# Properties

 Label 105.3.n.a.31.3 Level 105 Weight 3 Character 105.31 Analytic conductor 2.861 Analytic rank 0 Dimension 8 CM no Inner twists 2

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$105 = 3 \cdot 5 \cdot 7$$ Weight: $$k$$ $$=$$ $$3$$ Character orbit: $$[\chi]$$ $$=$$ 105.n (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.86104277578$$ Analytic rank: $$0$$ Dimension: $$8$$ Relative dimension: $$4$$ over $$\Q(\zeta_{6})$$ Coefficient field: 8.0.523596960000.16 Defining polynomial: $$x^{8} - 2 x^{7} + 13 x^{6} - 2 x^{5} + 91 x^{4} - 50 x^{3} + 190 x^{2} + 100 x + 100$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 31.3 Root $$0.836732 + 1.44926i$$ of defining polynomial Character $$\chi$$ $$=$$ 105.31 Dual form 105.3.n.a.61.3

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.836732 + 1.44926i) q^{2} +(-1.50000 - 0.866025i) q^{3} +(0.599760 - 1.03881i) q^{4} +(1.93649 - 1.11803i) q^{5} -2.89852i q^{6} +(4.76104 + 5.13152i) q^{7} +8.70121 q^{8} +(1.50000 + 2.59808i) q^{9} +O(q^{10})$$ $$q+(0.836732 + 1.44926i) q^{2} +(-1.50000 - 0.866025i) q^{3} +(0.599760 - 1.03881i) q^{4} +(1.93649 - 1.11803i) q^{5} -2.89852i q^{6} +(4.76104 + 5.13152i) q^{7} +8.70121 q^{8} +(1.50000 + 2.59808i) q^{9} +(3.24065 + 1.87099i) q^{10} +(6.91411 - 11.9756i) q^{11} +(-1.79928 + 1.03881i) q^{12} +6.12052i q^{13} +(-3.45321 + 11.1937i) q^{14} -3.87298 q^{15} +(4.88154 + 8.45507i) q^{16} +(-2.14655 - 1.23931i) q^{17} +(-2.51020 + 4.34779i) q^{18} +(-24.2290 + 13.9886i) q^{19} -2.68221i q^{20} +(-2.69753 - 11.8205i) q^{21} +23.1410 q^{22} +(-6.62020 - 11.4665i) q^{23} +(-13.0518 - 7.53547i) q^{24} +(2.50000 - 4.33013i) q^{25} +(-8.87024 + 5.12123i) q^{26} -5.19615i q^{27} +(8.18618 - 1.86816i) q^{28} -27.6516 q^{29} +(-3.24065 - 5.61297i) q^{30} +(-16.2122 - 9.36010i) q^{31} +(9.23334 - 15.9926i) q^{32} +(-20.7423 + 11.9756i) q^{33} -4.14789i q^{34} +(14.9569 + 4.61414i) q^{35} +3.59856 q^{36} +(20.5067 + 35.5187i) q^{37} +(-40.5463 - 23.4094i) q^{38} +(5.30052 - 9.18078i) q^{39} +(16.8498 - 9.72824i) q^{40} -22.5351i q^{41} +(14.8738 - 13.8000i) q^{42} +7.60485 q^{43} +(-8.29361 - 14.3650i) q^{44} +(5.80948 + 3.35410i) q^{45} +(11.0787 - 19.1888i) q^{46} +(-11.9214 + 6.88283i) q^{47} -16.9101i q^{48} +(-3.66502 + 48.8627i) q^{49} +8.36732 q^{50} +(2.14655 + 3.71794i) q^{51} +(6.35808 + 3.67084i) q^{52} +(-46.2995 + 80.1930i) q^{53} +(7.53059 - 4.34779i) q^{54} -30.9208i q^{55} +(41.4268 + 44.6504i) q^{56} +48.4579 q^{57} +(-23.1370 - 40.0744i) q^{58} +(-61.5680 - 35.5463i) q^{59} +(-2.32286 + 4.02331i) q^{60} +(-100.214 + 57.8584i) q^{61} -31.3276i q^{62} +(-6.19052 + 20.0668i) q^{63} +69.9556 q^{64} +(6.84295 + 11.8523i) q^{65} +(-34.7115 - 20.0407i) q^{66} +(5.70227 - 9.87662i) q^{67} +(-2.57483 + 1.48658i) q^{68} +22.9330i q^{69} +(5.82783 + 25.5373i) q^{70} +99.4924 q^{71} +(13.0518 + 22.6064i) q^{72} +(90.1276 + 52.0352i) q^{73} +(-34.3172 + 59.4392i) q^{74} +(-7.50000 + 4.33013i) q^{75} +33.5592i q^{76} +(94.3714 - 21.5364i) q^{77} +17.7405 q^{78} +(-64.4982 - 111.714i) q^{79} +(18.9061 + 10.9154i) q^{80} +(-4.50000 + 7.79423i) q^{81} +(32.6592 - 18.8558i) q^{82} -30.3382i q^{83} +(-13.8971 - 4.28721i) q^{84} -5.54238 q^{85} +(6.36322 + 11.0214i) q^{86} +(41.4774 + 23.9470i) q^{87} +(60.1611 - 104.202i) q^{88} +(93.9587 - 54.2471i) q^{89} +11.2259i q^{90} +(-31.4076 + 29.1400i) q^{91} -15.8821 q^{92} +(16.2122 + 28.0803i) q^{93} +(-19.9501 - 11.5182i) q^{94} +(-31.2794 + 54.1776i) q^{95} +(-27.7000 + 15.9926i) q^{96} -153.154i q^{97} +(-73.8816 + 35.5734i) q^{98} +41.4847 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$8q + 2q^{2} - 12q^{3} - 6q^{4} - 16q^{7} - 32q^{8} + 12q^{9} + O(q^{10})$$ $$8q + 2q^{2} - 12q^{3} - 6q^{4} - 16q^{7} - 32q^{8} + 12q^{9} + 20q^{11} + 18q^{12} - 16q^{14} - 2q^{16} - 18q^{17} - 6q^{18} + 48q^{21} - 16q^{22} + 62q^{23} + 48q^{24} + 20q^{25} + 120q^{26} - 120q^{28} - 100q^{29} - 126q^{31} + 36q^{32} - 60q^{33} - 36q^{36} - 80q^{37} + 114q^{38} - 12q^{39} + 90q^{40} + 90q^{42} + 352q^{43} - 18q^{44} - 82q^{46} - 72q^{47} + 38q^{49} + 20q^{50} + 18q^{51} - 48q^{52} - 76q^{53} + 18q^{54} + 196q^{56} - 40q^{58} - 54q^{59} - 60q^{60} - 396q^{61} - 96q^{63} - 4q^{64} - 60q^{65} + 24q^{66} + 184q^{67} - 312q^{68} + 164q^{71} - 48q^{72} + 348q^{73} - 140q^{74} - 60q^{75} + 152q^{77} - 240q^{78} - 206q^{79} - 36q^{81} + 204q^{82} + 132q^{84} - 60q^{85} + 178q^{86} + 150q^{87} + 124q^{88} + 282q^{89} - 114q^{91} - 288q^{92} + 126q^{93} + 30q^{94} - 120q^{95} - 108q^{96} - 592q^{98} + 120q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/105\mathbb{Z}\right)^\times$$.

 $$n$$ $$22$$ $$31$$ $$71$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{1}{6}\right)$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.836732 + 1.44926i 0.418366 + 0.724631i 0.995775 0.0918238i $$-0.0292697\pi$$
−0.577409 + 0.816455i $$0.695936\pi$$
$$3$$ −1.50000 0.866025i −0.500000 0.288675i
$$4$$ 0.599760 1.03881i 0.149940 0.259704i
$$5$$ 1.93649 1.11803i 0.387298 0.223607i
$$6$$ 2.89852i 0.483087i
$$7$$ 4.76104 + 5.13152i 0.680148 + 0.733074i
$$8$$ 8.70121 1.08765
$$9$$ 1.50000 + 2.59808i 0.166667 + 0.288675i
$$10$$ 3.24065 + 1.87099i 0.324065 + 0.187099i
$$11$$ 6.91411 11.9756i 0.628556 1.08869i −0.359286 0.933227i $$-0.616980\pi$$
0.987842 0.155463i $$-0.0496869\pi$$
$$12$$ −1.79928 + 1.03881i −0.149940 + 0.0865679i
$$13$$ 6.12052i 0.470809i 0.971897 + 0.235405i $$0.0756415\pi$$
−0.971897 + 0.235405i $$0.924358\pi$$
$$14$$ −3.45321 + 11.1937i −0.246658 + 0.799550i
$$15$$ −3.87298 −0.258199
$$16$$ 4.88154 + 8.45507i 0.305096 + 0.528442i
$$17$$ −2.14655 1.23931i −0.126268 0.0729008i 0.435536 0.900171i $$-0.356559\pi$$
−0.561804 + 0.827271i $$0.689892\pi$$
$$18$$ −2.51020 + 4.34779i −0.139455 + 0.241544i
$$19$$ −24.2290 + 13.9886i −1.27521 + 0.736242i −0.975963 0.217935i $$-0.930068\pi$$
−0.299245 + 0.954176i $$0.596735\pi$$
$$20$$ 2.68221i 0.134110i
$$21$$ −2.69753 11.8205i −0.128454 0.562879i
$$22$$ 23.1410 1.05186
$$23$$ −6.62020 11.4665i −0.287835 0.498544i 0.685458 0.728112i $$-0.259602\pi$$
−0.973293 + 0.229568i $$0.926269\pi$$
$$24$$ −13.0518 7.53547i −0.543825 0.313978i
$$25$$ 2.50000 4.33013i 0.100000 0.173205i
$$26$$ −8.87024 + 5.12123i −0.341163 + 0.196970i
$$27$$ 5.19615i 0.192450i
$$28$$ 8.18618 1.86816i 0.292364 0.0667199i
$$29$$ −27.6516 −0.953503 −0.476751 0.879038i $$-0.658186\pi$$
−0.476751 + 0.879038i $$0.658186\pi$$
$$30$$ −3.24065 5.61297i −0.108022 0.187099i
$$31$$ −16.2122 9.36010i −0.522973 0.301939i 0.215177 0.976575i $$-0.430967\pi$$
−0.738150 + 0.674636i $$0.764300\pi$$
$$32$$ 9.23334 15.9926i 0.288542 0.499769i
$$33$$ −20.7423 + 11.9756i −0.628556 + 0.362897i
$$34$$ 4.14789i 0.121997i
$$35$$ 14.9569 + 4.61414i 0.427341 + 0.131833i
$$36$$ 3.59856 0.0999600
$$37$$ 20.5067 + 35.5187i 0.554235 + 0.959964i 0.997963 + 0.0638017i $$0.0203225\pi$$
−0.443727 + 0.896162i $$0.646344\pi$$
$$38$$ −40.5463 23.4094i −1.06701 0.616037i
$$39$$ 5.30052 9.18078i 0.135911 0.235405i
$$40$$ 16.8498 9.72824i 0.421245 0.243206i
$$41$$ 22.5351i 0.549636i −0.961496 0.274818i $$-0.911382\pi$$
0.961496 0.274818i $$-0.0886176\pi$$
$$42$$ 14.8738 13.8000i 0.354139 0.328571i
$$43$$ 7.60485 0.176857 0.0884285 0.996083i $$-0.471816\pi$$
0.0884285 + 0.996083i $$0.471816\pi$$
$$44$$ −8.29361 14.3650i −0.188491 0.326476i
$$45$$ 5.80948 + 3.35410i 0.129099 + 0.0745356i
$$46$$ 11.0787 19.1888i 0.240840 0.417148i
$$47$$ −11.9214 + 6.88283i −0.253647 + 0.146443i −0.621433 0.783467i $$-0.713449\pi$$
0.367786 + 0.929910i $$0.380116\pi$$
$$48$$ 16.9101i 0.352295i
$$49$$ −3.66502 + 48.8627i −0.0747963 + 0.997199i
$$50$$ 8.36732 0.167346
$$51$$ 2.14655 + 3.71794i 0.0420893 + 0.0729008i
$$52$$ 6.35808 + 3.67084i 0.122271 + 0.0705931i
$$53$$ −46.2995 + 80.1930i −0.873575 + 1.51308i −0.0153016 + 0.999883i $$0.504871\pi$$
−0.858273 + 0.513193i $$0.828463\pi$$
$$54$$ 7.53059 4.34779i 0.139455 0.0805146i
$$55$$ 30.9208i 0.562197i
$$56$$ 41.4268 + 44.6504i 0.739764 + 0.797329i
$$57$$ 48.4579 0.850139
$$58$$ −23.1370 40.0744i −0.398913 0.690938i
$$59$$ −61.5680 35.5463i −1.04352 0.602479i −0.122695 0.992444i $$-0.539154\pi$$
−0.920830 + 0.389965i $$0.872487\pi$$
$$60$$ −2.32286 + 4.02331i −0.0387143 + 0.0670552i
$$61$$ −100.214 + 57.8584i −1.64285 + 0.948498i −0.663031 + 0.748592i $$0.730730\pi$$
−0.979815 + 0.199906i $$0.935936\pi$$
$$62$$ 31.3276i 0.505283i
$$63$$ −6.19052 + 20.0668i −0.0982623 + 0.318521i
$$64$$ 69.9556 1.09306
$$65$$ 6.84295 + 11.8523i 0.105276 + 0.182344i
$$66$$ −34.7115 20.0407i −0.525932 0.303647i
$$67$$ 5.70227 9.87662i 0.0851085 0.147412i −0.820329 0.571892i $$-0.806210\pi$$
0.905437 + 0.424480i $$0.139543\pi$$
$$68$$ −2.57483 + 1.48658i −0.0378652 + 0.0218615i
$$69$$ 22.9330i 0.332363i
$$70$$ 5.82783 + 25.5373i 0.0832547 + 0.364819i
$$71$$ 99.4924 1.40130 0.700651 0.713504i $$-0.252893\pi$$
0.700651 + 0.713504i $$0.252893\pi$$
$$72$$ 13.0518 + 22.6064i 0.181275 + 0.313978i
$$73$$ 90.1276 + 52.0352i 1.23462 + 0.712811i 0.967991 0.250987i $$-0.0807550\pi$$
0.266634 + 0.963798i $$0.414088\pi$$
$$74$$ −34.3172 + 59.4392i −0.463746 + 0.803232i
$$75$$ −7.50000 + 4.33013i −0.100000 + 0.0577350i
$$76$$ 33.5592i 0.441568i
$$77$$ 94.3714 21.5364i 1.22560 0.279693i
$$78$$ 17.7405 0.227442
$$79$$ −64.4982 111.714i −0.816433 1.41410i −0.908294 0.418331i $$-0.862615\pi$$
0.0918616 0.995772i $$-0.470718\pi$$
$$80$$ 18.9061 + 10.9154i 0.236326 + 0.136443i
$$81$$ −4.50000 + 7.79423i −0.0555556 + 0.0962250i
$$82$$ 32.6592 18.8558i 0.398283 0.229949i
$$83$$ 30.3382i 0.365520i −0.983158 0.182760i $$-0.941497\pi$$
0.983158 0.182760i $$-0.0585032\pi$$
$$84$$ −13.8971 4.28721i −0.165442 0.0510382i
$$85$$ −5.54238 −0.0652045
$$86$$ 6.36322 + 11.0214i 0.0739909 + 0.128156i
$$87$$ 41.4774 + 23.9470i 0.476751 + 0.275253i
$$88$$ 60.1611 104.202i 0.683649 1.18411i
$$89$$ 93.9587 54.2471i 1.05572 0.609518i 0.131472 0.991320i $$-0.458030\pi$$
0.924244 + 0.381802i $$0.124696\pi$$
$$90$$ 11.2259i 0.124733i
$$91$$ −31.4076 + 29.1400i −0.345138 + 0.320220i
$$92$$ −15.8821 −0.172632
$$93$$ 16.2122 + 28.0803i 0.174324 + 0.301939i
$$94$$ −19.9501 11.5182i −0.212235 0.122534i
$$95$$ −31.2794 + 54.1776i −0.329257 + 0.570290i
$$96$$ −27.7000 + 15.9926i −0.288542 + 0.166590i
$$97$$ 153.154i 1.57890i −0.613812 0.789452i $$-0.710365\pi$$
0.613812 0.789452i $$-0.289635\pi$$
$$98$$ −73.8816 + 35.5734i −0.753893 + 0.362994i
$$99$$ 41.4847 0.419037
$$100$$ −2.99880 5.19407i −0.0299880 0.0519407i
$$101$$ 98.9544 + 57.1314i 0.979747 + 0.565657i 0.902194 0.431331i $$-0.141956\pi$$
0.0775531 + 0.996988i $$0.475289\pi$$
$$102$$ −3.59218 + 6.22184i −0.0352174 + 0.0609984i
$$103$$ −48.4794 + 27.9896i −0.470674 + 0.271744i −0.716522 0.697565i $$-0.754267\pi$$
0.245848 + 0.969308i $$0.420934\pi$$
$$104$$ 53.2559i 0.512076i
$$105$$ −18.4394 19.8743i −0.175614 0.189279i
$$106$$ −154.961 −1.46190
$$107$$ −49.3529 85.4817i −0.461242 0.798895i 0.537781 0.843085i $$-0.319263\pi$$
−0.999023 + 0.0441897i $$0.985929\pi$$
$$108$$ −5.39784 3.11644i −0.0499800 0.0288560i
$$109$$ −26.3791 + 45.6900i −0.242010 + 0.419174i −0.961287 0.275550i $$-0.911140\pi$$
0.719276 + 0.694724i $$0.244473\pi$$
$$110$$ 44.8124 25.8725i 0.407386 0.235204i
$$111$$ 71.0373i 0.639976i
$$112$$ −20.1462 + 65.3046i −0.179877 + 0.583077i
$$113$$ 106.206 0.939875 0.469937 0.882700i $$-0.344276\pi$$
0.469937 + 0.882700i $$0.344276\pi$$
$$114$$ 40.5463 + 70.2282i 0.355669 + 0.616037i
$$115$$ −25.6399 14.8032i −0.222956 0.128724i
$$116$$ −16.5843 + 28.7249i −0.142968 + 0.247628i
$$117$$ −15.9016 + 9.18078i −0.135911 + 0.0784682i
$$118$$ 118.971i 1.00823i
$$119$$ −3.86026 16.9155i −0.0324392 0.142147i
$$120$$ −33.6996 −0.280830
$$121$$ −35.1099 60.8121i −0.290164 0.502579i
$$122$$ −167.704 96.8239i −1.37462 0.793638i
$$123$$ −19.5160 + 33.8026i −0.158666 + 0.274818i
$$124$$ −19.4468 + 11.2276i −0.156829 + 0.0905453i
$$125$$ 11.1803i 0.0894427i
$$126$$ −34.2619 + 7.81886i −0.271920 + 0.0620544i
$$127$$ −197.402 −1.55434 −0.777172 0.629288i $$-0.783347\pi$$
−0.777172 + 0.629288i $$0.783347\pi$$
$$128$$ 21.6007 + 37.4135i 0.168756 + 0.292293i
$$129$$ −11.4073 6.58599i −0.0884285 0.0510542i
$$130$$ −11.4514 + 19.8344i −0.0880879 + 0.152573i
$$131$$ 127.379 73.5423i 0.972358 0.561391i 0.0724040 0.997375i $$-0.476933\pi$$
0.899954 + 0.435984i $$0.143600\pi$$
$$132$$ 28.7299i 0.217651i
$$133$$ −187.138 57.7311i −1.40705 0.434069i
$$134$$ 19.0851 0.142426
$$135$$ −5.80948 10.0623i −0.0430331 0.0745356i
$$136$$ −18.6776 10.7835i −0.137335 0.0792906i
$$137$$ −124.296 + 215.287i −0.907270 + 1.57144i −0.0894293 + 0.995993i $$0.528504\pi$$
−0.817841 + 0.575445i $$0.804829\pi$$
$$138$$ −33.2360 + 19.1888i −0.240840 + 0.139049i
$$139$$ 15.7344i 0.113197i −0.998397 0.0565985i $$-0.981974\pi$$
0.998397 0.0565985i $$-0.0180255\pi$$
$$140$$ 13.7638 12.7701i 0.0983129 0.0912150i
$$141$$ 23.8428 0.169098
$$142$$ 83.2485 + 144.191i 0.586257 + 1.01543i
$$143$$ 73.2968 + 42.3180i 0.512565 + 0.295930i
$$144$$ −14.6446 + 25.3652i −0.101699 + 0.176147i
$$145$$ −53.5471 + 30.9154i −0.369290 + 0.213210i
$$146$$ 174.158i 1.19286i
$$147$$ 47.8139 70.1201i 0.325265 0.477008i
$$148$$ 49.1964 0.332408
$$149$$ −92.1029 159.527i −0.618140 1.07065i −0.989825 0.142291i $$-0.954553\pi$$
0.371684 0.928359i $$-0.378780\pi$$
$$150$$ −12.5510 7.24631i −0.0836732 0.0483087i
$$151$$ 131.625 227.982i 0.871690 1.50981i 0.0114426 0.999935i $$-0.496358\pi$$
0.860247 0.509877i $$-0.170309\pi$$
$$152$$ −210.821 + 121.718i −1.38698 + 0.800774i
$$153$$ 7.43588i 0.0486005i
$$154$$ 110.175 + 118.749i 0.715424 + 0.771095i
$$155$$ −41.8596 −0.270062
$$156$$ −6.35808 11.0125i −0.0407570 0.0705931i
$$157$$ 187.600 + 108.311i 1.19490 + 0.689878i 0.959415 0.281999i $$-0.0909975\pi$$
0.235489 + 0.971877i $$0.424331\pi$$
$$158$$ 107.935 186.950i 0.683135 1.18323i
$$159$$ 138.898 80.1930i 0.873575 0.504359i
$$160$$ 41.2928i 0.258080i
$$161$$ 27.3217 88.5642i 0.169700 0.550088i
$$162$$ −15.0612 −0.0929702
$$163$$ 86.2901 + 149.459i 0.529387 + 0.916926i 0.999413 + 0.0342728i $$0.0109115\pi$$
−0.470025 + 0.882653i $$0.655755\pi$$
$$164$$ −23.4098 13.5156i −0.142743 0.0824124i
$$165$$ −26.7782 + 46.3813i −0.162292 + 0.281099i
$$166$$ 43.9680 25.3849i 0.264867 0.152921i
$$167$$ 156.923i 0.939658i −0.882758 0.469829i $$-0.844316\pi$$
0.882758 0.469829i $$-0.155684\pi$$
$$168$$ −23.4718 102.852i −0.139713 0.612216i
$$169$$ 131.539 0.778339
$$170$$ −4.63748 8.03236i −0.0272793 0.0472492i
$$171$$ −72.6869 41.9658i −0.425069 0.245414i
$$172$$ 4.56108 7.90003i 0.0265179 0.0459304i
$$173$$ −41.2245 + 23.8010i −0.238292 + 0.137578i −0.614391 0.789001i $$-0.710598\pi$$
0.376100 + 0.926579i $$0.377265\pi$$
$$174$$ 80.1488i 0.460625i
$$175$$ 34.1227 7.78710i 0.194987 0.0444977i
$$176$$ 135.006 0.767079
$$177$$ 61.5680 + 106.639i 0.347842 + 0.602479i
$$178$$ 157.237 + 90.7805i 0.883351 + 0.510003i
$$179$$ −14.7747 + 25.5905i −0.0825402 + 0.142964i −0.904340 0.426812i $$-0.859637\pi$$
0.821800 + 0.569776i $$0.192970\pi$$
$$180$$ 6.96858 4.02331i 0.0387143 0.0223517i
$$181$$ 10.3249i 0.0570439i −0.999593 0.0285219i $$-0.990920\pi$$
0.999593 0.0285219i $$-0.00908005\pi$$
$$182$$ −68.5112 21.1354i −0.376435 0.116129i
$$183$$ 200.427 1.09523
$$184$$ −57.6037 99.7725i −0.313064 0.542242i
$$185$$ 79.4221 + 45.8544i 0.429309 + 0.247862i
$$186$$ −27.1305 + 46.9913i −0.145863 + 0.252642i
$$187$$ −29.6830 + 17.1375i −0.158733 + 0.0916444i
$$188$$ 16.5122i 0.0878308i
$$189$$ 26.6642 24.7391i 0.141080 0.130895i
$$190$$ −104.690 −0.551000
$$191$$ 59.5045 + 103.065i 0.311542 + 0.539607i 0.978696 0.205313i $$-0.0658212\pi$$
−0.667154 + 0.744920i $$0.732488\pi$$
$$192$$ −104.933 60.5833i −0.546528 0.315538i
$$193$$ −4.95254 + 8.57805i −0.0256608 + 0.0444459i −0.878571 0.477612i $$-0.841502\pi$$
0.852910 + 0.522058i $$0.174836\pi$$
$$194$$ 221.960 128.149i 1.14412 0.660560i
$$195$$ 23.7047i 0.121562i
$$196$$ 48.5612 + 33.1132i 0.247761 + 0.168945i
$$197$$ −290.342 −1.47382 −0.736908 0.675994i $$-0.763715\pi$$
−0.736908 + 0.675994i $$0.763715\pi$$
$$198$$ 34.7115 + 60.1222i 0.175311 + 0.303647i
$$199$$ 294.002 + 169.742i 1.47740 + 0.852977i 0.999674 0.0255322i $$-0.00812803\pi$$
0.477725 + 0.878509i $$0.341461\pi$$
$$200$$ 21.7530 37.6773i 0.108765 0.188387i
$$201$$ −17.1068 + 9.87662i −0.0851085 + 0.0491374i
$$202$$ 191.215i 0.946607i
$$203$$ −131.650 141.895i −0.648523 0.698989i
$$204$$ 5.14967 0.0252435
$$205$$ −25.1950 43.6390i −0.122902 0.212873i
$$206$$ −81.1285 46.8396i −0.393828 0.227377i
$$207$$ 19.8606 34.3995i 0.0959449 0.166181i
$$208$$ −51.7494 + 29.8775i −0.248795 + 0.143642i
$$209$$ 386.875i 1.85108i
$$210$$ 13.3742 43.3530i 0.0636867 0.206443i
$$211$$ 11.1098 0.0526531 0.0263265 0.999653i $$-0.491619\pi$$
0.0263265 + 0.999653i $$0.491619\pi$$
$$212$$ 55.5371 + 96.1931i 0.261968 + 0.453741i
$$213$$ −149.239 86.1630i −0.700651 0.404521i
$$214$$ 82.5903 143.051i 0.385936 0.668461i
$$215$$ 14.7267 8.50248i 0.0684964 0.0395464i
$$216$$ 45.2128i 0.209319i
$$217$$ −29.1552 127.757i −0.134356 0.588741i
$$218$$ −88.2890 −0.404996
$$219$$ −90.1276 156.106i −0.411542 0.712811i
$$220$$ −32.1210 18.5451i −0.146005 0.0842958i
$$221$$ 7.58524 13.1380i 0.0343224 0.0594481i
$$222$$ 102.952 59.4392i 0.463746 0.267744i
$$223$$ 359.376i 1.61155i 0.592220 + 0.805776i $$0.298252\pi$$
−0.592220 + 0.805776i $$0.701748\pi$$
$$224$$ 126.027 28.7604i 0.562619 0.128395i
$$225$$ 15.0000 0.0666667
$$226$$ 88.8658 + 153.920i 0.393212 + 0.681062i
$$227$$ −64.3040 37.1259i −0.283277 0.163550i 0.351629 0.936140i $$-0.385628\pi$$
−0.634906 + 0.772589i $$0.718961\pi$$
$$228$$ 29.0631 50.3388i 0.127470 0.220784i
$$229$$ 288.608 166.628i 1.26030 0.727633i 0.287165 0.957881i $$-0.407287\pi$$
0.973132 + 0.230248i $$0.0739538\pi$$
$$230$$ 49.5453i 0.215414i
$$231$$ −160.208 49.4235i −0.693541 0.213954i
$$232$$ −240.602 −1.03708
$$233$$ 132.338 + 229.216i 0.567975 + 0.983761i 0.996766 + 0.0803575i $$0.0256062\pi$$
−0.428791 + 0.903404i $$0.641060\pi$$
$$234$$ −26.6107 15.3637i −0.113721 0.0656568i
$$235$$ −15.3905 + 26.6571i −0.0654914 + 0.113434i
$$236$$ −73.8520 + 42.6385i −0.312932 + 0.180671i
$$237$$ 223.428i 0.942735i
$$238$$ 21.2850 19.7483i 0.0894328 0.0829759i
$$239$$ −266.197 −1.11380 −0.556898 0.830581i $$-0.688009\pi$$
−0.556898 + 0.830581i $$0.688009\pi$$
$$240$$ −18.9061 32.7463i −0.0787755 0.136443i
$$241$$ −29.4197 16.9855i −0.122074 0.0704792i 0.437720 0.899111i $$-0.355786\pi$$
−0.559793 + 0.828632i $$0.689120\pi$$
$$242$$ 58.7551 101.767i 0.242790 0.420524i
$$243$$ 13.5000 7.79423i 0.0555556 0.0320750i
$$244$$ 138.805i 0.568871i
$$245$$ 47.5329 + 98.7199i 0.194012 + 0.402938i
$$246$$ −65.3185 −0.265522
$$247$$ −85.6174 148.294i −0.346629 0.600380i
$$248$$ −141.065 81.4441i −0.568812 0.328404i
$$249$$ −26.2736 + 45.5073i −0.105517 + 0.182760i
$$250$$ 16.2032 9.35495i 0.0648130 0.0374198i
$$251$$ 84.6771i 0.337359i −0.985671 0.168680i $$-0.946050\pi$$
0.985671 0.168680i $$-0.0539503\pi$$
$$252$$ 17.1329 + 18.4661i 0.0679876 + 0.0732781i
$$253$$ −183.091 −0.723680
$$254$$ −165.172 286.087i −0.650285 1.12633i
$$255$$ 8.31357 + 4.79984i 0.0326022 + 0.0188229i
$$256$$ 103.763 179.723i 0.405325 0.702044i
$$257$$ 27.6440 15.9603i 0.107564 0.0621022i −0.445253 0.895405i $$-0.646886\pi$$
0.552817 + 0.833303i $$0.313553\pi$$
$$258$$ 22.0428i 0.0854374i
$$259$$ −84.6315 + 274.336i −0.326763 + 1.05921i
$$260$$ 16.4165 0.0631404
$$261$$ −41.4774 71.8409i −0.158917 0.275253i
$$262$$ 213.164 + 123.070i 0.813603 + 0.469734i
$$263$$ 74.0405 128.242i 0.281523 0.487612i −0.690237 0.723583i $$-0.742494\pi$$
0.971760 + 0.235971i $$0.0758272\pi$$
$$264$$ −180.483 + 104.202i −0.683649 + 0.394705i
$$265$$ 207.057i 0.781349i
$$266$$ −72.9165 319.517i −0.274122 1.20119i
$$267$$ −187.917 −0.703811
$$268$$ −6.83998 11.8472i −0.0255223 0.0442060i
$$269$$ −78.8909 45.5477i −0.293275 0.169322i 0.346143 0.938182i $$-0.387491\pi$$
−0.639418 + 0.768859i $$0.720825\pi$$
$$270$$ 9.72194 16.8389i 0.0360072 0.0623663i
$$271$$ −108.045 + 62.3797i −0.398689 + 0.230183i −0.685918 0.727679i $$-0.740599\pi$$
0.287229 + 0.957862i $$0.407266\pi$$
$$272$$ 24.1990i 0.0889670i
$$273$$ 72.3474 16.5103i 0.265009 0.0604772i
$$274$$ −416.010 −1.51828
$$275$$ −34.5706 59.8780i −0.125711 0.217738i
$$276$$ 23.8232 + 13.7543i 0.0863158 + 0.0498345i
$$277$$ 61.9619 107.321i 0.223689 0.387441i −0.732236 0.681051i $$-0.761523\pi$$
0.955925 + 0.293610i $$0.0948566\pi$$
$$278$$ 22.8033 13.1655i 0.0820261 0.0473578i
$$279$$ 56.1606i 0.201292i
$$280$$ 130.143 + 40.1486i 0.464798 + 0.143388i
$$281$$ −17.8049 −0.0633627 −0.0316814 0.999498i $$-0.510086\pi$$
−0.0316814 + 0.999498i $$0.510086\pi$$
$$282$$ 19.9501 + 34.5545i 0.0707449 + 0.122534i
$$283$$ −96.2623 55.5770i −0.340149 0.196385i 0.320189 0.947354i $$-0.396254\pi$$
−0.660338 + 0.750968i $$0.729587\pi$$
$$284$$ 59.6716 103.354i 0.210111 0.363923i
$$285$$ 93.8383 54.1776i 0.329257 0.190097i
$$286$$ 141.635i 0.495228i
$$287$$ 115.639 107.290i 0.402924 0.373834i
$$288$$ 55.4000 0.192361
$$289$$ −141.428 244.961i −0.489371 0.847615i
$$290$$ −89.6091 51.7358i −0.308997 0.178399i
$$291$$ −132.635 + 229.731i −0.455791 + 0.789452i
$$292$$ 108.110 62.4173i 0.370239 0.213758i
$$293$$ 76.6488i 0.261600i −0.991409 0.130800i $$-0.958245\pi$$
0.991409 0.130800i $$-0.0417546\pi$$
$$294$$ 141.630 + 10.6231i 0.481734 + 0.0361332i
$$295$$ −158.968 −0.538874
$$296$$ 178.433 + 309.055i 0.602814 + 1.04411i
$$297$$ −62.2270 35.9268i −0.209519 0.120966i
$$298$$ 154.131 266.963i 0.517218 0.895847i
$$299$$ 70.1810 40.5190i 0.234719 0.135515i
$$300$$ 10.3881i 0.0346272i
$$301$$ 36.2070 + 39.0244i 0.120289 + 0.129649i
$$302$$ 440.540 1.45874
$$303$$ −98.9544 171.394i −0.326582 0.565657i
$$304$$ −236.549 136.572i −0.778122 0.449249i
$$305$$ −129.375 + 224.084i −0.424181 + 0.734703i
$$306$$ 10.7765 6.22184i 0.0352174 0.0203328i
$$307$$ 357.562i 1.16470i −0.812939 0.582349i $$-0.802134\pi$$
0.812939 0.582349i $$-0.197866\pi$$
$$308$$ 34.2279 110.951i 0.111129 0.360230i
$$309$$ 96.9588 0.313783
$$310$$ −35.0253 60.6656i −0.112985 0.195695i
$$311$$ 272.856 + 157.533i 0.877349 + 0.506538i 0.869784 0.493434i $$-0.164258\pi$$
0.00756579 + 0.999971i $$0.497592\pi$$
$$312$$ 46.1210 79.8839i 0.147824 0.256038i
$$313$$ −227.260 + 131.209i −0.726070 + 0.419197i −0.816983 0.576662i $$-0.804355\pi$$
0.0909126 + 0.995859i $$0.471022\pi$$
$$314$$ 362.508i 1.15449i
$$315$$ 10.4475 + 45.7805i 0.0331666 + 0.145335i
$$316$$ −154.734 −0.489664
$$317$$ 154.797 + 268.117i 0.488320 + 0.845795i 0.999910 0.0134349i $$-0.00427658\pi$$
−0.511590 + 0.859230i $$0.670943\pi$$
$$318$$ 232.441 + 134.200i 0.730948 + 0.422013i
$$319$$ −191.186 + 331.144i −0.599330 + 1.03807i
$$320$$ 135.468 78.2127i 0.423339 0.244415i
$$321$$ 170.963i 0.532597i
$$322$$ 151.214 34.5082i 0.469607 0.107168i
$$323$$ 69.3450 0.214690
$$324$$ 5.39784 + 9.34933i 0.0166600 + 0.0288560i
$$325$$ 26.5026 + 15.3013i 0.0815465 + 0.0470809i
$$326$$ −144.403 + 250.114i −0.442955 + 0.767221i
$$327$$ 79.1374 45.6900i 0.242010 0.139725i
$$328$$ 196.082i 0.597812i
$$329$$ −92.0778 28.4056i −0.279872 0.0863391i
$$330$$ −89.6248 −0.271590
$$331$$ 43.4062 + 75.1818i 0.131137 + 0.227135i 0.924115 0.382115i $$-0.124804\pi$$
−0.792978 + 0.609250i $$0.791471\pi$$
$$332$$ −31.5157 18.1956i −0.0949269 0.0548061i
$$333$$ −61.5201 + 106.556i −0.184745 + 0.319988i
$$334$$ 227.422 131.302i 0.680905 0.393121i
$$335$$ 25.5013i 0.0761233i
$$336$$ 86.7747 80.5098i 0.258258 0.239613i
$$337$$ 373.915 1.10954 0.554770 0.832004i $$-0.312806\pi$$
0.554770 + 0.832004i $$0.312806\pi$$
$$338$$ 110.063 + 190.635i 0.325630 + 0.564008i
$$339$$ −159.309 91.9770i −0.469937 0.271318i
$$340$$ −3.32410 + 5.75750i −0.00977675 + 0.0169338i
$$341$$ −224.185 + 129.433i −0.657435 + 0.379570i
$$342$$ 140.456i 0.410691i
$$343$$ −268.190 + 213.830i −0.781894 + 0.623412i
$$344$$ 66.1714 0.192359
$$345$$ 25.6399 + 44.4096i 0.0743186 + 0.128724i
$$346$$ −68.9877 39.8301i −0.199386 0.115116i
$$347$$ 165.439 286.549i 0.476770 0.825790i −0.522875 0.852409i $$-0.675141\pi$$
0.999646 + 0.0266188i $$0.00847401\pi$$
$$348$$ 49.7529 28.7249i 0.142968 0.0825427i
$$349$$ 250.907i 0.718932i −0.933158 0.359466i $$-0.882959\pi$$
0.933158 0.359466i $$-0.117041\pi$$
$$350$$ 39.8371 + 42.9371i 0.113820 + 0.122677i
$$351$$ 31.8031 0.0906073
$$352$$ −127.681 221.149i −0.362729 0.628265i
$$353$$ −108.875 62.8589i −0.308427 0.178071i 0.337795 0.941220i $$-0.390319\pi$$
−0.646222 + 0.763149i $$0.723652\pi$$
$$354$$ −103.032 + 178.456i −0.291050 + 0.504114i
$$355$$ 192.666 111.236i 0.542722 0.313341i
$$356$$ 130.141i 0.365564i
$$357$$ −8.85886 + 28.7163i −0.0248147 + 0.0804379i
$$358$$ −49.4498 −0.138128
$$359$$ 178.790 + 309.674i 0.498023 + 0.862601i 0.999997 0.00228149i $$-0.000726221\pi$$
−0.501975 + 0.864882i $$0.667393\pi$$
$$360$$ 50.5494 + 29.1847i 0.140415 + 0.0810687i
$$361$$ 210.861 365.223i 0.584103 1.01170i
$$362$$ 14.9636 8.63921i 0.0413358 0.0238652i
$$363$$ 121.624i 0.335053i
$$364$$ 11.4341 + 50.1037i 0.0314123 + 0.137647i
$$365$$ 232.709 0.637558
$$366$$ 167.704 + 290.472i 0.458207 + 0.793638i
$$367$$ 603.879 + 348.650i 1.64545 + 0.949999i 0.978850 + 0.204582i $$0.0655834\pi$$
0.666598 + 0.745418i $$0.267750\pi$$
$$368$$ 64.6334 111.948i 0.175634 0.304208i
$$369$$ 58.5479 33.8026i 0.158666 0.0916060i
$$370$$ 153.471i 0.414787i
$$371$$ −631.946 + 144.215i −1.70336 + 0.388721i
$$372$$ 38.8936 0.104553
$$373$$ 72.6433 + 125.822i 0.194754 + 0.337324i 0.946820 0.321764i $$-0.104276\pi$$
−0.752066 + 0.659088i $$0.770942\pi$$
$$374$$ −49.6735 28.6790i −0.132817 0.0766818i
$$375$$ −9.68246 + 16.7705i −0.0258199 + 0.0447214i
$$376$$ −103.731 + 59.8890i −0.275880 + 0.159279i
$$377$$ 169.242i 0.448918i
$$378$$ 58.1642 + 17.9434i 0.153873 + 0.0474693i
$$379$$ −222.630 −0.587415 −0.293708 0.955895i $$-0.594889\pi$$
−0.293708 + 0.955895i $$0.594889\pi$$
$$380$$ 37.5203 + 64.9871i 0.0987377 + 0.171019i
$$381$$ 296.103 + 170.955i 0.777172 + 0.448701i
$$382$$ −99.5787 + 172.475i −0.260677 + 0.451506i
$$383$$ −30.1012 + 17.3789i −0.0785932 + 0.0453758i −0.538782 0.842445i $$-0.681115\pi$$
0.460188 + 0.887821i $$0.347782\pi$$
$$384$$ 74.8271i 0.194862i
$$385$$ 158.671 147.215i 0.412132 0.382378i
$$386$$ −16.5758 −0.0429425
$$387$$ 11.4073 + 19.7580i 0.0294762 + 0.0510542i
$$388$$ −159.098 91.8555i −0.410047 0.236741i
$$389$$ −276.283 + 478.537i −0.710240 + 1.23017i 0.254528 + 0.967066i $$0.418080\pi$$
−0.964767 + 0.263105i $$0.915253\pi$$
$$390$$ 34.3543 19.8344i 0.0880879 0.0508576i
$$391$$ 32.8180i 0.0839335i
$$392$$ −31.8901 + 425.165i −0.0813523 + 1.08460i
$$393$$ −254.758 −0.648239
$$394$$ −242.938 420.781i −0.616594 1.06797i
$$395$$ −249.800 144.222i −0.632406 0.365120i
$$396$$ 24.8808 43.0949i 0.0628304 0.108825i
$$397$$ 49.9274 28.8256i 0.125762 0.0726085i −0.435799 0.900044i $$-0.643534\pi$$
0.561561 + 0.827435i $$0.310201\pi$$
$$398$$ 568.115i 1.42743i
$$399$$ 230.710 + 248.663i 0.578220 + 0.623215i
$$400$$ 48.8154 0.122038
$$401$$ −281.160 486.983i −0.701146 1.21442i −0.968064 0.250701i $$-0.919339\pi$$
0.266918 0.963719i $$-0.413995\pi$$
$$402$$ −28.6276 16.5282i −0.0712130 0.0411148i
$$403$$ 57.2886 99.2268i 0.142155 0.246220i
$$404$$ 118.698 68.5302i 0.293806 0.169629i
$$405$$ 20.1246i 0.0496904i
$$406$$ 95.4866 309.524i 0.235189 0.762373i
$$407$$ 567.143 1.39347
$$408$$ 18.6776 + 32.3506i 0.0457785 + 0.0792906i
$$409$$ −174.709 100.869i −0.427163 0.246622i 0.270975 0.962587i $$-0.412654\pi$$
−0.698137 + 0.715964i $$0.745987\pi$$
$$410$$ 42.1629 73.0283i 0.102836 0.178118i
$$411$$ 372.888 215.287i 0.907270 0.523813i
$$412$$ 67.1482i 0.162981i
$$413$$ −110.721 485.175i −0.268090 1.17476i
$$414$$ 66.4719 0.160560
$$415$$ −33.9191 58.7496i −0.0817328 0.141565i
$$416$$ 97.8831 + 56.5128i 0.235296 + 0.135848i
$$417$$ −13.6264 + 23.6016i −0.0326772 + 0.0565985i
$$418$$ −560.683 + 323.710i −1.34135 + 0.774427i
$$419$$ 304.381i 0.726447i −0.931702 0.363223i $$-0.881676\pi$$
0.931702 0.363223i $$-0.118324\pi$$
$$420$$ −31.7049 + 7.23534i −0.0754879 + 0.0172270i
$$421$$ 556.622 1.32214 0.661071 0.750323i $$-0.270102\pi$$
0.661071 + 0.750323i $$0.270102\pi$$
$$422$$ 9.29592 + 16.1010i 0.0220283 + 0.0381541i
$$423$$ −35.7643 20.6485i −0.0845491 0.0488144i
$$424$$ −402.861 + 697.776i −0.950144 + 1.64570i
$$425$$ −10.7328 + 6.19657i −0.0252536 + 0.0145802i
$$426$$ 288.381i 0.676951i
$$427$$ −774.022 238.782i −1.81270 0.559209i
$$428$$ −118.400 −0.276635
$$429$$ −73.2968 126.954i −0.170855 0.295930i
$$430$$ 24.6446 + 14.2286i 0.0573131 + 0.0330897i
$$431$$ 90.2225 156.270i 0.209333 0.362575i −0.742172 0.670210i $$-0.766204\pi$$
0.951505 + 0.307634i $$0.0995374\pi$$
$$432$$ 43.9338 25.3652i 0.101699 0.0587158i
$$433$$ 724.048i 1.67217i −0.548603 0.836083i $$-0.684840\pi$$
0.548603 0.836083i $$-0.315160\pi$$
$$434$$ 160.758 149.152i 0.370410 0.343668i
$$435$$ 107.094 0.246193
$$436$$ 31.6423 + 54.8061i 0.0725741 + 0.125702i
$$437$$ 320.801 + 185.214i 0.734098 + 0.423832i
$$438$$ 150.825 261.237i 0.344350 0.596432i
$$439$$ 354.272 204.539i 0.806997 0.465920i −0.0389147 0.999243i $$-0.512390\pi$$
0.845912 + 0.533322i $$0.179057\pi$$
$$440$$ 269.049i 0.611474i
$$441$$ −132.447 + 63.7721i −0.300333 + 0.144608i
$$442$$ 25.3873 0.0574372
$$443$$ 199.400 + 345.370i 0.450112 + 0.779617i 0.998393 0.0566775i $$-0.0180507\pi$$
−0.548280 + 0.836295i $$0.684717\pi$$
$$444$$ −73.7946 42.6053i −0.166204 0.0959579i
$$445$$ 121.300 210.098i 0.272585 0.472131i
$$446$$ −520.830 + 300.702i −1.16778 + 0.674219i
$$447$$ 319.054i 0.713767i
$$448$$ 333.061 + 358.979i 0.743441 + 0.801292i
$$449$$ −519.843 −1.15778 −0.578889 0.815406i $$-0.696514\pi$$
−0.578889 + 0.815406i $$0.696514\pi$$
$$450$$ 12.5510 + 21.7389i 0.0278911 + 0.0483087i
$$451$$ −269.871 155.810i −0.598384 0.345477i
$$452$$ 63.6980 110.328i 0.140925 0.244089i
$$453$$ −394.876 + 227.982i −0.871690 + 0.503270i
$$454$$ 124.258i 0.273695i
$$455$$ −28.2410 + 91.5442i −0.0620680 + 0.201196i
$$456$$ 421.642 0.924654
$$457$$ −116.891 202.462i −0.255780 0.443024i 0.709327 0.704880i $$-0.248999\pi$$
−0.965107 + 0.261856i $$0.915666\pi$$
$$458$$ 482.975 + 278.846i 1.05453 + 0.608834i
$$459$$ −6.43966 + 11.1538i −0.0140298 + 0.0243003i
$$460$$ −30.7556 + 17.7567i −0.0668599 + 0.0386016i
$$461$$ 745.085i 1.61624i −0.589021 0.808118i $$-0.700486\pi$$
0.589021 0.808118i $$-0.299514\pi$$
$$462$$ −62.4236 273.538i −0.135116 0.592073i
$$463$$ 742.448 1.60356 0.801779 0.597620i $$-0.203887\pi$$
0.801779 + 0.597620i $$0.203887\pi$$
$$464$$ −134.982 233.796i −0.290910 0.503871i
$$465$$ 62.7894 + 36.2515i 0.135031 + 0.0779602i
$$466$$ −221.463 + 383.585i −0.475242 + 0.823144i
$$467$$ −524.404 + 302.765i −1.12292 + 0.648318i −0.942145 0.335206i $$-0.891194\pi$$
−0.180776 + 0.983524i $$0.557861\pi$$
$$468$$ 22.0251i 0.0470621i
$$469$$ 77.8308 17.7617i 0.165951 0.0378713i
$$470$$ −51.5108 −0.109598
$$471$$ −187.600 324.933i −0.398301 0.689878i
$$472$$ −535.716 309.296i −1.13499 0.655287i
$$473$$ 52.5808 91.0726i 0.111164 0.192542i
$$474$$ −323.806 + 186.950i −0.683135 + 0.394408i
$$475$$ 139.886i 0.294497i
$$476$$ −19.8873 6.13515i −0.0417801 0.0128890i
$$477$$ −277.797 −0.582383
$$478$$ −222.736 385.790i −0.465974 0.807091i
$$479$$ 260.542 + 150.424i 0.543930 + 0.314038i 0.746670 0.665194i $$-0.231651\pi$$
−0.202740 + 0.979233i $$0.564985\pi$$
$$480$$ −35.7606 + 61.9391i −0.0745012 + 0.129040i
$$481$$ −217.393 + 125.512i −0.451960 + 0.260939i
$$482$$ 56.8492i 0.117944i
$$483$$ −117.681 + 109.185i −0.243647 + 0.226056i
$$484$$ −84.2300 −0.174029
$$485$$ −171.231 296.581i −0.353054 0.611507i
$$486$$ 22.5918 + 13.0434i 0.0464851 + 0.0268382i
$$487$$ −295.602 + 511.998i −0.606986 + 1.05133i 0.384748 + 0.923021i $$0.374288\pi$$
−0.991734 + 0.128309i $$0.959045\pi$$
$$488$$ −871.979 + 503.438i −1.78684 + 1.03163i
$$489$$ 298.918i 0.611284i
$$490$$ −103.299 + 151.490i −0.210814 + 0.309163i
$$491$$ −308.637 −0.628589 −0.314295 0.949325i $$-0.601768\pi$$
−0.314295 + 0.949325i $$0.601768\pi$$
$$492$$ 23.4098 + 40.5469i 0.0475808 + 0.0824124i
$$493$$ 59.3556 + 34.2690i 0.120397 + 0.0695111i
$$494$$ 143.278 248.164i 0.290036 0.502357i
$$495$$ 80.3347 46.3813i 0.162292 0.0936995i
$$496$$ 182.767i 0.368481i
$$497$$ 473.687 + 510.548i 0.953093 + 1.02726i
$$498$$ −87.9359 −0.176578
$$499$$ 447.344 + 774.822i 0.896480 + 1.55275i 0.831962 + 0.554833i $$0.187218\pi$$
0.0645183 + 0.997917i $$0.479449\pi$$
$$500$$ −11.6143 6.70552i −0.0232286 0.0134110i
$$501$$ −135.899 + 235.384i −0.271256 + 0.469829i
$$502$$ 122.719 70.8520i 0.244461 0.141140i
$$503$$ 609.546i 1.21182i −0.795533 0.605911i $$-0.792809\pi$$
0.795533 0.605911i $$-0.207191\pi$$
$$504$$ −53.8650 + 174.606i −0.106875 + 0.346440i
$$505$$ 255.499 0.505939
$$506$$ −153.198 265.347i −0.302763 0.524401i
$$507$$ −197.309 113.916i −0.389169 0.224687i
$$508$$ −118.394 + 205.064i −0.233058 + 0.403669i
$$509$$ 205.570 118.686i 0.403871 0.233175i −0.284282 0.958741i $$-0.591755\pi$$
0.688153 + 0.725566i $$0.258422\pi$$
$$510$$ 16.0647i 0.0314994i
$$511$$ 162.081 + 710.233i 0.317185 + 1.38989i
$$512$$ 520.094 1.01581
$$513$$ 72.6869 + 125.897i 0.141690 + 0.245414i
$$514$$ 46.2612 + 26.7089i 0.0900023 + 0.0519629i
$$515$$ −62.5867 + 108.403i −0.121527 + 0.210492i
$$516$$ −13.6833 + 7.90003i −0.0265179 + 0.0153101i
$$517$$ 190.355i 0.368191i
$$518$$ −468.399 + 106.893i −0.904245 + 0.206356i
$$519$$ 82.4490 0.158861
$$520$$ 59.5419 + 103.130i 0.114504 + 0.198326i
$$521$$ −32.6670 18.8603i −0.0627006 0.0362002i 0.468322 0.883558i $$-0.344859\pi$$
−0.531023 + 0.847358i $$0.678192\pi$$
$$522$$ 69.4109 120.223i 0.132971 0.230313i
$$523$$ 40.5068 23.3866i 0.0774509 0.0447163i −0.460774 0.887517i $$-0.652428\pi$$
0.538225 + 0.842801i $$0.319095\pi$$
$$524$$ 176.431i 0.336700i
$$525$$ −57.9279 17.8705i −0.110339 0.0340391i
$$526$$ 247.808 0.471118
$$527$$ 23.2002 + 40.1839i 0.0440231 + 0.0762503i
$$528$$ −202.509 116.919i −0.383540 0.221437i
$$529$$ 176.846 306.306i 0.334303 0.579029i
$$530$$ −300.081 + 173.252i −0.566190 + 0.326890i
$$531$$ 213.278i 0.401653i
$$532$$ −172.210 + 159.777i −0.323702 + 0.300332i
$$533$$ 137.926 0.258774
$$534$$ −157.237 272.342i −0.294450 0.510003i
$$535$$ −191.143 110.356i −0.357277 0.206274i
$$536$$ 49.6166 85.9385i 0.0925683 0.160333i
$$537$$ 44.3241 25.5905i 0.0825402 0.0476546i
$$538$$ 152.445i 0.283355i
$$539$$ 559.820 + 381.733i 1.03863 + 0.708225i
$$540$$ −13.9372 −0.0258096
$$541$$ 195.629 + 338.839i 0.361606 + 0.626320i 0.988225 0.153005i $$-0.0488951\pi$$
−0.626619 + 0.779326i $$0.715562\pi$$
$$542$$ −180.809 104.390i −0.333596 0.192602i
$$543$$ −8.94167 + 15.4874i −0.0164672 + 0.0285219i
$$544$$ −39.6397 + 22.8860i −0.0728671 + 0.0420699i
$$545$$ 117.971i 0.216461i
$$546$$ 84.4631 + 91.0356i 0.154694 + 0.166732i
$$547$$ −389.827 −0.712664 −0.356332 0.934359i $$-0.615973\pi$$
−0.356332 + 0.934359i $$0.615973\pi$$
$$548$$ 149.096 + 258.241i 0.272072 + 0.471243i
$$549$$ −300.641 173.575i −0.547615 0.316166i
$$550$$ 57.8526 100.204i 0.105186 0.182188i
$$551$$ 669.969 386.807i 1.21591 0.702009i
$$552$$ 199.545i 0.361495i
$$553$$ 266.185 862.849i 0.481347 1.56031i
$$554$$ 207.382 0.374336
$$555$$ −79.4221 137.563i −0.143103 0.247862i
$$556$$ −16.3451 9.43686i −0.0293977 0.0169728i
$$557$$ −89.4085 + 154.860i −0.160518 + 0.278025i −0.935055 0.354504i $$-0.884650\pi$$
0.774537 + 0.632529i $$0.217983\pi$$
$$558$$ 81.3914 46.9913i 0.145863 0.0842139i
$$559$$ 46.5456i 0.0832659i
$$560$$ 33.9999 + 148.986i 0.0607141 + 0.266046i
$$561$$ 59.3661 0.105822
$$562$$ −14.8979 25.8040i −0.0265088 0.0459146i
$$563$$ −139.571 80.5815i −0.247906 0.143129i 0.370899 0.928673i $$-0.379050\pi$$
−0.618805 + 0.785545i $$0.712383\pi$$
$$564$$ 14.3000 24.7683i 0.0253546 0.0439154i
$$565$$ 205.667 118.742i 0.364012 0.210162i
$$566$$ 186.012i 0.328644i
$$567$$ −61.4209 + 14.0168i −0.108326 + 0.0247210i
$$568$$ 865.704 1.52413
$$569$$ −6.24946 10.8244i −0.0109832 0.0190235i 0.860482 0.509482i $$-0.170163\pi$$
−0.871465 + 0.490458i $$0.836829\pi$$
$$570$$ 157.035 + 90.6642i 0.275500 + 0.159060i
$$571$$ −61.6982 + 106.864i −0.108053 + 0.187153i −0.914981 0.403496i $$-0.867795\pi$$
0.806929 + 0.590649i $$0.201128\pi$$
$$572$$ 87.9210 50.7612i 0.153708 0.0887434i
$$573$$ 206.130i 0.359738i
$$574$$ 252.251 + 77.8183i 0.439462 + 0.135572i
$$575$$ −66.2020 −0.115134
$$576$$ 104.933 + 181.750i 0.182176 + 0.315538i
$$577$$ −143.692 82.9608i −0.249033 0.143779i 0.370288 0.928917i $$-0.379259\pi$$
−0.619322 + 0.785137i $$0.712592\pi$$
$$578$$ 236.675 409.933i 0.409472 0.709227i
$$579$$ 14.8576 8.57805i 0.0256608 0.0148153i
$$580$$ 74.1673i 0.127875i
$$581$$ 155.681 144.441i 0.267954 0.248608i
$$582$$ −443.920 −0.762749
$$583$$ 640.239 + 1108.93i 1.09818 + 1.90210i
$$584$$ 784.219 + 452.769i 1.34284 + 0.775290i
$$585$$ −20.5288 + 35.5570i −0.0350920 + 0.0607812i
$$586$$ 111.084 64.1345i 0.189564 0.109445i
$$587$$ 186.037i 0.316929i −0.987365 0.158465i $$-0.949346\pi$$
0.987365 0.158465i $$-0.0506544\pi$$
$$588$$ −44.1649 91.7250i −0.0751104 0.155995i
$$589$$ 523.738 0.889199
$$590$$ −133.013 230.386i −0.225446 0.390485i
$$591$$ 435.512 + 251.443i 0.736908 + 0.425454i
$$592$$ −200.208 + 346.771i −0.338190 + 0.585762i
$$593$$ 494.838 285.695i 0.834465 0.481779i −0.0209140 0.999781i $$-0.506658\pi$$
0.855379 + 0.518003i $$0.173324\pi$$
$$594$$ 120.244i 0.202431i
$$595$$ −26.3875 28.4408i −0.0443487 0.0477997i
$$596$$ −220.959 −0.370736
$$597$$ −294.002 509.227i −0.492466 0.852977i
$$598$$ 117.445 + 67.8071i 0.196397 + 0.113390i
$$599$$ −87.2619 + 151.142i −0.145679 + 0.252324i −0.929626 0.368504i $$-0.879870\pi$$
0.783947 + 0.620828i $$0.213203\pi$$
$$600$$ −65.2591 + 37.6773i −0.108765 + 0.0627956i
$$601$$ 667.415i 1.11051i 0.831681 + 0.555254i $$0.187379\pi$$
−0.831681 + 0.555254i $$0.812621\pi$$
$$602$$ −26.2611 + 85.1264i −0.0436231 + 0.141406i
$$603$$ 34.2136 0.0567390
$$604$$ −157.887 273.468i −0.261402 0.452762i
$$605$$ −135.980 78.5081i −0.224760 0.129765i
$$606$$ 165.597 286.822i 0.273262 0.473303i
$$607$$ 23.3123 13.4594i 0.0384057 0.0221736i −0.480674 0.876899i $$-0.659608\pi$$
0.519080 + 0.854726i $$0.326275\pi$$
$$608$$ 516.646i 0.849746i
$$609$$ 74.5910 + 326.855i 0.122481 + 0.536707i
$$610$$ −433.009 −0.709852
$$611$$ −42.1265 72.9653i −0.0689468 0.119419i
$$612$$ −7.72450 4.45974i −0.0126217 0.00728716i
$$613$$ 32.7197 56.6723i 0.0533764 0.0924507i −0.838103 0.545513i $$-0.816335\pi$$
0.891479 + 0.453062i $$0.149668\pi$$
$$614$$ 518.201 299.183i 0.843976 0.487270i
$$615$$ 87.2780i 0.141915i
$$616$$ 821.145 187.392i 1.33303 0.304208i
$$617$$ 1059.51 1.71720 0.858601 0.512644i $$-0.171334\pi$$
0.858601 + 0.512644i $$0.171334\pi$$
$$618$$ 81.1285 + 140.519i 0.131276 + 0.227377i
$$619$$ 139.355 + 80.4565i 0.225129 + 0.129978i 0.608323 0.793690i $$-0.291843\pi$$
−0.383194 + 0.923668i $$0.625176\pi$$
$$620$$ −25.1057 + 43.4844i −0.0404931 + 0.0701361i
$$621$$ −59.5818 + 34.3995i −0.0959449 + 0.0553938i
$$622$$ 527.252i 0.847673i
$$623$$ 725.711 + 223.879i 1.16487 + 0.359356i
$$624$$ 103.499 0.165863
$$625$$ −12.5000 21.6506i −0.0200000 0.0346410i
$$626$$ −380.311 219.573i −0.607526 0.350755i
$$627$$ 335.043 580.312i 0.534359 0.925538i
$$628$$ 225.030 129.921i 0.358328 0.206881i
$$629$$ 101.657i 0.161617i
$$630$$ −57.6061 + 53.4471i −0.0914383 + 0.0848367i
$$631$$ −45.2151 −0.0716562 −0.0358281 0.999358i $$-0.511407\pi$$
−0.0358281 + 0.999358i $$0.511407\pi$$
$$632$$ −561.212 972.048i −0.887994 1.53805i
$$633$$ −16.6647 9.62137i −0.0263265 0.0151996i
$$634$$ −259.048 + 448.684i −0.408593 + 0.707703i
$$635$$ −382.267 + 220.702i −0.601995 + 0.347562i
$$636$$ 192.386i 0.302494i
$$637$$ −299.065 22.4318i −0.469490 0.0352148i
$$638$$ −639.886 −1.00296
$$639$$ 149.239 + 258.489i 0.233550 + 0.404521i
$$640$$ 83.6592 + 48.3007i 0.130718 + 0.0754698i
$$641$$ −161.675 + 280.030i −0.252224 + 0.436865i −0.964138 0.265402i $$-0.914495\pi$$
0.711914 + 0.702267i $$0.247829\pi$$
$$642$$ −247.771 + 143.051i −0.385936 + 0.222820i
$$643$$ 363.744i 0.565698i −0.959164 0.282849i $$-0.908720\pi$$
0.959164 0.282849i $$-0.0912795\pi$$
$$644$$ −75.6153 81.4994i −0.117415 0.126552i
$$645$$ −29.4535 −0.0456643
$$646$$ 58.0232 + 100.499i 0.0898191 + 0.155571i
$$647$$ −1114.98 643.737i −1.72331 0.994956i −0.911812 0.410608i $$-0.865317\pi$$
−0.811503 0.584348i $$-0.801350\pi$$
$$648$$ −39.1554 + 67.8192i −0.0604250 + 0.104659i
$$649$$ −851.376 + 491.542i −1.31183 + 0.757384i
$$650$$ 51.2123i 0.0787882i
$$651$$ −66.9079 + 216.884i −0.102777 + 0.333156i
$$652$$ 207.013 0.317505
$$653$$ −308.886 535.007i −0.473026 0.819306i 0.526497 0.850177i $$-0.323505\pi$$
−0.999523 + 0.0308714i $$0.990172\pi$$
$$654$$ 132.434 + 76.4606i 0.202498 + 0.116912i
$$655$$ 164.446 284.828i 0.251062 0.434852i
$$656$$ 190.536 110.006i 0.290451 0.167692i
$$657$$ 312.211i 0.475207i
$$658$$ −35.8773 157.213i −0.0545247 0.238925i
$$659$$ −1229.62 −1.86589 −0.932945 0.360019i $$-0.882770\pi$$
−0.932945 + 0.360019i $$0.882770\pi$$
$$660$$ 32.1210 + 55.6353i 0.0486682 + 0.0842958i
$$661$$ −606.437 350.127i −0.917454 0.529692i −0.0346322 0.999400i $$-0.511026\pi$$
−0.882822 + 0.469708i $$0.844359\pi$$
$$662$$ −72.6387 + 125.814i −0.109726 + 0.190051i
$$663$$ −22.7557 + 13.1380i −0.0343224 + 0.0198160i
$$664$$ 263.979i 0.397558i
$$665$$ −426.936 + 97.4304i −0.642009 + 0.146512i
$$666$$ −205.903 −0.309164
$$667$$ 183.059 + 317.067i 0.274451 + 0.475363i
$$668$$ −163.014 94.1160i −0.244032 0.140892i
$$669$$ 311.229 539.064i 0.465215 0.805776i
$$670$$ 36.9581 21.3378i 0.0551613 0.0318474i
$$671$$ 1600.16i 2.38473i
$$672$$ −213.947 66.0018i −0.318374 0.0982169i
$$673$$ −121.032 −0.179840 −0.0899201 0.995949i $$-0.528661\pi$$
−0.0899201 + 0.995949i $$0.528661\pi$$
$$674$$ 312.867 + 541.901i 0.464194 + 0.804007i
$$675$$ −22.5000 12.9904i −0.0333333 0.0192450i
$$676$$ 78.8920 136.645i 0.116704 0.202137i
$$677$$ −851.854 + 491.818i −1.25828 + 0.726467i −0.972739 0.231901i $$-0.925506\pi$$
−0.285538 + 0.958367i $$0.592172\pi$$
$$678$$ 307.840i 0.454042i
$$679$$ 785.912 729.171i 1.15745 1.07389i
$$680$$ −48.2254 −0.0709197
$$681$$ 64.3040 + 111.378i 0.0944258 + 0.163550i
$$682$$ −375.166 216.602i −0.550097 0.317599i
$$683$$ −56.5263 + 97.9064i −0.0827618 + 0.143348i −0.904435 0.426611i $$-0.859707\pi$$
0.821674 + 0.569958i $$0.193041\pi$$
$$684$$ −87.1893 + 50.3388i −0.127470 + 0.0735947i
$$685$$ 555.869i 0.811487i
$$686$$ −534.299 209.758i −0.778861 0.305770i
$$687$$ −577.216 −0.840198
$$688$$ 37.1234 + 64.2995i 0.0539584 + 0.0934586i
$$689$$ −490.823 283.377i −0.712370 0.411287i
$$690$$ −42.9074 + 74.3179i −0.0621847 + 0.107707i
$$691$$ −771.062 + 445.173i −1.11586 + 0.644244i −0.940342 0.340231i $$-0.889495\pi$$
−0.175522 + 0.984475i $$0.556161\pi$$
$$692$$ 57.0995i 0.0825137i
$$693$$ 197.510 + 212.879i 0.285007 + 0.307185i
$$694$$ 553.713 0.797858
$$695$$ −17.5916 30.4695i −0.0253116 0.0438410i
$$696$$ 360.903 + 208.368i 0.518539 + 0.299379i
$$697$$ −27.9280 + 48.3728i −0.0400689 + 0.0694014i
$$698$$ 363.630 209.942i 0.520960 0.300776i
$$699$$ 458.433i 0.655841i
$$700$$ 12.3761 40.1176i 0.0176801 0.0573108i
$$701$$ −730.892 −1.04264 −0.521321 0.853361i $$-0.674560\pi$$
−0.521321 + 0.853361i $$0.674560\pi$$
$$702$$ 26.6107 + 46.0911i 0.0379070 + 0.0656568i
$$703$$ −993.712 573.720i −1.41353 0.816102i
$$704$$ 483.681 837.760i 0.687047 1.19000i
$$705$$ 46.1715 26.6571i 0.0654914 0.0378115i
$$706$$ 210.384i 0.297995i
$$707$$ 177.955 + 779.791i 0.251704 + 1.10296i
$$708$$ 147.704 0.208621
$$709$$ −576.325 998.224i −0.812870 1.40793i −0.910847 0.412744i $$-0.864570\pi$$
0.0979765 0.995189i $$-0.468763\pi$$
$$710$$ 322.420 + 186.149i 0.454113 + 0.262182i
$$711$$ 193.495 335.142i 0.272144 0.471368i
$$712$$ 817.554 472.015i 1.14825 0.662943i
$$713$$ 247.863i 0.347633i
$$714$$ −49.0300 + 11.1891i −0.0686695 + 0.0156710i
$$715$$ 189.252 0.264688
$$716$$ 17.7225 + 30.6963i 0.0247521 + 0.0428720i
$$717$$ 399.296 + 230.534i 0.556898 + 0.321525i
$$718$$ −299.199 + 518.228i −0.416712 + 0.721766i
$$719$$ 688.275 397.376i 0.957267 0.552678i 0.0619361 0.998080i $$-0.480273\pi$$
0.895331 + 0.445402i $$0.146939\pi$$
$$720$$ 65.4927i 0.0909621i
$$721$$ −374.442 115.514i −0.519336 0.160213i
$$722$$ 705.738 0.977476
$$723$$ 29.4197 + 50.9565i 0.0406912 + 0.0704792i
$$724$$ −10.7257 6.19249i −0.0148145 0.00855316i
$$725$$ −69.1290 + 119.735i −0.0953503 + 0.165152i
$$726$$ −176.265 + 101.767i −0.242790 + 0.140175i
$$727$$ 312.108i 0.429310i −0.976690 0.214655i $$-0.931137\pi$$
0.976690 0.214655i $$-0.0688626\pi$$
$$728$$ −273.284 + 253.553i −0.375390 + 0.348288i
$$729$$ −27.0000 −0.0370370
$$730$$ 194.715 + 337.256i 0.266732 + 0.461994i
$$731$$ −16.3242 9.42479i −0.0223314 0.0128930i
$$732$$ 120.208 208.207i 0.164219 0.284435i
$$733$$ 215.629 124.493i 0.294173 0.169841i −0.345649 0.938364i $$-0.612341\pi$$
0.639822 + 0.768523i $$0.279008\pi$$
$$734$$ 1166.91i 1.58979i
$$735$$ 14.1946 189.245i 0.0193123 0.257476i
$$736$$ −244.506 −0.332209
$$737$$ −78.8522 136.576i −0.106991 0.185314i
$$738$$ 97.9777 + 56.5675i 0.132761 + 0.0766497i
$$739$$ −152.219 + 263.652i −0.205980 + 0.356768i −0.950445 0.310894i $$-0.899372\pi$$
0.744464 + 0.667662i $$0.232705\pi$$
$$740$$ 95.2684 55.0032i 0.128741 0.0743287i
$$741$$ 296.588i 0.400253i
$$742$$ −737.775 795.185i −0.994306 1.07168i
$$743$$ −235.455 −0.316898 −0.158449 0.987367i $$-0.550649\pi$$
−0.158449 + 0.987367i $$0.550649\pi$$
$$744$$ 141.065 + 244.332i 0.189604 + 0.328404i
$$745$$ −356.713 205.948i −0.478810 0.276441i
$$746$$ −121.566 + 210.558i −0.162957 + 0.282250i
$$747$$ 78.8209 45.5073i 0.105517 0.0609200i
$$748$$ 41.1136i 0.0549646i
$$749$$ 203.680 660.237i 0.271936 0.881492i
$$750$$ −32.4065 −0.0432086
$$751$$ 387.921 + 671.900i 0.516540 + 0.894673i 0.999816 + 0.0192050i $$0.00611351\pi$$
−0.483276 + 0.875468i $$0.660553\pi$$
$$752$$ −116.390 67.1976i −0.154774 0.0893585i
$$753$$ −73.3325 + 127.016i −0.0973872 + 0.168680i
$$754$$ 245.276 141.610i 0.325300 0.187812i
$$755$$ 588.646i 0.779663i
$$756$$ −9.70722 42.5366i −0.0128402 0.0562654i
$$757$$ −194.342 −0.256727 −0.128363 0.991727i $$-0.540972\pi$$
−0.128363 + 0.991727i $$0.540972\pi$$
$$758$$ −186.282 322.650i −0.245755 0.425659i
$$759$$ 274.637 + 158.562i 0.361840 + 0.208908i
$$760$$ −272.169 + 471.410i −0.358117 + 0.620277i
$$761$$ −441.278 + 254.772i −0.579866 + 0.334786i −0.761080 0.648658i $$-0.775331\pi$$
0.181214 + 0.983444i $$0.441997\pi$$
$$762$$ 572.174i 0.750884i
$$763$$ −360.051 + 82.1668i −0.471889 + 0.107689i
$$764$$ 142.754 0.186850
$$765$$ −8.31357 14.3995i −0.0108674 0.0188229i
$$766$$ −50.3732 29.0830i −0.0657614 0.0379674i
$$767$$ 217.562 376.828i 0.283653 0.491301i
$$768$$ −311.290 + 179.723i −0.405325 + 0.234015i
$$769$$ 1174.80i 1.52769i −0.645398 0.763846i $$-0.723308\pi$$
0.645398 0.763846i $$-0.276692\pi$$
$$770$$ 346.119 + 106.776i 0.449505 + 0.138670i
$$771$$ −55.2880 −0.0717094
$$772$$ 5.94067 + 10.2895i 0.00769517 + 0.0133284i
$$773$$ 996.623 + 575.401i 1.28929 + 0.744373i 0.978528 0.206114i $$-0.0660817\pi$$
0.310764 + 0.950487i $$0.399415\pi$$
$$774$$ −19.0897 + 33.0643i −0.0246636 + 0.0427187i
$$775$$ −81.0608 + 46.8005i −0.104595 + 0.0603877i