Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [105,3,Mod(44,105)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(105, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 3, 2]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("105.44");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 105 = 3 \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 105.o (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.86104277578\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Relative dimension: | \(20\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
44.1 | −1.85988 | + | 3.22141i | −2.47330 | + | 1.69788i | −4.91833 | − | 8.51879i | 4.36624 | − | 2.43637i | −0.869509 | − | 11.1254i | −4.87678 | − | 5.02166i | 21.7110 | 3.23443 | − | 8.39872i | −0.272141 | + | 18.5968i | ||
44.2 | −1.85988 | + | 3.22141i | 2.70705 | − | 1.29300i | −4.91833 | − | 8.51879i | −0.0731607 | − | 4.99946i | −0.869509 | + | 11.1254i | 4.87678 | + | 5.02166i | 21.7110 | 5.65629 | − | 7.00046i | 16.2414 | + | 9.06274i | ||
44.3 | −1.60486 | + | 2.77971i | −2.69226 | − | 1.32352i | −3.15118 | − | 5.45800i | −4.78223 | + | 1.45954i | 7.99972 | − | 5.35963i | 6.02754 | − | 3.55932i | 7.38994 | 5.49658 | + | 7.12655i | 3.61773 | − | 15.6356i | ||
44.4 | −1.60486 | + | 2.77971i | 0.199928 | − | 2.99333i | −3.15118 | − | 5.45800i | 1.12712 | + | 4.87130i | 7.99972 | + | 5.35963i | −6.02754 | + | 3.55932i | 7.38994 | −8.92006 | − | 1.19690i | −15.3497 | − | 4.68473i | ||
44.5 | −0.949639 | + | 1.64482i | −2.65035 | − | 1.40558i | 0.196373 | + | 0.340128i | 4.51617 | − | 2.14574i | 4.82880 | − | 3.02455i | 4.60961 | + | 5.26797i | −8.34304 | 5.04868 | + | 7.45056i | −0.759373 | + | 9.46598i | ||
44.6 | −0.949639 | + | 1.64482i | 0.107903 | − | 2.99806i | 0.196373 | + | 0.340128i | −0.399822 | − | 4.98399i | 4.82880 | + | 3.02455i | −4.60961 | − | 5.26797i | −8.34304 | −8.97671 | − | 0.647002i | 8.57746 | + | 4.07535i | ||
44.7 | −0.897800 | + | 1.55504i | −2.08367 | + | 2.15832i | 0.387909 | + | 0.671879i | −3.31295 | − | 3.74491i | −1.48554 | − | 5.17791i | −1.39571 | + | 6.85945i | −8.57546 | −0.316668 | − | 8.99443i | 8.79784 | − | 1.78957i | ||
44.8 | −0.897800 | + | 1.55504i | 2.91099 | − | 0.725349i | 0.387909 | + | 0.671879i | 4.89966 | + | 0.996641i | −1.48554 | + | 5.17791i | 1.39571 | − | 6.85945i | −8.57546 | 7.94774 | − | 4.22297i | −5.94873 | + | 6.72437i | ||
44.9 | −0.0859580 | + | 0.148884i | 0.346935 | + | 2.97987i | 1.98522 | + | 3.43851i | 4.85467 | − | 1.19675i | −0.473476 | − | 0.204491i | −6.99566 | + | 0.246384i | −1.37025 | −8.75927 | + | 2.06764i | −0.239121 | + | 0.825650i | ||
44.10 | −0.0859580 | + | 0.148884i | 2.40718 | + | 1.79039i | 1.98522 | + | 3.43851i | −1.39092 | − | 4.80264i | −0.473476 | + | 0.204491i | 6.99566 | − | 0.246384i | −1.37025 | 2.58900 | + | 8.61957i | 0.834595 | + | 0.205740i | ||
44.11 | 0.0859580 | − | 0.148884i | −2.40718 | − | 1.79039i | 1.98522 | + | 3.43851i | −4.85467 | + | 1.19675i | −0.473476 | + | 0.204491i | −6.99566 | + | 0.246384i | 1.37025 | 2.58900 | + | 8.61957i | −0.239121 | + | 0.825650i | ||
44.12 | 0.0859580 | − | 0.148884i | −0.346935 | − | 2.97987i | 1.98522 | + | 3.43851i | 1.39092 | + | 4.80264i | −0.473476 | − | 0.204491i | 6.99566 | − | 0.246384i | 1.37025 | −8.75927 | + | 2.06764i | 0.834595 | + | 0.205740i | ||
44.13 | 0.897800 | − | 1.55504i | −2.91099 | + | 0.725349i | 0.387909 | + | 0.671879i | 3.31295 | + | 3.74491i | −1.48554 | + | 5.17791i | −1.39571 | + | 6.85945i | 8.57546 | 7.94774 | − | 4.22297i | 8.79784 | − | 1.78957i | ||
44.14 | 0.897800 | − | 1.55504i | 2.08367 | − | 2.15832i | 0.387909 | + | 0.671879i | −4.89966 | − | 0.996641i | −1.48554 | − | 5.17791i | 1.39571 | − | 6.85945i | 8.57546 | −0.316668 | − | 8.99443i | −5.94873 | + | 6.72437i | ||
44.15 | 0.949639 | − | 1.64482i | −0.107903 | + | 2.99806i | 0.196373 | + | 0.340128i | −4.51617 | + | 2.14574i | 4.82880 | + | 3.02455i | 4.60961 | + | 5.26797i | 8.34304 | −8.97671 | − | 0.647002i | −0.759373 | + | 9.46598i | ||
44.16 | 0.949639 | − | 1.64482i | 2.65035 | + | 1.40558i | 0.196373 | + | 0.340128i | 0.399822 | + | 4.98399i | 4.82880 | − | 3.02455i | −4.60961 | − | 5.26797i | 8.34304 | 5.04868 | + | 7.45056i | 8.57746 | + | 4.07535i | ||
44.17 | 1.60486 | − | 2.77971i | −0.199928 | + | 2.99333i | −3.15118 | − | 5.45800i | 4.78223 | − | 1.45954i | 7.99972 | + | 5.35963i | 6.02754 | − | 3.55932i | −7.38994 | −8.92006 | − | 1.19690i | 3.61773 | − | 15.6356i | ||
44.18 | 1.60486 | − | 2.77971i | 2.69226 | + | 1.32352i | −3.15118 | − | 5.45800i | −1.12712 | − | 4.87130i | 7.99972 | − | 5.35963i | −6.02754 | + | 3.55932i | −7.38994 | 5.49658 | + | 7.12655i | −15.3497 | − | 4.68473i | ||
44.19 | 1.85988 | − | 3.22141i | −2.70705 | + | 1.29300i | −4.91833 | − | 8.51879i | −4.36624 | + | 2.43637i | −0.869509 | + | 11.1254i | −4.87678 | − | 5.02166i | −21.7110 | 5.65629 | − | 7.00046i | −0.272141 | + | 18.5968i | ||
44.20 | 1.85988 | − | 3.22141i | 2.47330 | − | 1.69788i | −4.91833 | − | 8.51879i | 0.0731607 | + | 4.99946i | −0.869509 | − | 11.1254i | 4.87678 | + | 5.02166i | −21.7110 | 3.23443 | − | 8.39872i | 16.2414 | + | 9.06274i | ||
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
7.c | even | 3 | 1 | inner |
15.d | odd | 2 | 1 | inner |
21.h | odd | 6 | 1 | inner |
35.j | even | 6 | 1 | inner |
105.o | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 105.3.o.b | ✓ | 40 |
3.b | odd | 2 | 1 | inner | 105.3.o.b | ✓ | 40 |
5.b | even | 2 | 1 | inner | 105.3.o.b | ✓ | 40 |
7.c | even | 3 | 1 | inner | 105.3.o.b | ✓ | 40 |
15.d | odd | 2 | 1 | inner | 105.3.o.b | ✓ | 40 |
21.h | odd | 6 | 1 | inner | 105.3.o.b | ✓ | 40 |
35.j | even | 6 | 1 | inner | 105.3.o.b | ✓ | 40 |
105.o | odd | 6 | 1 | inner | 105.3.o.b | ✓ | 40 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
105.3.o.b | ✓ | 40 | 1.a | even | 1 | 1 | trivial |
105.3.o.b | ✓ | 40 | 3.b | odd | 2 | 1 | inner |
105.3.o.b | ✓ | 40 | 5.b | even | 2 | 1 | inner |
105.3.o.b | ✓ | 40 | 7.c | even | 3 | 1 | inner |
105.3.o.b | ✓ | 40 | 15.d | odd | 2 | 1 | inner |
105.3.o.b | ✓ | 40 | 21.h | odd | 6 | 1 | inner |
105.3.o.b | ✓ | 40 | 35.j | even | 6 | 1 | inner |
105.3.o.b | ✓ | 40 | 105.o | odd | 6 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{20} + 31 T_{2}^{18} + 641 T_{2}^{16} + 7392 T_{2}^{14} + 61521 T_{2}^{12} + 299439 T_{2}^{10} + \cdots + 2401 \)
acting on \(S_{3}^{\mathrm{new}}(105, [\chi])\).