 11.9480 6.89817i 0.0456030 0.0263289i
\(263\) −181.221 313.884i −0.689054 1.19348i −0.972144 0.234383i \(-0.924693\pi\)
0.283090 0.959093i \(-0.408640\pi\)
\(264\) 47.3556 + 5.51344i 0.179377 + 0.0208842i
\(265\) 79.7390 83.0112i 0.300902 0.313250i
\(266\) 7.57840 + 12.1199i 0.0284902 + 0.0455636i
\(267\) 151.824 + 351.533i 0.568631 + 1.31660i
\(268\) −68.1978 39.3740i −0.254470 0.146918i
\(269\) 274.148 158.279i 1.01914 0.588399i 0.105283 0.994442i \(-0.466425\pi\)
0.913854 + 0.406043i \(0.133092\pi\)
\(270\) −12.9010 + 19.2926i −0.0477815 + 0.0714542i
\(271\) 24.8208 42.9910i 0.0915898 0.158638i −0.816590 0.577218i \(-0.804138\pi\)
0.908180 + 0.418579i \(0.137472\pi\)
\(272\) −72.1637 −0.265308
\(273\) 87.6422 126.932i 0.321034 0.464953i
\(274\) 26.7313 0.0975594
\(275\) 134.762 256.724i 0.490045 0.933541i
\(276\) 226.445 + 168.424i 0.820454 + 0.610231i
\(277\) −95.4077 + 55.0836i −0.344432 + 0.198858i −0.662230 0.749300i \(-0.730390\pi\)
0.317798 + 0.948158i \(0.397057\pi\)
\(278\) 11.2872 19.5499i 0.0406013 0.0703235i
\(279\) 289.836 307.764i 1.03884 1.10310i
\(280\) 14.9544 + 45.5675i 0.0534087 + 0.162741i
\(281\) 400.249i 1.42437i 0.701990 + 0.712187i \(0.252295\pi\)
−0.701990 + 0.712187i \(0.747705\pi\)
\(282\) −3.11507 + 26.7557i −0.0110463 + 0.0948784i
\(283\) −277.081 + 159.973i −0.979086 + 0.565276i −0.901994 0.431748i \(-0.857897\pi\)
−0.0770921 + 0.997024i \(0.524564\pi\)
\(284\) −165.734 + 95.6863i −0.583569 + 0.336924i
\(285\) −113.357 137.460i −0.397745 0.482314i
\(286\) −14.6452 −0.0512071
\(287\) 17.4259 + 494.779i 0.0607173 + 1.72397i
\(288\) 50.4161 53.5346i 0.175056 0.185884i
\(289\) 133.864 231.859i 0.463196 0.802280i
\(290\) 6.73989 27.3406i 0.0232410 0.0942780i
\(291\) −48.2556 + 64.8796i −0.165827 + 0.222954i
\(292\) 427.866 + 247.028i 1.46529 + 0.845988i
\(293\) 328.719 1.12191 0.560954 0.827847i \(-0.310434\pi\)
0.560954 + 0.827847i \(0.310434\pi\)
\(294\) −22.4379 + 11.6274i −0.0763194 + 0.0395490i
\(295\) −4.56847 4.38838i −0.0154863 0.0148759i
\(296\) 56.5668 + 32.6588i 0.191104 + 0.110334i
\(297\) −54.7933 308.309i −0.184489 1.03808i
\(298\) 14.0840 8.13138i 0.0472616 0.0272865i
\(299\) −150.713 87.0143i −0.504058 0.291018i
\(300\) −128.962 268.410i −0.429874 0.894698i
\(301\) −3.48002 98.8095i −0.0115615 0.328271i
\(302\) −5.09879 −0.0168834
\(303\) 54.5619 + 6.35244i 0.180072 + 0.0209651i
\(304\) 92.9235 + 160.948i 0.305669 + 0.529435i
\(305\) 313.881 + 77.3765i 1.02912 + 0.253694i
\(306\) −2.05285 6.83457i −0.00670867 0.0223352i
\(307\) 433.637i 1.41250i −0.707963 0.706250i \(-0.750386\pi\)
0.707963 0.706250i \(-0.249614\pi\)
\(308\) −284.653 151.244i −0.924199 0.491052i
\(309\) 36.9700 + 85.5998i 0.119644 + 0.277022i
\(310\) −11.2322 38.7833i −0.0362330 0.125107i
\(311\) −310.113 + 179.044i −0.997148 + 0.575704i −0.907403 0.420261i \(-0.861939\pi\)
−0.0897451 + 0.995965i \(0.528605\pi\)
\(312\) −18.0198 + 24.2276i −0.0577559 + 0.0776527i
\(313\) −193.637 111.796i −0.618647 0.357176i 0.157695 0.987488i \(-0.449594\pi\)
−0.776342 + 0.630312i \(0.782927\pi\)
\(314\) 7.90057i 0.0251610i
\(315\) 258.388 180.168i 0.820279 0.571963i
\(316\) −273.571 −0.865730
\(317\) −268.012 + 464.210i −0.845462 + 1.46438i 0.0397565 + 0.999209i \(0.487342\pi\)
−0.885219 + 0.465175i \(0.845992\pi\)
\(318\) −9.52683 7.08579i −0.0299586 0.0222824i
\(319\) 189.967 + 329.033i 0.595508 + 1.03145i
\(320\) 85.0965 + 293.826i 0.265927 + 0.918207i
\(321\) −502.534 + 217.041i −1.56553 + 0.676139i
\(322\) 15.1164 + 24.1752i 0.0469452 + 0.0750782i
\(323\) 54.7843 0.169611
\(324\) −287.658 143.818i −0.887832 0.443883i
\(325\) 98.1332 + 155.210i 0.301948 + 0.477568i
\(326\) −31.6718 + 18.2857i −0.0971528 + 0.0560912i
\(327\) −11.8304 + 101.613i −0.0361785 + 0.310742i
\(328\) 96.9129i 0.295466i
\(329\) 171.540 322.853i 0.521399 0.981316i
\(330\) −28.0157 10.4685i −0.0848961 0.0317228i
\(331\) −107.615 + 186.394i −0.325120 + 0.563124i −0.981537 0.191274i \(-0.938738\pi\)
0.656417 + 0.754398i \(0.272071\pi\)
\(332\) −71.2161 123.350i −0.214506 0.371536i
\(333\) 98.5617 417.542i 0.295981 1.25388i
\(334\) −0.993191 + 1.72026i −0.00297363 + 0.00515047i
\(335\) 71.5177 + 68.6985i 0.213486 + 0.205070i
\(336\) −296.868 + 140.812i −0.883535 + 0.419085i
\(337\) 203.340i 0.603381i 0.953406 + 0.301691i \(0.0975510\pi\)
−0.953406 + 0.301691i \(0.902449\pi\)
\(338\) −9.88928 + 17.1287i −0.0292582 + 0.0506767i
\(339\) −154.160 114.660i −0.454748 0.338229i
\(340\) 88.9013 + 21.9155i 0.261474 + 0.0644575i
\(341\) 471.796 + 272.392i 1.38357 + 0.798802i
\(342\) −12.5999 + 13.3792i −0.0368418 + 0.0391206i
\(343\) 341.089 36.1586i 0.994428 0.105419i
\(344\) 19.3539i 0.0562613i
\(345\) −226.110 274.186i −0.655390 0.794741i
\(346\) −0.335806 0.581633i −0.000970538 0.00168102i
\(347\) 9.76578 + 16.9148i 0.0281435 + 0.0487459i 0.879754 0.475429i \(-0.157707\pi\)
−0.851611 + 0.524175i \(0.824374\pi\)
\(348\) 387.587 + 45.1253i 1.11376 + 0.129670i
\(349\) −19.4121 −0.0556219 −0.0278110 0.999613i \(-0.508854\pi\)
−0.0278110 + 0.999613i \(0.508854\pi\)
\(350\) −2.26661 29.9998i −0.00647603 0.0857137i
\(351\) 186.452 + 67.5776i 0.531203 + 0.192529i
\(352\) 82.0676 + 47.3817i 0.233146 + 0.134607i
\(353\) 160.280 + 277.612i 0.454050 + 0.786437i 0.998633 0.0522696i \(-0.0166455\pi\)
−0.544583 + 0.838707i \(0.683312\pi\)
\(354\) −0.389962 + 0.524303i −0.00110159 + 0.00148108i
\(355\) 231.484 67.0412i 0.652067 0.188848i
\(356\) 506.784i 1.42355i
\(357\) −7.80778 + 96.5413i −0.0218705 + 0.270424i
\(358\) 37.8575i 0.105747i
\(359\) −16.9213 9.76951i −0.0471345 0.0272131i 0.476248 0.879311i \(-0.341997\pi\)
−0.523382 + 0.852098i \(0.675330\pi\)
\(360\) −51.7893 + 33.4658i −0.143859 + 0.0929604i
\(361\) 109.956 + 190.449i 0.304586 + 0.527558i
\(362\) −6.69236 + 11.5915i −0.0184872 + 0.0320207i
\(363\) 37.2048 16.0685i 0.102492 0.0442657i
\(364\) 173.094 108.233i 0.475532 0.297343i
\(365\) −448.694 431.007i −1.22930 1.18084i
\(366\) 3.85629 33.1222i 0.0105363 0.0904979i
\(367\) 369.737 213.468i 1.00746 0.581656i 0.0970116 0.995283i \(-0.469072\pi\)
0.910446 + 0.413627i \(0.135738\pi\)
\(368\) 185.351 + 321.038i 0.503672 + 0.872385i
\(369\) −609.633 + 183.111i −1.65212 + 0.496237i
\(370\) −29.5502 28.3854i −0.0798654 0.0767172i
\(371\) 85.4357 + 136.635i 0.230285 + 0.368288i
\(372\) 513.652 221.843i 1.38079 0.596351i
\(373\) −194.156 112.096i −0.520525 0.300525i 0.216625 0.976255i \(-0.430495\pi\)
−0.737149 + 0.675730i \(0.763829\pi\)
\(374\) 7.96400 4.59802i 0.0212941 0.0122942i
\(375\) 76.7796 + 367.056i 0.204746 + 0.978815i
\(376\) −35.7826 + 61.9772i −0.0951664 + 0.164833i
\(377\) −240.623 −0.638258
\(378\) −21.7813 24.1104i −0.0576225 0.0637842i
\(379\) 441.863 1.16586 0.582932 0.812521i \(-0.301905\pi\)
0.582932 + 0.812521i \(0.301905\pi\)
\(380\) −65.5974 226.499i −0.172625 0.596049i
\(381\) −236.326 + 317.739i −0.620277 + 0.833961i
\(382\) 35.3949 20.4353i 0.0926569 0.0534955i
\(383\) −71.4848 + 123.815i −0.186644 + 0.323277i −0.944129 0.329575i \(-0.893095\pi\)
0.757485 + 0.652853i \(0.226428\pi\)
\(384\) 118.981 51.3869i 0.309846 0.133820i
\(385\) 302.459 + 270.725i 0.785607 + 0.703181i
\(386\) 36.2734i 0.0939726i
\(387\) 121.746 36.5681i 0.314590 0.0944912i
\(388\) −92.6766 + 53.5069i −0.238857 + 0.137904i
\(389\) 35.6423 20.5781i 0.0916256 0.0529000i −0.453487 0.891263i \(-0.649820\pi\)
0.545113 + 0.838363i \(0.316487\pi\)
\(390\) 14.6133 12.0510i 0.0374701 0.0309000i
\(391\) 109.276 0.279479
\(392\) −66.9757 + 4.72356i −0.170856 + 0.0120499i
\(393\) −95.4565 221.019i −0.242892 0.562389i
\(394\) −32.5552 + 56.3872i −0.0826274 + 0.143115i
\(395\) 334.495 + 82.4582i 0.846823 + 0.208755i
\(396\) 95.2117 403.350i 0.240434 1.01856i
\(397\) −326.923 188.749i −0.823484 0.475439i 0.0281322 0.999604i \(-0.491044\pi\)
−0.851617 + 0.524165i \(0.824377\pi\)
\(398\) −32.7436 −0.0822704
\(399\) 225.372 106.900i 0.564842 0.267920i
\(400\) −15.7225 390.839i −0.0393063 0.977098i
\(401\) 81.6070 + 47.1158i 0.203509 + 0.117496i 0.598291 0.801279i \(-0.295847\pi\)
−0.394782 + 0.918775i \(0.629180\pi\)
\(402\) 6.10471 8.20777i 0.0151858 0.0204173i
\(403\) −298.802 + 172.513i −0.741444 + 0.428073i
\(404\) 62.9596 + 36.3497i 0.155841 + 0.0899746i
\(405\) 308.370 + 262.551i 0.761408 + 0.648273i
\(406\) 34.8138 + 18.4975i 0.0857482 + 0.0455603i
\(407\) 552.850 1.35835
\(408\) 2.19258 18.8324i 0.00537398 0.0461578i
\(409\) −264.873 458.773i −0.647611 1.12169i −0.983692 0.179862i \(-0.942435\pi\)
0.336081 0.941833i \(-0.390898\pi\)
\(410\) −14.5513 + 59.0280i −0.0354910 + 0.143971i
\(411\) 53.9451 463.341i 0.131253 1.12735i
\(412\) 123.404i 0.299525i
\(413\) 7.51962 4.70190i 0.0182073 0.0113847i
\(414\) −25.1325 + 26.6871i −0.0607066 + 0.0644616i
\(415\) 49.8965 + 172.286i 0.120233 + 0.415146i
\(416\) −51.9757 + 30.0082i −0.124942 + 0.0721351i
\(417\) −316.087 235.097i −0.758002 0.563781i
\(418\) −20.5101 11.8415i −0.0490673 0.0283290i
\(419\) 208.590i 0.497828i 0.968526 + 0.248914i \(0.0800736\pi\)
−0.968526 + 0.248914i \(0.919926\pi\)
\(420\) 408.487 83.3160i 0.972587 0.198371i
\(421\) −382.542 −0.908650 −0.454325 0.890836i \(-0.650120\pi\)
−0.454325 + 0.890836i \(0.650120\pi\)
\(422\) −4.89164 + 8.47256i −0.0115916 + 0.0200772i
\(423\) 457.479 + 107.989i 1.08151 + 0.255293i
\(424\) −15.7722 27.3183i −0.0371987 0.0644300i
\(425\) −102.094 53.5923i −0.240221 0.126100i
\(426\) −9.85631 22.8212i −0.0231369 0.0535709i
\(427\) −212.358 + 399.675i −0.497326 + 0.936008i
\(428\) −724.474 −1.69270
\(429\) −29.5548 + 253.850i −0.0688923 + 0.591725i
\(430\) 2.90596 11.7881i 0.00675804 0.0274143i
\(431\) −403.517 + 232.971i −0.936234 + 0.540535i −0.888778 0.458338i \(-0.848445\pi\)
−0.0474561 + 0.998873i \(0.515111\pi\)
\(432\) −271.982 323.246i −0.629587 0.748255i
\(433\) 769.033i 1.77606i 0.459788 + 0.888029i \(0.347926\pi\)
−0.459788 + 0.888029i \(0.652074\pi\)
\(434\) 56.4928 1.98965i 0.130168 0.00458444i
\(435\) −460.302 171.999i −1.05817 0.395401i
\(436\) −67.6953 + 117.252i −0.155265 + 0.268926i
\(437\) −140.713 243.721i −0.321997 0.557714i
\(438\) −38.3003 + 51.4946i −0.0874435 + 0.117568i
\(439\) −129.054 + 223.528i −0.293973 + 0.509176i −0.974745 0.223319i \(-0.928311\pi\)
0.680773 + 0.732495i \(0.261644\pi\)
\(440\) −57.3042 55.0453i −0.130237 0.125103i
\(441\) 156.261 + 412.388i 0.354332 + 0.935120i
\(442\) 5.82412i 0.0131767i
\(443\) 202.227 350.267i 0.456493 0.790670i −0.542279 0.840198i \(-0.682439\pi\)
0.998773 + 0.0495286i \(0.0157719\pi\)
\(444\) 338.859 455.595i 0.763196 1.02612i
\(445\) 152.752 619.646i 0.343263 1.39246i
\(446\) 15.7160 + 9.07361i 0.0352376 + 0.0203444i
\(447\) −112.522 260.531i −0.251726 0.582844i
\(448\) −427.996 + 15.0738i −0.955348 + 0.0336469i
\(449\) 24.0690i 0.0536058i 0.999641 + 0.0268029i \(0.00853266\pi\)
−0.999641 + 0.0268029i \(0.991467\pi\)
\(450\) 36.5689 12.6073i 0.0812641 0.0280163i
\(451\) −410.136 710.377i −0.909393 1.57511i
\(452\) −127.137 220.208i −0.281276 0.487185i
\(453\) −10.2896 + 88.3789i −0.0227144 + 0.195097i
\(454\) 66.4833 0.146439
\(455\) −244.265 + 80.1633i −0.536846 + 0.176183i
\(456\) −44.8257 + 19.3599i −0.0983019 + 0.0424559i
\(457\) −183.663 106.038i −0.401888 0.232030i 0.285410 0.958405i \(-0.407870\pi\)
−0.687298 + 0.726375i \(0.741204\pi\)
\(458\) −2.42252 4.19592i −0.00528934 0.00916140i
\(459\) −122.609 + 21.7902i −0.267121 + 0.0474733i
\(460\) −130.845 451.789i −0.284445 0.982150i
\(461\) 315.604i 0.684608i −0.939589 0.342304i \(-0.888793\pi\)
0.939589 0.342304i \(-0.111207\pi\)
\(462\) 23.7903 34.4555i 0.0514942 0.0745790i
\(463\) 612.544i 1.32299i −0.749950 0.661495i \(-0.769922\pi\)
0.749950 0.661495i \(-0.230078\pi\)
\(464\) 443.887 + 256.278i 0.956654 + 0.552324i
\(465\) −694.910 + 116.425i −1.49443 + 0.250376i
\(466\) −29.4003 50.9229i −0.0630909 0.109277i
\(467\) 201.374 348.790i 0.431208 0.746874i −0.565770 0.824563i \(-0.691421\pi\)
0.996978 + 0.0776892i \(0.0247542\pi\)
\(468\) 191.079 + 179.948i 0.408288 + 0.384505i
\(469\) −117.717 + 73.6064i −0.250995 + 0.156943i
\(470\) 31.1004 32.3766i 0.0661710 0.0688864i
\(471\) −136.943 15.9438i −0.290749 0.0338509i
\(472\) −1.50344 + 0.868014i −0.00318526 + 0.00183901i
\(473\) 81.9059 + 141.865i 0.173163 + 0.299926i
\(474\) 4.10956 35.2975i 0.00866995 0.0744673i
\(475\) 11.9360 + 296.712i 0.0251285 + 0.624657i
\(476\) −60.1467 + 113.201i −0.126359 + 0.237817i
\(477\) −142.046 + 150.832i −0.297790 + 0.316210i
\(478\) −15.7203 9.07612i −0.0328877 0.0189877i
\(479\) 232.441 134.200i 0.485263 0.280167i −0.237344 0.971426i \(-0.576277\pi\)
0.722607 + 0.691259i \(0.242944\pi\)
\(480\) −120.878 + 20.2518i −0.251828 + 0.0421912i
\(481\) −175.068 + 303.226i −0.363967 + 0.630408i
\(482\) 3.27870 0.00680229
\(483\) 449.542 213.230i 0.930728 0.441470i
\(484\) 53.6359 0.110818
\(485\) 129.443 37.4888i 0.266894 0.0772965i
\(486\) 22.8773 34.9546i 0.0470726 0.0719231i
\(487\) 60.9309 35.1785i 0.125115 0.0722351i −0.436136 0.899881i \(-0.643653\pi\)
0.561251 + 0.827645i \(0.310320\pi\)
\(488\) 44.2970 76.7247i 0.0907726 0.157223i
\(489\) 253.037 + 585.879i 0.517458 + 1.19812i
\(490\) 41.5030 + 7.17926i 0.0847001 + 0.0146516i
\(491\) 573.554i 1.16814i −0.811705 0.584068i \(-0.801460\pi\)
0.811705 0.584068i \(-0.198540\pi\)
\(492\) −836.796 97.4250i −1.70080 0.198018i
\(493\) 130.850 75.5461i 0.265415 0.153238i
\(494\) 12.9897 7.49958i 0.0262948 0.0151813i
\(495\) −237.991 + 464.479i −0.480790 + 0.938341i
\(496\) 734.950 1.48175
\(497\) 11.8755 + 337.186i 0.0238944 + 0.678443i
\(498\) 16.9851 7.33572i 0.0341065 0.0147304i
\(499\) −19.6456 + 34.0272i −0.0393700 + 0.0681909i −0.885039 0.465517i \(-0.845868\pi\)
0.845669 + 0.533708i \(0.179202\pi\)
\(500\) −99.3256 + 486.265i −0.198651 + 0.972530i
\(501\) 27.8135 + 20.6869i 0.0555159 + 0.0412911i
\(502\) 33.1097 + 19.1159i 0.0659556 + 0.0380795i
\(503\) −377.200 −0.749901 −0.374951 0.927045i \(-0.622340\pi\)
−0.374951 + 0.927045i \(0.622340\pi\)
\(504\) −27.7276 81.7513i −0.0550152 0.162205i
\(505\) −66.0244 63.4218i −0.130741 0.125588i
\(506\) −40.9108 23.6199i −0.0808515 0.0466796i
\(507\) 276.940 + 205.981i 0.546234 + 0.406273i
\(508\) −453.871 + 262.043i −0.893447 + 0.515832i
\(509\) −581.066 335.479i −1.14158 0.659094i −0.194762 0.980851i \(-0.562393\pi\)
−0.946822 + 0.321757i \(0.895727\pi\)
\(510\) −4.16312 + 11.1413i −0.00816299 + 0.0218457i
\(511\) 738.542 461.799i 1.44529 0.903716i
\(512\) 213.599 0.417186
\(513\) 206.479 + 245.398i 0.402494 + 0.478358i
\(514\) 31.3140 + 54.2374i 0.0609221 + 0.105520i
\(515\) 37.1959 150.887i 0.0722250 0.292984i
\(516\) 167.112 + 19.4562i 0.323860 + 0.0377058i
\(517\) 605.729i 1.17162i
\(518\) 48.6391 30.4133i 0.0938979 0.0587129i
\(519\) −10.7593 + 4.64686i −0.0207308 + 0.00895350i
\(520\) 48.3374 13.9992i 0.0929565 0.0269216i
\(521\) 663.160 382.876i 1.27286 0.734886i 0.297335 0.954773i \(-0.403902\pi\)
0.975525 + 0.219887i \(0.0705689\pi\)
\(522\) −11.6446 + 49.3307i −0.0223077 + 0.0945032i
\(523\) −169.809 98.0393i −0.324683 0.187456i 0.328795 0.944401i \(-0.393357\pi\)
−0.653478 + 0.756946i \(0.726691\pi\)
\(524\) 318.630i 0.608073i
\(525\) −524.570 21.2533i −0.999180 0.0404824i
\(526\) 62.3096 0.118459
\(527\) 108.325 187.624i 0.205550 0.356023i
\(528\) 324.887 436.810i 0.615316 0.827292i
\(529\) −16.1743 28.0146i −0.0305752 0.0529577i
\(530\) 5.50480 + 19.0073i 0.0103864 + 0.0358628i
\(531\) 8.30094 + 7.81740i 0.0156327 + 0.0147220i
\(532\) 329.924 11.6198i 0.620159 0.0218417i
\(533\) 519.502 0.974676
\(534\) −65.3879 7.61287i −0.122449 0.0142563i
\(535\) 885.815 + 218.367i 1.65573 + 0.408163i
\(536\) 23.5359 13.5884i 0.0439102 0.0253516i
\(537\) 656.195 + 76.3983i 1.22197 + 0.142269i
\(538\) 54.4215i 0.101155i
\(539\) −470.946 + 318.066i −0.873740 + 0.590104i
\(540\) 236.898 + 480.818i 0.438699 + 0.890404i
\(541\) −422.140 + 731.167i −0.780295 + 1.35151i 0.151475 + 0.988461i \(0.451598\pi\)
−0.931770 + 0.363050i \(0.881736\pi\)
\(542\) 4.26710 + 7.39083i 0.00787288 + 0.0136362i
\(543\) 187.414 + 139.393i 0.345145 + 0.256709i
\(544\) 18.8428 32.6367i 0.0346375 0.0599938i
\(545\) 118.113 122.959i 0.216720 0.225614i
\(546\) 11.3646 + 23.9593i 0.0208142 + 0.0438815i
\(547\) 160.122i 0.292727i −0.989231 0.146363i \(-0.953243\pi\)
0.989231 0.146363i \(-0.0467569\pi\)
\(548\) 308.683 534.654i 0.563290 0.975647i
\(549\) −566.335 133.685i −1.03158 0.243506i
\(550\) 26.6381 + 42.1313i 0.0484329 + 0.0766024i
\(551\) −336.985 194.558i −0.611587 0.353100i
\(552\) −89.4122 + 38.6165i −0.161979 + 0.0699574i
\(553\) −226.305 + 425.924i −0.409231 + 0.770206i
\(554\) 18.9395i 0.0341868i
\(555\) −551.646 + 454.920i −0.993957 + 0.819675i
\(556\) −260.680 451.511i −0.468849 0.812070i
\(557\) 142.397 + 246.638i 0.255649 + 0.442797i 0.965072 0.261986i \(-0.0843775\pi\)
−0.709422 + 0.704784i \(0.751044\pi\)
\(558\) 20.9073 + 69.6066i 0.0374682 + 0.124743i
\(559\) −103.747 −0.185593
\(560\) 535.984 + 112.276i 0.957114 + 0.200494i
\(561\) −63.6271 147.322i −0.113417 0.262605i
\(562\) −59.5905 34.4046i −0.106033 0.0612181i
\(563\) −90.7228 157.136i −0.161142 0.279106i 0.774137 0.633018i \(-0.218184\pi\)
−0.935278 + 0.353913i \(0.884851\pi\)
\(564\) 499.172 + 371.270i 0.885057 + 0.658280i
\(565\) 89.0767 + 307.569i 0.157658 + 0.544370i
\(566\) 55.0038i 0.0971799i
\(567\) −461.869 + 328.886i −0.814584 + 0.580046i
\(568\) 66.0449i 0.116276i
\(569\) −350.000 202.073i −0.615115 0.355137i 0.159850 0.987141i \(-0.448899\pi\)
−0.774965 + 0.632005i \(0.782232\pi\)
\(570\) 30.2094 5.06128i 0.0529990 0.00887944i
\(571\) 369.018 + 639.158i 0.646267 + 1.11937i 0.984007 + 0.178127i \(0.0570039\pi\)
−0.337741 + 0.941239i \(0.609663\pi\)
\(572\) −169.118 + 292.920i −0.295660 + 0.512099i
\(573\) −282.782 654.751i −0.493511 1.14267i
\(574\) −75.1624 39.9358i −0.130945 0.0695746i
\(575\) 23.8084 + 591.841i 0.0414059 + 1.02929i
\(576\) −158.396 527.347i −0.274992 0.915533i
\(577\) 569.531 328.819i 0.987056 0.569877i 0.0826627 0.996578i \(-0.473658\pi\)
0.904393 + 0.426701i \(0.140324\pi\)
\(578\) 23.0133 + 39.8602i 0.0398154 + 0.0689623i
\(579\) 628.739 + 73.2017i 1.08590 + 0.126428i
\(580\) −469.013 450.525i −0.808642 0.776767i
\(581\) −250.956 + 8.83855i −0.431938 + 0.0152126i
\(582\) −5.51155 12.7614i −0.00947002 0.0219268i
\(583\) −231.223 133.496i −0.396608 0.228982i
\(584\) −147.661 + 85.2524i −0.252845 + 0.145980i
\(585\) −179.393 277.617i −0.306655 0.474559i
\(586\) −28.2560 + 48.9409i −0.0482185 + 0.0835168i
\(587\) −339.097 −0.577679 −0.288839 0.957378i \(-0.593269\pi\)
−0.288839 + 0.957378i \(0.593269\pi\)
\(588\) −26.5440 + 583.051i −0.0451428 + 0.991584i
\(589\) −557.949 −0.947283
\(590\) 1.04605 0.302953i 0.00177297 0.000513480i
\(591\) 911.679 + 678.081i 1.54260 + 1.14735i
\(592\) 645.910 372.916i 1.09106 0.629926i
\(593\) −163.991 + 284.041i −0.276545 + 0.478990i −0.970524 0.241006i \(-0.922523\pi\)
0.693979 + 0.719995i \(0.255856\pi\)
\(594\) 50.6121 + 18.3438i 0.0852056 + 0.0308818i
\(595\) 107.662 120.282i 0.180944 0.202154i
\(596\) 375.593i 0.630190i
\(597\) −66.0783 + 567.555i −0.110684 + 0.950678i
\(598\) 25.9100 14.9591i 0.0433278 0.0250153i
\(599\) −726.655 + 419.534i −1.21311 + 0.700391i −0.963436 0.267938i \(-0.913658\pi\)
−0.249677 + 0.968329i \(0.580324\pi\)
\(600\) 102.474 + 7.77199i 0.170790 + 0.0129533i
\(601\) 347.260 0.577804 0.288902 0.957359i \(-0.406710\pi\)
0.288902 + 0.957359i \(0.406710\pi\)
\(602\) 15.0102 + 7.97534i 0.0249340 + 0.0132481i
\(603\) −129.948 122.378i −0.215503 0.202949i
\(604\) −58.8790 + 101.981i −0.0974818 + 0.168843i
\(605\) −65.5807 16.1667i −0.108398 0.0267218i
\(606\) −5.63581 + 7.57733i −0.00930001 + 0.0125038i
\(607\) 277.758 + 160.363i 0.457591 + 0.264190i 0.711031 0.703161i \(-0.248229\pi\)
−0.253440 + 0.967351i \(0.581562\pi\)
\(608\) −97.0537 −0.159628
\(609\) 390.878 566.109i 0.641837 0.929571i
\(610\) −38.5007 + 40.0806i −0.0631159 + 0.0657059i
\(611\) −332.229 191.813i −0.543747 0.313932i
\(612\) −160.405 37.8638i −0.262099 0.0618690i
\(613\) −220.529 + 127.323i −0.359754 + 0.207704i −0.668973 0.743287i \(-0.733266\pi\)
0.309219 + 0.950991i \(0.399932\pi\)
\(614\) 64.5615 + 37.2746i 0.105149 + 0.0607078i
\(615\) 993.786 + 371.344i 1.61591 + 0.603812i
\(616\) 94.3217 58.9779i 0.153120 0.0957433i
\(617\) 126.508 0.205037 0.102519 0.994731i \(-0.467310\pi\)
0.102519 + 0.994731i \(0.467310\pi\)
\(618\) −15.9223 1.85377i −0.0257642 0.00299963i
\(619\) 183.100 + 317.138i 0.295799 + 0.512339i 0.975170 0.221456i \(-0.0710808\pi\)
−0.679372 + 0.733794i \(0.737748\pi\)
\(620\) −905.414 223.198i −1.46034 0.359997i
\(621\) 411.857 + 489.486i 0.663216 + 0.788222i
\(622\) 61.5610i 0.0989727i
\(623\) 789.016 + 419.225i 1.26648 + 0.672914i
\(624\) 136.701 + 316.516i 0.219072 + 0.507237i
\(625\) 268.013 564.619i 0.428821 0.903390i
\(626\) 33.2892 19.2195i 0.0531777 0.0307021i
\(627\) −246.643 + 331.612i −0.393371 + 0.528886i
\(628\) −158.020 91.2329i −0.251624 0.145275i
\(629\) 219.858i 0.349535i
\(630\) 4.61361 + 53.9566i 0.00732320 + 0.0856454i
\(631\) 66.0739 0.104713 0.0523565 0.998628i \(-0.483327\pi\)
0.0523565 + 0.998628i \(0.483327\pi\)
\(632\) 47.2062 81.7636i 0.0746934 0.129373i
\(633\) 136.986 + 101.886i 0.216408 + 0.160958i
\(634\) −46.0755 79.8050i −0.0726742 0.125875i
\(635\) 633.932 183.596i 0.998319 0.289128i
\(636\) −251.736 + 108.723i −0.395811 + 0.170948i
\(637\) −25.3207 359.024i −0.0397499 0.563617i
\(638\) −65.3167 −0.102377
\(639\) −415.457 + 124.788i −0.650168 + 0.195287i
\(640\) −209.727 51.7010i −0.327698 0.0807827i
\(641\) 803.605 463.961i 1.25367 0.723809i 0.281837 0.959462i \(-0.409056\pi\)
0.971837 + 0.235654i \(0.0757231\pi\)
\(642\) 10.8830 93.4754i 0.0169517 0.145600i
\(643\) 455.224i 0.707968i −0.935251 0.353984i \(-0.884827\pi\)
0.935251 0.353984i \(-0.115173\pi\)
\(644\) 658.089 23.1775i 1.02188 0.0359900i
\(645\) −198.463 74.1590i −0.307695 0.114975i
\(646\) −4.70914 + 8.15648i −0.00728970 + 0.0126261i
\(647\) −321.902 557.551i −0.497530 0.861747i 0.502466 0.864597i \(-0.332426\pi\)
−0.999996 + 0.00284968i \(0.999093\pi\)
\(648\) 92.6206 61.1571i 0.142933 0.0943783i
\(649\) −7.34689 + 12.7252i −0.0113203 + 0.0196074i
\(650\) −31.5435 + 1.26892i −0.0485284 + 0.00195218i
\(651\) 79.5183 983.223i 0.122148 1.51033i
\(652\) 844.628i 1.29544i
\(653\) 285.108 493.822i 0.436613 0.756236i −0.560813 0.827943i \(-0.689511\pi\)
0.997426 + 0.0717069i \(0.0228446\pi\)
\(654\) −14.1115 10.4958i −0.0215772 0.0160485i
\(655\) −96.0398 + 389.590i −0.146626 + 0.594793i
\(656\) −958.347 553.302i −1.46089 0.843448i
\(657\) 815.280 + 767.789i 1.24091 + 1.16863i
\(658\) 33.3222 + 53.2913i 0.0506417 + 0.0809899i
\(659\) 629.009i 0.954491i 0.878770 + 0.477245i \(0.158365\pi\)
−0.878770 + 0.477245i \(0.841635\pi\)
\(660\) −532.897 + 439.458i −0.807420 + 0.665845i
\(661\) −199.704 345.897i −0.302124 0.523294i 0.674493 0.738281i \(-0.264362\pi\)
−0.976617 + 0.214987i \(0.931029\pi\)
\(662\) −18.5007 32.0441i −0.0279466 0.0484050i
\(663\) 100.951 + 11.7534i 0.152264 + 0.0177275i
\(664\) 49.1550 0.0740286
\(665\) −406.901 85.2366i −0.611882 0.128175i
\(666\) 53.6930 + 50.5653i 0.0806201 + 0.0759238i
\(667\) −672.171 388.078i −1.00775 0.581826i
\(668\) 22.9380 + 39.7298i 0.0343384 + 0.0594758i
\(669\) 188.991 254.098i 0.282498 0.379818i
\(670\) −16.3756 + 4.74262i −0.0244412 + 0.00707854i
\(671\) 749.861i 1.11753i
\(672\) 13.8320 171.029i 0.0205833 0.254507i
\(673\) 1005.37i 1.49387i 0.664900 + 0.746933i \(0.268474\pi\)
−0.664900 + 0.746933i \(0.731526\pi\)
\(674\) −30.2739 17.4787i −0.0449168 0.0259327i
\(675\) −144.729 659.301i −0.214414 0.976743i
\(676\) 228.396 + 395.593i 0.337863 + 0.585196i
\(677\) −134.300 + 232.614i −0.198375 + 0.343595i −0.948002 0.318266i \(-0.896900\pi\)
0.749627 + 0.661861i \(0.230233\pi\)
\(678\) 30.3222 13.0959i 0.0447230 0.0193155i
\(679\) 6.64067 + 188.551i 0.00978008 + 0.277689i
\(680\) −21.8904 + 22.7887i −0.0321918 + 0.0335129i
\(681\) 134.167 1152.37i 0.197014 1.69218i
\(682\) −81.1093 + 46.8285i −0.118929 + 0.0686634i
\(683\) −158.562 274.638i −0.232156 0.402105i 0.726287 0.687392i \(-0.241245\pi\)
−0.958442 + 0.285287i \(0.907911\pi\)
\(684\) 122.101 + 406.510i 0.178510 + 0.594313i
\(685\) −538.580 + 560.681i −0.786247 + 0.818512i
\(686\) −23.9359 + 53.8906i −0.0348920 + 0.0785578i
\(687\) −77.6180 + 33.5226i −0.112981 + 0.0487957i
\(688\) 191.386 + 110.497i 0.278177 + 0.160606i
\(689\) 146.440 84.5471i 0.212540 0.122710i
\(690\) 60.2577 10.0956i 0.0873300 0.0146312i
\(691\) 449.553 778.648i 0.650583 1.12684i −0.332399 0.943139i \(-0.607858\pi\)
0.982982 0.183704i \(-0.0588087\pi\)
\(692\) −15.5111 −0.0224148
\(693\) −549.217 481.898i −0.792522 0.695379i
\(694\) −3.35779 −0.00483831
\(695\) 182.642 + 630.636i 0.262794 + 0.907389i
\(696\) −80.3673 + 108.054i −0.115470 + 0.155250i
\(697\) −282.503 + 163.103i −0.405313 + 0.234007i
\(698\) 1.66862 2.89014i 0.00239057 0.00414060i
\(699\) −941.994 + 406.840i −1.34763 + 0.582032i
\(700\) −626.202 301.092i −0.894575 0.430131i
\(701\) 430.110i 0.613566i 0.951779 + 0.306783i \(0.0992526\pi\)
−0.951779 + 0.306783i \(0.900747\pi\)
\(702\) −26.0882 + 21.9508i −0.0371627 + 0.0312690i
\(703\) −490.353 + 283.106i −0.697515 + 0.402711i
\(704\) 614.492 354.777i 0.872859 0.503945i
\(705\) −498.432 604.410i −0.706995 0.857319i
\(706\) −55.1092 −0.0780584
\(707\) 108.675 67.9528i 0.153713 0.0961143i
\(708\) 5.98349 + 13.8541i 0.00845126 + 0.0195680i
\(709\) 354.562 614.119i 0.500087 0.866176i −0.499913 0.866076i \(-0.666635\pi\)
1.00000 0.000100361i \(-3.19460e-5\pi\)
\(710\) −9.91654 + 40.2269i −0.0139670 + 0.0566575i
\(711\) −603.529 142.464i −0.848846 0.200372i
\(712\) −151.465 87.4486i −0.212732 0.122821i
\(713\) −1112.92 −1.56090
\(714\) −13.7023 9.46094i −0.0191908 0.0132506i
\(715\) 295.071 307.180i 0.412687 0.429622i
\(716\) 757.191 + 437.164i 1.05753 + 0.610565i
\(717\) −189.044 + 254.169i −0.263659 + 0.354489i
\(718\) 2.90904 1.67953i 0.00405159 0.00233918i
\(719\) 740.112 + 427.304i 1.02936 + 0.594303i 0.916802 0.399342i \(-0.130761\pi\)
0.112561 + 0.993645i \(0.464095\pi\)
\(720\) 35.2551 + 703.196i 0.0489654 + 0.976662i
\(721\) 192.129 + 102.083i 0.266476 + 0.141586i
\(722\) −37.8062 −0.0523632
\(723\) 6.61659 56.8308i 0.00915158 0.0786041i
\(724\) 154.562 + 267.709i 0.213483 + 0.369764i
\(725\) 437.667 + 692.224i 0.603679 + 0.954792i
\(726\) −0.805715 + 6.92039i −0.00110980 + 0.00953222i
\(727\) 1136.87i 1.56378i −0.623413 0.781892i \(-0.714255\pi\)
0.623413 0.781892i \(-0.285745\pi\)
\(728\) 2.47979 + 70.4096i 0.00340631 + 0.0967165i
\(729\) −559.712 467.080i −0.767781 0.640713i
\(730\) 102.739 29.7547i 0.140738 0.0407598i
\(731\) 56.4170 32.5724i 0.0771778 0.0445586i
\(732\) −617.949 459.613i −0.844193 0.627887i
\(733\) −158.068 91.2606i −0.215645 0.124503i 0.388287 0.921539i \(-0.373067\pi\)
−0.603932 + 0.797036i \(0.706400\pi\)
\(734\) 73.3970i 0.0999960i
\(735\) 208.196 704.897i 0.283259 0.959043i
\(736\) −193.590 −0.263029
\(737\) 115.013 199.208i 0.156055 0.270296i
\(738\) 25.1406 106.504i 0.0340658 0.144315i
\(739\) −692.467 1199.39i −0.937032 1.62299i −0.770969 0.636872i \(-0.780228\pi\)
−0.166063 0.986115i \(-0.553105\pi\)
\(740\) −908.974 + 263.252i −1.22834 + 0.355747i
\(741\) −103.779 240.288i −0.140052 0.324276i
\(742\) −27.6866 + 0.975107i −0.0373135 + 0.00131416i
\(743\) 82.8544 0.111513 0.0557566 0.998444i \(-0.482243\pi\)
0.0557566 + 0.998444i \(0.482243\pi\)
\(744\) −22.3303 + 191.798i −0.0300139 + 0.257793i
\(745\) −113.209 + 459.238i −0.151959 + 0.616427i
\(746\) 33.3785 19.2711i 0.0447432 0.0258325i
\(747\) −92.8756 309.211i −0.124331 0.413937i
\(748\) 212.385i 0.283937i
\(749\) −599.304 + 1127.94i −0.800139 + 1.50593i
\(750\) −61.2484 20.1201i −0.0816645 0.0268268i
\(751\) −193.183 + 334.603i −0.257234 + 0.445543i −0.965500 0.260403i \(-0.916145\pi\)
0.708266 + 0.705946i \(0.249478\pi\)
\(752\) 408.585 + 707.689i 0.543331 + 0.941076i
\(753\) 398.159 535.324i 0.528764 0.710922i
\(754\) 20.6835 35.8248i 0.0274317 0.0475130i
\(755\) 102.730 106.946i 0.136066 0.141650i
\(756\) −733.757 + 157.232i −0.970578 + 0.207978i
\(757\) 1387.66i 1.83311i −0.399908 0.916555i \(-0.630958\pi\)
0.399908 0.916555i \(-0.369042\pi\)
\(758\) −37.9816 + 65.7861i −0.0501077 + 0.0867891i
\(759\) −491.971 + 661.454i −0.648183 + 0.871481i
\(760\) 79.0141 + 19.4782i 0.103966 + 0.0256292i
\(761\) 500.579 + 289.009i 0.657791 + 0.379776i 0.791435 0.611254i \(-0.209334\pi\)
−0.133644 + 0.991029i \(0.542668\pi\)
\(762\) −26.9921 62.4972i −0.0354227 0.0820173i
\(763\) 126.551 + 202.389i 0.165859 + <