Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [105,3,Mod(22,105)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(105, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 1, 0]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("105.22");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 105 = 3 \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 105.l (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.86104277578\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
22.1 | −2.72310 | − | 2.72310i | −1.22474 | + | 1.22474i | 10.8306i | 4.39513 | − | 2.38387i | 6.67022 | −1.87083 | − | 1.87083i | 18.6004 | − | 18.6004i | − | 3.00000i | −18.4599 | − | 5.47689i | |||||
22.2 | −1.59930 | − | 1.59930i | −1.22474 | + | 1.22474i | 1.11554i | −1.35929 | − | 4.81169i | 3.91747 | 1.87083 | + | 1.87083i | −4.61313 | + | 4.61313i | − | 3.00000i | −5.52142 | + | 9.86926i | |||||
22.3 | −1.36784 | − | 1.36784i | −1.22474 | + | 1.22474i | − | 0.258033i | 3.39663 | + | 3.66919i | 3.35051 | 1.87083 | + | 1.87083i | −5.82430 | + | 5.82430i | − | 3.00000i | 0.372817 | − | 9.66489i | ||||
22.4 | −1.01289 | − | 1.01289i | 1.22474 | − | 1.22474i | − | 1.94811i | 3.97454 | − | 3.03365i | −2.48106 | 1.87083 | + | 1.87083i | −6.02478 | + | 6.02478i | − | 3.00000i | −7.09851 | − | 0.953024i | ||||
22.5 | −0.867675 | − | 0.867675i | 1.22474 | − | 1.22474i | − | 2.49428i | −4.93004 | − | 0.833478i | −2.12536 | −1.87083 | − | 1.87083i | −5.63493 | + | 5.63493i | − | 3.00000i | 3.55449 | + | 5.00086i | ||||
22.6 | 0.408558 | + | 0.408558i | −1.22474 | + | 1.22474i | − | 3.66616i | 0.563288 | − | 4.96817i | −1.00076 | −1.87083 | − | 1.87083i | 3.13207 | − | 3.13207i | − | 3.00000i | 2.25992 | − | 1.79965i | ||||
22.7 | 0.675544 | + | 0.675544i | 1.22474 | − | 1.22474i | − | 3.08728i | 3.39488 | + | 3.67080i | 1.65474 | −1.87083 | − | 1.87083i | 4.78777 | − | 4.78777i | − | 3.00000i | −0.186396 | + | 4.77318i | ||||
22.8 | 0.992944 | + | 0.992944i | 1.22474 | − | 1.22474i | − | 2.02813i | −2.01954 | − | 4.57400i | 2.43221 | 1.87083 | + | 1.87083i | 5.98559 | − | 5.98559i | − | 3.00000i | 2.53644 | − | 6.54701i | ||||
22.9 | 2.08980 | + | 2.08980i | −1.22474 | + | 1.22474i | 4.73454i | 0.137153 | + | 4.99812i | −5.11895 | −1.87083 | − | 1.87083i | −1.53505 | + | 1.53505i | − | 3.00000i | −10.1585 | + | 10.7317i | |||||
22.10 | 2.24469 | + | 2.24469i | 1.22474 | − | 1.22474i | 6.07726i | −3.05058 | + | 3.96156i | 5.49834 | 1.87083 | + | 1.87083i | −4.66280 | + | 4.66280i | − | 3.00000i | −15.7401 | + | 2.04487i | |||||
22.11 | 2.41688 | + | 2.41688i | 1.22474 | − | 1.22474i | 7.68258i | 4.18124 | − | 2.74175i | 5.92011 | −1.87083 | − | 1.87083i | −8.90034 | + | 8.90034i | − | 3.00000i | 16.7320 | + | 3.47908i | |||||
22.12 | 2.74240 | + | 2.74240i | −1.22474 | + | 1.22474i | 11.0415i | −0.683416 | − | 4.95307i | −6.71747 | 1.87083 | + | 1.87083i | −19.3105 | + | 19.3105i | − | 3.00000i | 11.7091 | − | 15.4575i | |||||
43.1 | −2.72310 | + | 2.72310i | −1.22474 | − | 1.22474i | − | 10.8306i | 4.39513 | + | 2.38387i | 6.67022 | −1.87083 | + | 1.87083i | 18.6004 | + | 18.6004i | 3.00000i | −18.4599 | + | 5.47689i | |||||
43.2 | −1.59930 | + | 1.59930i | −1.22474 | − | 1.22474i | − | 1.11554i | −1.35929 | + | 4.81169i | 3.91747 | 1.87083 | − | 1.87083i | −4.61313 | − | 4.61313i | 3.00000i | −5.52142 | − | 9.86926i | |||||
43.3 | −1.36784 | + | 1.36784i | −1.22474 | − | 1.22474i | 0.258033i | 3.39663 | − | 3.66919i | 3.35051 | 1.87083 | − | 1.87083i | −5.82430 | − | 5.82430i | 3.00000i | 0.372817 | + | 9.66489i | ||||||
43.4 | −1.01289 | + | 1.01289i | 1.22474 | + | 1.22474i | 1.94811i | 3.97454 | + | 3.03365i | −2.48106 | 1.87083 | − | 1.87083i | −6.02478 | − | 6.02478i | 3.00000i | −7.09851 | + | 0.953024i | ||||||
43.5 | −0.867675 | + | 0.867675i | 1.22474 | + | 1.22474i | 2.49428i | −4.93004 | + | 0.833478i | −2.12536 | −1.87083 | + | 1.87083i | −5.63493 | − | 5.63493i | 3.00000i | 3.55449 | − | 5.00086i | ||||||
43.6 | 0.408558 | − | 0.408558i | −1.22474 | − | 1.22474i | 3.66616i | 0.563288 | + | 4.96817i | −1.00076 | −1.87083 | + | 1.87083i | 3.13207 | + | 3.13207i | 3.00000i | 2.25992 | + | 1.79965i | ||||||
43.7 | 0.675544 | − | 0.675544i | 1.22474 | + | 1.22474i | 3.08728i | 3.39488 | − | 3.67080i | 1.65474 | −1.87083 | + | 1.87083i | 4.78777 | + | 4.78777i | 3.00000i | −0.186396 | − | 4.77318i | ||||||
43.8 | 0.992944 | − | 0.992944i | 1.22474 | + | 1.22474i | 2.02813i | −2.01954 | + | 4.57400i | 2.43221 | 1.87083 | − | 1.87083i | 5.98559 | + | 5.98559i | 3.00000i | 2.53644 | + | 6.54701i | ||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 105.3.l.a | ✓ | 24 |
3.b | odd | 2 | 1 | 315.3.o.b | 24 | ||
5.b | even | 2 | 1 | 525.3.l.e | 24 | ||
5.c | odd | 4 | 1 | inner | 105.3.l.a | ✓ | 24 |
5.c | odd | 4 | 1 | 525.3.l.e | 24 | ||
15.e | even | 4 | 1 | 315.3.o.b | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
105.3.l.a | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
105.3.l.a | ✓ | 24 | 5.c | odd | 4 | 1 | inner |
315.3.o.b | 24 | 3.b | odd | 2 | 1 | ||
315.3.o.b | 24 | 15.e | even | 4 | 1 | ||
525.3.l.e | 24 | 5.b | even | 2 | 1 | ||
525.3.l.e | 24 | 5.c | odd | 4 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(105, [\chi])\).