Properties

Label 105.3.n.a
Level 105
Weight 3
Character orbit 105.n
Analytic conductor 2.861
Analytic rank 0
Dimension 8
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 3 \)
Character orbit: \([\chi]\) = 105.n (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.523596960000.16
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{1} q^{2} + ( -1 + \beta_{4} ) q^{3} + ( -1 + \beta_{1} - \beta_{3} - \beta_{4} + \beta_{5} + 2 \beta_{6} ) q^{4} + \beta_{6} q^{5} + ( -2 \beta_{1} + \beta_{3} ) q^{6} + ( -5 + \beta_{1} - \beta_{2} + \beta_{3} - 4 \beta_{4} + \beta_{6} ) q^{7} + ( -5 - 2 \beta_{2} - \beta_{3} - \beta_{4} - 3 \beta_{5} + \beta_{6} + \beta_{7} ) q^{8} -3 \beta_{4} q^{9} +O(q^{10})\) \( q + \beta_{1} q^{2} + ( -1 + \beta_{4} ) q^{3} + ( -1 + \beta_{1} - \beta_{3} - \beta_{4} + \beta_{5} + 2 \beta_{6} ) q^{4} + \beta_{6} q^{5} + ( -2 \beta_{1} + \beta_{3} ) q^{6} + ( -5 + \beta_{1} - \beta_{2} + \beta_{3} - 4 \beta_{4} + \beta_{6} ) q^{7} + ( -5 - 2 \beta_{2} - \beta_{3} - \beta_{4} - 3 \beta_{5} + \beta_{6} + \beta_{7} ) q^{8} -3 \beta_{4} q^{9} + ( -\beta_{1} - \beta_{2} - \beta_{3} - \beta_{4} - \beta_{5} ) q^{10} + ( 4 + \beta_{1} - \beta_{2} - \beta_{3} + 5 \beta_{4} - \beta_{5} + 2 \beta_{7} ) q^{11} + ( 2 - \beta_{1} + 2 \beta_{3} + \beta_{4} - 3 \beta_{6} ) q^{12} + ( 2 - 4 \beta_{1} + 2 \beta_{3} + 5 \beta_{5} + 5 \beta_{6} - 4 \beta_{7} ) q^{13} + ( -5 + \beta_{1} - \beta_{2} - 6 \beta_{3} - 11 \beta_{4} + \beta_{6} ) q^{14} + ( \beta_{5} - \beta_{6} ) q^{15} + ( -5 \beta_{1} - 2 \beta_{2} - 3 \beta_{4} + \beta_{6} - 2 \beta_{7} ) q^{16} + ( -3 + 4 \beta_{1} + \beta_{2} + 4 \beta_{3} + 4 \beta_{4} + 2 \beta_{5} ) q^{17} + ( 3 \beta_{1} - 3 \beta_{3} ) q^{18} + ( 2 - 2 \beta_{1} + 4 \beta_{2} + 4 \beta_{3} + \beta_{4} + 4 \beta_{5} - 4 \beta_{6} - 4 \beta_{7} ) q^{19} + ( 5 - 2 \beta_{1} + \beta_{3} + 9 \beta_{4} - \beta_{5} - \beta_{6} - \beta_{7} ) q^{20} + ( 8 - 3 \beta_{1} + \beta_{2} + 3 \beta_{4} - 2 \beta_{6} + \beta_{7} ) q^{21} + ( -5 - 2 \beta_{2} + 3 \beta_{3} - \beta_{4} - 5 \beta_{5} + 3 \beta_{6} + \beta_{7} ) q^{22} + ( 3 \beta_{1} + 4 \beta_{2} - 12 \beta_{4} - 2 \beta_{6} + 4 \beta_{7} ) q^{23} + ( 5 + \beta_{1} + 3 \beta_{2} + \beta_{3} - 2 \beta_{4} + 6 \beta_{5} ) q^{24} + ( 5 + 5 \beta_{4} ) q^{25} + ( 20 + \beta_{1} - \beta_{2} - 2 \beta_{3} + 10 \beta_{4} - \beta_{5} - 14 \beta_{6} + \beta_{7} ) q^{26} + ( 3 + 6 \beta_{4} ) q^{27} + ( -13 - 3 \beta_{1} - 5 \beta_{2} - 5 \beta_{3} + 4 \beta_{4} - 14 \beta_{5} - 6 \beta_{6} + 4 \beta_{7} ) q^{28} + ( -5 + 10 \beta_{2} + 5 \beta_{4} + \beta_{5} + 9 \beta_{6} - 5 \beta_{7} ) q^{29} + ( 3 \beta_{1} + \beta_{2} + 2 \beta_{4} + \beta_{5} + \beta_{7} ) q^{30} + ( -8 - \beta_{1} + 4 \beta_{2} - \beta_{3} + 12 \beta_{4} - 7 \beta_{5} ) q^{31} + ( 5 + \beta_{1} - 3 \beta_{2} - \beta_{3} + 8 \beta_{4} - 8 \beta_{5} - 10 \beta_{6} + 6 \beta_{7} ) q^{32} + ( -8 - \beta_{1} + 3 \beta_{2} + 2 \beta_{3} - 4 \beta_{4} + 3 \beta_{5} - 3 \beta_{7} ) q^{33} + ( -20 + 4 \beta_{1} - 2 \beta_{3} - 38 \beta_{4} + 14 \beta_{5} + 14 \beta_{6} + 2 \beta_{7} ) q^{34} + ( -4 \beta_{2} - \beta_{3} + 3 \beta_{4} - 7 \beta_{5} - 5 \beta_{6} + 2 \beta_{7} ) q^{35} + ( -3 - 3 \beta_{3} - 3 \beta_{5} + 3 \beta_{6} ) q^{36} + ( 8 \beta_{1} - 4 \beta_{2} + 22 \beta_{4} - 10 \beta_{5} - 3 \beta_{6} - 4 \beta_{7} ) q^{37} + ( 10 + 7 \beta_{1} + 8 \beta_{2} + 7 \beta_{3} - 2 \beta_{4} + 22 \beta_{5} ) q^{38} + ( -6 + 6 \beta_{1} - 4 \beta_{2} - 6 \beta_{3} - 2 \beta_{4} - 9 \beta_{5} - 10 \beta_{6} + 8 \beta_{7} ) q^{39} + ( 10 - 3 \beta_{1} - 2 \beta_{2} + 6 \beta_{3} + 5 \beta_{4} - 2 \beta_{5} - 5 \beta_{6} + 2 \beta_{7} ) q^{40} + ( 4 - 6 \beta_{1} + 3 \beta_{3} + 5 \beta_{4} + 12 \beta_{5} + 12 \beta_{6} - 3 \beta_{7} ) q^{41} + ( 15 + 4 \beta_{1} + \beta_{2} + 7 \beta_{3} + 17 \beta_{4} - 2 \beta_{6} + \beta_{7} ) q^{42} + ( 49 + 10 \beta_{2} + 5 \beta_{3} + 5 \beta_{4} + 8 \beta_{5} + 2 \beta_{6} - 5 \beta_{7} ) q^{43} + ( -7 \beta_{1} + \beta_{4} + 2 \beta_{5} + \beta_{6} ) q^{44} -3 \beta_{5} q^{45} + ( -15 + 17 \beta_{1} - 2 \beta_{2} - 17 \beta_{3} - 13 \beta_{4} + 9 \beta_{5} + 22 \beta_{6} + 4 \beta_{7} ) q^{46} + ( -14 - \beta_{1} - \beta_{2} + 2 \beta_{3} - 7 \beta_{4} - \beta_{5} - 5 \beta_{6} + \beta_{7} ) q^{47} + ( -1 + 10 \beta_{1} - 5 \beta_{3} + 4 \beta_{4} - 3 \beta_{5} - 3 \beta_{6} + 6 \beta_{7} ) q^{48} + ( 11 + 9 \beta_{1} + 2 \beta_{2} - 18 \beta_{3} - 4 \beta_{4} - 14 \beta_{5} - 7 \beta_{6} - 2 \beta_{7} ) q^{49} + 5 \beta_{3} q^{50} + ( -12 \beta_{1} - \beta_{2} - 11 \beta_{4} - 3 \beta_{5} - \beta_{6} - \beta_{7} ) q^{51} + ( -13 + 15 \beta_{1} - 3 \beta_{2} + 15 \beta_{3} + 10 \beta_{4} + 12 \beta_{5} ) q^{52} + ( -13 - 3 \beta_{1} + 5 \beta_{2} + 3 \beta_{3} - 18 \beta_{4} - 2 \beta_{5} - 14 \beta_{6} - 10 \beta_{7} ) q^{53} + ( -3 \beta_{1} + 6 \beta_{3} ) q^{54} + ( -6 \beta_{1} + 3 \beta_{3} + 2 \beta_{4} + 4 \beta_{5} + 4 \beta_{6} + 2 \beta_{7} ) q^{55} + ( 35 - 14 \beta_{1} - 2 \beta_{2} + 3 \beta_{3} + 12 \beta_{4} - 21 \beta_{5} - 13 \beta_{6} - 6 \beta_{7} ) q^{56} + ( -3 - 8 \beta_{2} - 6 \beta_{3} - 4 \beta_{4} - 12 \beta_{5} + 4 \beta_{6} + 4 \beta_{7} ) q^{57} + ( -32 \beta_{1} - 4 \beta_{2} - 8 \beta_{4} + 16 \beta_{5} + 10 \beta_{6} - 4 \beta_{7} ) q^{58} + ( 3 - 14 \beta_{1} + \beta_{2} - 14 \beta_{3} - 2 \beta_{4} + 14 \beta_{5} ) q^{59} + ( -15 + 3 \beta_{1} - \beta_{2} - 3 \beta_{3} - 14 \beta_{4} + 2 \beta_{6} + 2 \beta_{7} ) q^{60} + ( -60 - 4 \beta_{1} + 10 \beta_{2} + 8 \beta_{3} - 30 \beta_{4} + 10 \beta_{5} - 4 \beta_{6} - 10 \beta_{7} ) q^{61} + ( 5 - 40 \beta_{1} + 20 \beta_{3} + 3 \beta_{4} + 5 \beta_{5} + 5 \beta_{6} - 7 \beta_{7} ) q^{62} + ( -9 + 6 \beta_{1} - 3 \beta_{3} + 3 \beta_{4} + 3 \beta_{6} - 3 \beta_{7} ) q^{63} + ( -9 - 12 \beta_{2} - \beta_{3} - 6 \beta_{4} - 15 \beta_{5} + 3 \beta_{6} + 6 \beta_{7} ) q^{64} + ( 14 \beta_{1} - 2 \beta_{2} + 21 \beta_{4} + 2 \beta_{5} + 2 \beta_{6} - 2 \beta_{7} ) q^{65} + ( 5 - 3 \beta_{1} + 3 \beta_{2} - 3 \beta_{3} - 2 \beta_{4} + 12 \beta_{5} ) q^{66} + ( 47 + 5 \beta_{1} - \beta_{2} - 5 \beta_{3} + 48 \beta_{4} - 11 \beta_{5} - 20 \beta_{6} + 2 \beta_{7} ) q^{67} + ( -44 + 20 \beta_{1} - 12 \beta_{2} - 40 \beta_{3} - 22 \beta_{4} - 12 \beta_{5} + 6 \beta_{6} + 12 \beta_{7} ) q^{68} + ( 20 - 6 \beta_{1} + 3 \beta_{3} + 28 \beta_{4} + 6 \beta_{5} + 6 \beta_{6} - 12 \beta_{7} ) q^{69} + ( -7 \beta_{1} + 3 \beta_{2} + 13 \beta_{3} + 3 \beta_{4} - 7 \beta_{5} - 5 \beta_{6} - 5 \beta_{7} ) q^{70} + ( -1 - 10 \beta_{2} + 28 \beta_{3} - 5 \beta_{4} - 9 \beta_{5} - \beta_{6} + 5 \beta_{7} ) q^{71} + ( -3 \beta_{1} - 3 \beta_{2} + 9 \beta_{4} - 9 \beta_{5} - 3 \beta_{6} - 3 \beta_{7} ) q^{72} + ( 31 - 11 \beta_{1} - 7 \beta_{2} - 11 \beta_{3} - 38 \beta_{4} - 23 \beta_{5} ) q^{73} + ( -40 - 31 \beta_{1} + 7 \beta_{2} + 31 \beta_{3} - 47 \beta_{4} + 7 \beta_{5} - 14 \beta_{7} ) q^{74} + ( -10 - 5 \beta_{4} ) q^{75} + ( -31 + 46 \beta_{1} - 23 \beta_{3} - 56 \beta_{4} + 21 \beta_{5} + 21 \beta_{6} + 6 \beta_{7} ) q^{76} + ( 2 - 13 \beta_{1} - 11 \beta_{2} + 9 \beta_{3} - 21 \beta_{4} - 7 \beta_{5} + 13 \beta_{6} + 5 \beta_{7} ) q^{77} + ( -30 + 2 \beta_{2} + 3 \beta_{3} + \beta_{4} - 12 \beta_{5} + 14 \beta_{6} - \beta_{7} ) q^{78} + ( -5 \beta_{1} + 6 \beta_{2} + 52 \beta_{4} + 12 \beta_{5} + 3 \beta_{6} + 6 \beta_{7} ) q^{79} + ( -5 + 9 \beta_{1} - \beta_{2} + 9 \beta_{3} + 4 \beta_{4} ) q^{80} + ( -9 - 9 \beta_{4} ) q^{81} + ( 30 + 5 \beta_{1} - 9 \beta_{2} - 10 \beta_{3} + 15 \beta_{4} - 9 \beta_{5} - 15 \beta_{6} + 9 \beta_{7} ) q^{82} + ( 9 + 24 \beta_{1} - 12 \beta_{3} + 13 \beta_{4} + 37 \beta_{5} + 37 \beta_{6} - 5 \beta_{7} ) q^{83} + ( 8 + 11 \beta_{1} + 9 \beta_{2} + 2 \beta_{3} - 17 \beta_{4} + 21 \beta_{5} + 15 \beta_{6} - 3 \beta_{7} ) q^{84} + ( -5 - 6 \beta_{2} - 14 \beta_{3} - 3 \beta_{4} - 3 \beta_{5} - 3 \beta_{6} + 3 \beta_{7} ) q^{85} + ( 48 \beta_{1} + 3 \beta_{2} - 19 \beta_{4} + 33 \beta_{5} + 15 \beta_{6} + 3 \beta_{7} ) q^{86} + ( 5 - 15 \beta_{2} - 20 \beta_{4} + 12 \beta_{5} ) q^{87} + ( 15 - 17 \beta_{1} - 5 \beta_{2} + 17 \beta_{3} + 20 \beta_{4} + 10 \beta_{6} + 10 \beta_{7} ) q^{88} + ( 46 + 10 \beta_{1} - 11 \beta_{2} - 20 \beta_{3} + 23 \beta_{4} - 11 \beta_{5} + 11 \beta_{6} + 11 \beta_{7} ) q^{89} + ( -6 \beta_{1} + 3 \beta_{3} - 3 \beta_{4} - 3 \beta_{7} ) q^{90} + ( -33 + 15 \beta_{1} + 6 \beta_{2} + 15 \beta_{3} - 4 \beta_{4} - 35 \beta_{5} - 48 \beta_{6} + 14 \beta_{7} ) q^{91} + ( -5 + 6 \beta_{2} - 53 \beta_{3} + 3 \beta_{4} - 23 \beta_{5} + 29 \beta_{6} - 3 \beta_{7} ) q^{92} + ( 3 \beta_{1} - 4 \beta_{2} - 32 \beta_{4} + 18 \beta_{5} + 11 \beta_{6} - 4 \beta_{7} ) q^{93} + ( 5 - \beta_{1} + 4 \beta_{2} - \beta_{3} - \beta_{4} + 5 \beta_{5} ) q^{94} + ( -20 + 14 \beta_{1} + 2 \beta_{2} - 14 \beta_{3} - 22 \beta_{4} + 3 \beta_{5} + 2 \beta_{6} - 4 \beta_{7} ) q^{95} + ( -10 - \beta_{1} + 9 \beta_{2} + 2 \beta_{3} - 5 \beta_{4} + 9 \beta_{5} + 15 \beta_{6} - 9 \beta_{7} ) q^{96} + ( 6 - 28 \beta_{1} + 14 \beta_{3} + 22 \beta_{4} + 16 \beta_{5} + 16 \beta_{6} + 10 \beta_{7} ) q^{97} + ( -45 - 19 \beta_{1} + 9 \beta_{2} + 10 \beta_{3} + 38 \beta_{4} - 14 \beta_{5} - 16 \beta_{7} ) q^{98} + ( 12 - 6 \beta_{2} - 3 \beta_{3} - 3 \beta_{4} - 6 \beta_{5} + 3 \beta_{7} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 2q^{2} - 12q^{3} - 6q^{4} - 16q^{7} - 32q^{8} + 12q^{9} + O(q^{10}) \) \( 8q + 2q^{2} - 12q^{3} - 6q^{4} - 16q^{7} - 32q^{8} + 12q^{9} + 20q^{11} + 18q^{12} - 16q^{14} - 2q^{16} - 18q^{17} - 6q^{18} + 48q^{21} - 16q^{22} + 62q^{23} + 48q^{24} + 20q^{25} + 120q^{26} - 120q^{28} - 100q^{29} - 126q^{31} + 36q^{32} - 60q^{33} - 36q^{36} - 80q^{37} + 114q^{38} - 12q^{39} + 90q^{40} + 90q^{42} + 352q^{43} - 18q^{44} - 82q^{46} - 72q^{47} + 38q^{49} + 20q^{50} + 18q^{51} - 48q^{52} - 76q^{53} + 18q^{54} + 196q^{56} - 40q^{58} - 54q^{59} - 60q^{60} - 396q^{61} - 96q^{63} - 4q^{64} - 60q^{65} + 24q^{66} + 184q^{67} - 312q^{68} + 164q^{71} - 48q^{72} + 348q^{73} - 140q^{74} - 60q^{75} + 152q^{77} - 240q^{78} - 206q^{79} - 36q^{81} + 204q^{82} + 132q^{84} - 60q^{85} + 178q^{86} + 150q^{87} + 124q^{88} + 282q^{89} - 114q^{91} - 288q^{92} + 126q^{93} + 30q^{94} - 120q^{95} - 108q^{96} - 592q^{98} + 120q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{8} - 2 x^{7} + 13 x^{6} - 2 x^{5} + 91 x^{4} - 50 x^{3} + 190 x^{2} + 100 x + 100\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( \nu^{7} + 20 \nu^{6} - 51 \nu^{5} + 304 \nu^{4} - 193 \nu^{3} + 1752 \nu^{2} - 2510 \nu + 2630 \)\()/630\)
\(\beta_{3}\)\(=\)\((\)\( -87 \nu^{7} + 24 \nu^{6} - 841 \nu^{5} - 1276 \nu^{4} - 10117 \nu^{3} - 4640 \nu^{2} - 2900 \nu - 13700 \)\()/21630\)
\(\beta_{4}\)\(=\)\((\)\( 137 \nu^{7} - 361 \nu^{6} + 1805 \nu^{5} - 1115 \nu^{4} + 11191 \nu^{3} - 16967 \nu^{2} + 21390 \nu - 10830 \)\()/21630\)
\(\beta_{5}\)\(=\)\((\)\( 472 \nu^{7} - 1249 \nu^{6} + 6966 \nu^{5} - 8699 \nu^{4} + 48092 \nu^{3} - 74565 \nu^{2} + 78220 \nu - 131200 \)\()/64890\)
\(\beta_{6}\)\(=\)\((\)\( 661 \nu^{7} - 2047 \nu^{6} + 8793 \nu^{5} - 5927 \nu^{4} + 44711 \nu^{3} - 64485 \nu^{2} + 84520 \nu + 126050 \)\()/64890\)
\(\beta_{7}\)\(=\)\((\)\( -977 \nu^{7} + 1985 \nu^{6} - 15693 \nu^{5} + 4657 \nu^{4} - 114889 \nu^{3} + 25521 \nu^{2} - 381050 \nu - 55810 \)\()/64890\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(2 \beta_{6} + \beta_{5} - 5 \beta_{4} - \beta_{3} + \beta_{1} - 5\)
\(\nu^{3}\)\(=\)\(\beta_{7} + \beta_{6} - 3 \beta_{5} - \beta_{4} - 9 \beta_{3} - 2 \beta_{2} - 5\)
\(\nu^{4}\)\(=\)\(-2 \beta_{7} - 11 \beta_{6} - 24 \beta_{5} + 41 \beta_{4} - 2 \beta_{2} - 17 \beta_{1}\)
\(\nu^{5}\)\(=\)\(-26 \beta_{7} - 42 \beta_{6} - 8 \beta_{5} + 72 \beta_{4} + 95 \beta_{3} + 13 \beta_{2} - 95 \beta_{1} + 85\)
\(\nu^{6}\)\(=\)\(-34 \beta_{7} - 121 \beta_{6} + 189 \beta_{5} + 34 \beta_{4} + 243 \beta_{3} + 68 \beta_{2} + 475\)
\(\nu^{7}\)\(=\)\(155 \beta_{7} + 311 \beta_{6} + 777 \beta_{5} - 905 \beta_{4} + 155 \beta_{2} + 1081 \beta_{1}\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(1\) \(-\beta_{4}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
31.1
−1.26021 2.18275i
−0.336732 0.583237i
0.836732 + 1.44926i
1.76021 + 3.04878i
−1.26021 + 2.18275i
−0.336732 + 0.583237i
0.836732 1.44926i
1.76021 3.04878i
−1.26021 2.18275i −1.50000 0.866025i −1.17628 + 2.03737i −1.93649 + 1.11803i 4.36551i −6.18050 + 3.28656i −4.15226 1.50000 + 2.59808i 4.88079 + 2.81792i
31.2 −0.336732 0.583237i −1.50000 0.866025i 1.77322 3.07131i 1.93649 1.11803i 1.16647i −6.82455 1.55742i −5.08226 1.50000 + 2.59808i −1.30416 0.752955i
31.3 0.836732 + 1.44926i −1.50000 0.866025i 0.599760 1.03881i 1.93649 1.11803i 2.89852i 4.76104 + 5.13152i 8.70121 1.50000 + 2.59808i 3.24065 + 1.87099i
31.4 1.76021 + 3.04878i −1.50000 0.866025i −4.19671 + 7.26891i −1.93649 + 1.11803i 6.09756i 0.244004 + 6.99575i −15.4667 1.50000 + 2.59808i −6.81728 3.93596i
61.1 −1.26021 + 2.18275i −1.50000 + 0.866025i −1.17628 2.03737i −1.93649 1.11803i 4.36551i −6.18050 3.28656i −4.15226 1.50000 2.59808i 4.88079 2.81792i
61.2 −0.336732 + 0.583237i −1.50000 + 0.866025i 1.77322 + 3.07131i 1.93649 + 1.11803i 1.16647i −6.82455 + 1.55742i −5.08226 1.50000 2.59808i −1.30416 + 0.752955i
61.3 0.836732 1.44926i −1.50000 + 0.866025i 0.599760 + 1.03881i 1.93649 + 1.11803i 2.89852i 4.76104 5.13152i 8.70121 1.50000 2.59808i 3.24065 1.87099i
61.4 1.76021 3.04878i −1.50000 + 0.866025i −4.19671 7.26891i −1.93649 1.11803i 6.09756i 0.244004 6.99575i −15.4667 1.50000 2.59808i −6.81728 + 3.93596i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 61.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 105.3.n.a 8
3.b odd 2 1 315.3.w.a 8
5.b even 2 1 525.3.o.l 8
5.c odd 4 2 525.3.s.h 16
7.c even 3 1 735.3.h.a 8
7.d odd 6 1 inner 105.3.n.a 8
7.d odd 6 1 735.3.h.a 8
21.g even 6 1 315.3.w.a 8
35.i odd 6 1 525.3.o.l 8
35.k even 12 2 525.3.s.h 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.3.n.a 8 1.a even 1 1 trivial
105.3.n.a 8 7.d odd 6 1 inner
315.3.w.a 8 3.b odd 2 1
315.3.w.a 8 21.g even 6 1
525.3.o.l 8 5.b even 2 1
525.3.o.l 8 35.i odd 6 1
525.3.s.h 16 5.c odd 4 2
525.3.s.h 16 35.k even 12 2
735.3.h.a 8 7.c even 3 1
735.3.h.a 8 7.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \(T_{2}^{8} - \cdots\) acting on \(S_{3}^{\mathrm{new}}(105, [\chi])\).

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( 1 - 2 T - 3 T^{2} + 14 T^{3} - 13 T^{4} - 18 T^{5} + 70 T^{6} - 44 T^{7} - 156 T^{8} - 176 T^{9} + 1120 T^{10} - 1152 T^{11} - 3328 T^{12} + 14336 T^{13} - 12288 T^{14} - 32768 T^{15} + 65536 T^{16} \)
$3$ \( ( 1 + 3 T + 3 T^{2} )^{4} \)
$5$ \( ( 1 - 5 T^{2} + 25 T^{4} )^{2} \)
$7$ \( 1 + 16 T + 109 T^{2} + 784 T^{3} + 6664 T^{4} + 38416 T^{5} + 261709 T^{6} + 1882384 T^{7} + 5764801 T^{8} \)
$11$ \( 1 - 20 T - 147 T^{2} + 2960 T^{3} + 57131 T^{4} - 519480 T^{5} - 8882912 T^{6} + 8003440 T^{7} + 1602642534 T^{8} + 968416240 T^{9} - 130054714592 T^{10} - 920290508280 T^{11} + 12246537230411 T^{12} + 76774776818960 T^{13} - 461348971377987 T^{14} - 7594996671664820 T^{15} + 45949729863572161 T^{16} \)
$13$ \( 1 - 188 T^{2} + 39826 T^{4} - 8798048 T^{6} + 2113175419 T^{8} - 251281048928 T^{10} + 32487291694546 T^{12} - 4380040003026428 T^{14} + 665416609183179841 T^{16} \)
$17$ \( 1 + 18 T + 766 T^{2} + 11844 T^{3} + 262438 T^{4} + 1906254 T^{5} + 22625848 T^{6} - 382636314 T^{7} - 5169040877 T^{8} - 110581894746 T^{9} + 1889733450808 T^{10} + 46012337456526 T^{11} + 1830703831301158 T^{12} + 23877431756917956 T^{13} + 446288633717996926 T^{14} + 3030800878069216722 T^{15} + 48661191875666868481 T^{16} \)
$19$ \( 1 + 598 T^{2} + 183481 T^{4} - 682560 T^{5} - 48973562 T^{6} - 501474240 T^{7} - 32269961996 T^{8} - 181032200640 T^{9} - 6382283573402 T^{10} - 32111636535360 T^{11} + 3116161130325721 T^{12} + 1323562321601564278 T^{14} + \)\(28\!\cdots\!81\)\( T^{16} \)
$23$ \( 1 - 62 T + 1497 T^{2} + 6014 T^{3} - 1196893 T^{4} + 31086552 T^{5} - 143771420 T^{6} - 13896561704 T^{7} + 513552019554 T^{8} - 7351281141416 T^{9} - 40233137944220 T^{10} + 4601925361264728 T^{11} - 93729870105931933 T^{12} + 249139038438885086 T^{13} + 32806192774734420537 T^{14} - \)\(71\!\cdots\!58\)\( T^{15} + \)\(61\!\cdots\!61\)\( T^{16} \)
$29$ \( ( 1 + 50 T + 1234 T^{2} - 15850 T^{3} - 1164374 T^{4} - 13329850 T^{5} + 872784754 T^{6} + 29741166050 T^{7} + 500246412961 T^{8} )^{2} \)
$31$ \( 1 + 126 T + 9883 T^{2} + 578466 T^{3} + 27206317 T^{4} + 1079090100 T^{5} + 38160094402 T^{6} + 1243487527488 T^{7} + 38998740329170 T^{8} + 1194991513915968 T^{9} + 35241648542229442 T^{10} + 957696435880658100 T^{11} + 23204023931078714797 T^{12} + \)\(47\!\cdots\!66\)\( T^{13} + \)\(77\!\cdots\!63\)\( T^{14} + \)\(95\!\cdots\!46\)\( T^{15} + \)\(72\!\cdots\!81\)\( T^{16} \)
$37$ \( 1 + 80 T + 1194 T^{2} + 28960 T^{3} + 3461705 T^{4} - 28416960 T^{5} - 6540374054 T^{6} - 198858748720 T^{7} - 6603314864556 T^{8} - 272237626997680 T^{9} - 12257713977418694 T^{10} - 72910144735496640 T^{11} + 12159167688035595305 T^{12} + \)\(13\!\cdots\!40\)\( T^{13} + \)\(78\!\cdots\!14\)\( T^{14} + \)\(72\!\cdots\!20\)\( T^{15} + \)\(12\!\cdots\!41\)\( T^{16} \)
$41$ \( 1 - 10106 T^{2} + 48877645 T^{4} - 146585251874 T^{6} + 296639674915264 T^{8} - 414214887920726114 T^{10} + \)\(39\!\cdots\!45\)\( T^{12} - \)\(22\!\cdots\!86\)\( T^{14} + \)\(63\!\cdots\!41\)\( T^{16} \)
$43$ \( ( 1 - 176 T + 17017 T^{2} - 1139948 T^{3} + 56853640 T^{4} - 2107763852 T^{5} + 58177736617 T^{6} - 1112559896624 T^{7} + 11688200277601 T^{8} )^{2} \)
$47$ \( 1 + 72 T + 10951 T^{2} + 664056 T^{3} + 65519473 T^{4} + 3342900456 T^{5} + 246192812578 T^{6} + 10750018584384 T^{7} + 651041931981118 T^{8} + 23746791052904256 T^{9} + 1201342389873427618 T^{10} + 36033843838636290024 T^{11} + \)\(15\!\cdots\!53\)\( T^{12} + \)\(34\!\cdots\!44\)\( T^{13} + \)\(12\!\cdots\!91\)\( T^{14} + \)\(18\!\cdots\!68\)\( T^{15} + \)\(56\!\cdots\!21\)\( T^{16} \)
$53$ \( 1 + 76 T - 3069 T^{2} - 443764 T^{3} + 2229785 T^{4} + 1396117872 T^{5} + 34651196266 T^{6} - 1991894657480 T^{7} - 169369280357850 T^{8} - 5595232092861320 T^{9} + 273414605764143946 T^{10} + 30944060693658997488 T^{11} + \)\(13\!\cdots\!85\)\( T^{12} - \)\(77\!\cdots\!36\)\( T^{13} - \)\(15\!\cdots\!29\)\( T^{14} + \)\(10\!\cdots\!44\)\( T^{15} + \)\(38\!\cdots\!21\)\( T^{16} \)
$59$ \( 1 + 54 T + 7198 T^{2} + 336204 T^{3} + 19932742 T^{4} - 202333950 T^{5} - 35478676088 T^{6} - 7641841019598 T^{7} - 385856896323245 T^{8} - 26601248589220638 T^{9} - 429907925960363768 T^{10} - 8534553984691411950 T^{11} + \)\(29\!\cdots\!82\)\( T^{12} + \)\(17\!\cdots\!04\)\( T^{13} + \)\(12\!\cdots\!38\)\( T^{14} + \)\(33\!\cdots\!94\)\( T^{15} + \)\(21\!\cdots\!41\)\( T^{16} \)
$61$ \( 1 + 396 T + 83164 T^{2} + 12233232 T^{3} + 1413738778 T^{4} + 136250283708 T^{5} + 11318984386192 T^{6} + 825650586150588 T^{7} + 53403008176121923 T^{8} + 3072245831066337948 T^{9} + \)\(15\!\cdots\!72\)\( T^{10} + \)\(70\!\cdots\!88\)\( T^{11} + \)\(27\!\cdots\!18\)\( T^{12} + \)\(87\!\cdots\!32\)\( T^{13} + \)\(22\!\cdots\!44\)\( T^{14} + \)\(39\!\cdots\!36\)\( T^{15} + \)\(36\!\cdots\!61\)\( T^{16} \)
$67$ \( 1 - 184 T + 6231 T^{2} + 140176 T^{3} + 74370665 T^{4} - 7237038408 T^{5} + 24063966106 T^{6} - 15184872524680 T^{7} + 3087140085953070 T^{8} - 68164892763288520 T^{9} + 484915892741904826 T^{10} - \)\(65\!\cdots\!52\)\( T^{11} + \)\(30\!\cdots\!65\)\( T^{12} + \)\(25\!\cdots\!24\)\( T^{13} + \)\(50\!\cdots\!91\)\( T^{14} - \)\(67\!\cdots\!36\)\( T^{15} + \)\(16\!\cdots\!81\)\( T^{16} \)
$71$ \( ( 1 - 82 T + 12166 T^{2} - 846262 T^{3} + 94594474 T^{4} - 4266006742 T^{5} + 309158511046 T^{6} - 10504223281522 T^{7} + 645753531245761 T^{8} )^{2} \)
$73$ \( 1 - 348 T + 68263 T^{2} - 9707460 T^{3} + 1072498525 T^{4} - 96253557984 T^{5} + 7434307414846 T^{6} - 526544361727584 T^{7} + 37365046682274814 T^{8} - 2805954903646295136 T^{9} + \)\(21\!\cdots\!86\)\( T^{10} - \)\(14\!\cdots\!76\)\( T^{11} + \)\(86\!\cdots\!25\)\( T^{12} - \)\(41\!\cdots\!40\)\( T^{13} + \)\(15\!\cdots\!23\)\( T^{14} - \)\(42\!\cdots\!32\)\( T^{15} + \)\(65\!\cdots\!61\)\( T^{16} \)
$79$ \( 1 + 206 T + 5583 T^{2} - 659438 T^{3} + 124066817 T^{4} + 19494076044 T^{5} + 428008398310 T^{6} + 33090623674568 T^{7} + 7605703397631354 T^{8} + 206518582352978888 T^{9} + 16670961782854763110 T^{10} + \)\(47\!\cdots\!24\)\( T^{11} + \)\(18\!\cdots\!37\)\( T^{12} - \)\(62\!\cdots\!38\)\( T^{13} + \)\(32\!\cdots\!03\)\( T^{14} + \)\(75\!\cdots\!86\)\( T^{15} + \)\(23\!\cdots\!21\)\( T^{16} \)
$83$ \( 1 - 20672 T^{2} + 223804480 T^{4} - 2182268545136 T^{6} + 17948924233578718 T^{8} - \)\(10\!\cdots\!56\)\( T^{10} + \)\(50\!\cdots\!80\)\( T^{12} - \)\(22\!\cdots\!92\)\( T^{14} + \)\(50\!\cdots\!81\)\( T^{16} \)
$89$ \( 1 - 282 T + 59686 T^{2} - 9356196 T^{3} + 1240796086 T^{4} - 138656838366 T^{5} + 14271061565800 T^{6} - 1337157406377822 T^{7} + 121622616146107507 T^{8} - 10591623815918728062 T^{9} + \)\(89\!\cdots\!00\)\( T^{10} - \)\(68\!\cdots\!26\)\( T^{11} + \)\(48\!\cdots\!66\)\( T^{12} - \)\(29\!\cdots\!96\)\( T^{13} + \)\(14\!\cdots\!06\)\( T^{14} - \)\(55\!\cdots\!62\)\( T^{15} + \)\(15\!\cdots\!61\)\( T^{16} \)
$97$ \( 1 - 44576 T^{2} + 925514428 T^{4} - 12414040936928 T^{6} + 128325632901816454 T^{8} - \)\(10\!\cdots\!68\)\( T^{10} + \)\(72\!\cdots\!08\)\( T^{12} - \)\(30\!\cdots\!16\)\( T^{14} + \)\(61\!\cdots\!21\)\( T^{16} \)
show more
show less