Properties

Label 105.3.k.d.62.13
Level 105
Weight 3
Character 105.62
Analytic conductor 2.861
Analytic rank 0
Dimension 32
CM no
Inner twists 8

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 62.13
Character \(\chi\) \(=\) 105.62
Dual form 105.3.k.d.83.13

$q$-expansion

\(f(q)\) \(=\) \(q+(2.28094 - 2.28094i) q^{2} +(-2.80094 + 1.07458i) q^{3} -6.40541i q^{4} +(1.80941 - 4.66112i) q^{5} +(-3.93772 + 8.83986i) q^{6} +(-3.20922 - 6.22100i) q^{7} +(-5.48661 - 5.48661i) q^{8} +(6.69054 - 6.01969i) q^{9} +O(q^{10})\) \(q+(2.28094 - 2.28094i) q^{2} +(-2.80094 + 1.07458i) q^{3} -6.40541i q^{4} +(1.80941 - 4.66112i) q^{5} +(-3.93772 + 8.83986i) q^{6} +(-3.20922 - 6.22100i) q^{7} +(-5.48661 - 5.48661i) q^{8} +(6.69054 - 6.01969i) q^{9} +(-6.50460 - 14.7589i) q^{10} +11.1704i q^{11} +(6.88316 + 17.9412i) q^{12} +(-5.82807 - 5.82807i) q^{13} +(-21.5098 - 6.86971i) q^{14} +(-0.0592799 + 14.9999i) q^{15} +0.592330 q^{16} +(6.84147 + 6.84147i) q^{17} +(1.53016 - 28.9913i) q^{18} +25.0261 q^{19} +(-29.8564 - 11.5900i) q^{20} +(15.6738 + 13.9761i) q^{21} +(25.4792 + 25.4792i) q^{22} +(23.3593 + 23.3593i) q^{23} +(21.2635 + 9.47185i) q^{24} +(-18.4521 - 16.8677i) q^{25} -26.5870 q^{26} +(-12.2711 + 24.0503i) q^{27} +(-39.8481 + 20.5564i) q^{28} -10.6354 q^{29} +(34.0787 + 34.3491i) q^{30} +26.9470i q^{31} +(23.2975 - 23.2975i) q^{32} +(-12.0036 - 31.2877i) q^{33} +31.2100 q^{34} +(-34.8036 + 3.70223i) q^{35} +(-38.5586 - 42.8557i) q^{36} +(-20.8846 - 20.8846i) q^{37} +(57.0831 - 57.0831i) q^{38} +(22.5868 + 10.0613i) q^{39} +(-35.5013 + 15.6462i) q^{40} +32.9644 q^{41} +(67.6298 - 3.87246i) q^{42} +(1.25060 - 1.25060i) q^{43} +71.5513 q^{44} +(-15.9526 - 42.0775i) q^{45} +106.562 q^{46} +(-59.1134 - 59.1134i) q^{47} +(-1.65908 + 0.636508i) q^{48} +(-28.4018 + 39.9292i) q^{49} +(-80.5625 + 3.61381i) q^{50} +(-26.5143 - 11.8108i) q^{51} +(-37.3312 + 37.3312i) q^{52} +(-26.0484 - 26.0484i) q^{53} +(26.8677 + 82.8473i) q^{54} +(52.0668 + 20.2119i) q^{55} +(-16.5245 + 51.7400i) q^{56} +(-70.0965 + 26.8926i) q^{57} +(-24.2588 + 24.2588i) q^{58} +70.2066i q^{59} +(96.0805 + 0.379712i) q^{60} +14.1716i q^{61} +(61.4646 + 61.4646i) q^{62} +(-58.9200 - 22.3033i) q^{63} -103.911i q^{64} +(-37.7107 + 16.6200i) q^{65} +(-98.7451 - 43.9861i) q^{66} +(-6.14458 - 6.14458i) q^{67} +(43.8225 - 43.8225i) q^{68} +(-90.5294 - 40.3264i) q^{69} +(-70.9406 + 87.8297i) q^{70} +39.0498i q^{71} +(-69.7361 - 3.68068i) q^{72} +(51.1141 + 51.1141i) q^{73} -95.2731 q^{74} +(69.8090 + 27.4172i) q^{75} -160.302i q^{76} +(69.4914 - 35.8484i) q^{77} +(74.4687 - 28.5700i) q^{78} +16.8398i q^{79} +(1.07177 - 2.76092i) q^{80} +(8.52661 - 80.5500i) q^{81} +(75.1900 - 75.1900i) q^{82} +(-31.3367 + 31.3367i) q^{83} +(89.5226 - 100.397i) q^{84} +(44.2679 - 19.5099i) q^{85} -5.70508i q^{86} +(29.7891 - 11.4286i) q^{87} +(61.2879 - 61.2879i) q^{88} +70.8895i q^{89} +(-132.363 - 59.5894i) q^{90} +(-17.5529 + 54.9600i) q^{91} +(149.626 - 149.626i) q^{92} +(-28.9568 - 75.4769i) q^{93} -269.669 q^{94} +(45.2824 - 116.650i) q^{95} +(-40.2198 + 90.2902i) q^{96} +(114.216 - 114.216i) q^{97} +(26.2933 + 155.859i) q^{98} +(67.2426 + 74.7363i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q + O(q^{10}) \) \( 32q - 48q^{15} - 24q^{16} - 92q^{18} - 60q^{21} + 112q^{22} - 72q^{25} + 88q^{28} - 108q^{30} + 416q^{36} + 72q^{37} + 300q^{42} - 328q^{43} + 32q^{46} + 148q^{51} - 748q^{57} - 392q^{58} + 544q^{60} - 220q^{63} - 648q^{67} - 8q^{70} - 8q^{72} + 500q^{78} - 948q^{81} + 672q^{85} + 1288q^{88} + 808q^{91} + 292q^{93} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.28094 2.28094i 1.14047 1.14047i 0.152108 0.988364i \(-0.451394\pi\)
0.988364 0.152108i \(-0.0486063\pi\)
\(3\) −2.80094 + 1.07458i −0.933647 + 0.358195i
\(4\) 6.40541i 1.60135i
\(5\) 1.80941 4.66112i 0.361882 0.932224i
\(6\) −3.93772 + 8.83986i −0.656287 + 1.47331i
\(7\) −3.20922 6.22100i −0.458460 0.888715i
\(8\) −5.48661 5.48661i −0.685827 0.685827i
\(9\) 6.69054 6.01969i 0.743393 0.668855i
\(10\) −6.50460 14.7589i −0.650460 1.47589i
\(11\) 11.1704i 1.01549i 0.861506 + 0.507747i \(0.169522\pi\)
−0.861506 + 0.507747i \(0.830478\pi\)
\(12\) 6.88316 + 17.9412i 0.573596 + 1.49510i
\(13\) −5.82807 5.82807i −0.448313 0.448313i 0.446480 0.894794i \(-0.352677\pi\)
−0.894794 + 0.446480i \(0.852677\pi\)
\(14\) −21.5098 6.86971i −1.53642 0.490694i
\(15\) −0.0592799 + 14.9999i −0.00395199 + 0.999992i
\(16\) 0.592330 0.0370206
\(17\) 6.84147 + 6.84147i 0.402440 + 0.402440i 0.879092 0.476652i \(-0.158150\pi\)
−0.476652 + 0.879092i \(0.658150\pi\)
\(18\) 1.53016 28.9913i 0.0850091 1.61063i
\(19\) 25.0261 1.31716 0.658581 0.752510i \(-0.271157\pi\)
0.658581 + 0.752510i \(0.271157\pi\)
\(20\) −29.8564 11.5900i −1.49282 0.579500i
\(21\) 15.6738 + 13.9761i 0.746373 + 0.665528i
\(22\) 25.4792 + 25.4792i 1.15814 + 1.15814i
\(23\) 23.3593 + 23.3593i 1.01562 + 1.01562i 0.999876 + 0.0157445i \(0.00501183\pi\)
0.0157445 + 0.999876i \(0.494988\pi\)
\(24\) 21.2635 + 9.47185i 0.885980 + 0.394661i
\(25\) −18.4521 16.8677i −0.738083 0.674710i
\(26\) −26.5870 −1.02258
\(27\) −12.2711 + 24.0503i −0.454487 + 0.890754i
\(28\) −39.8481 + 20.5564i −1.42315 + 0.734157i
\(29\) −10.6354 −0.366738 −0.183369 0.983044i \(-0.558700\pi\)
−0.183369 + 0.983044i \(0.558700\pi\)
\(30\) 34.0787 + 34.3491i 1.13596 + 1.14497i
\(31\) 26.9470i 0.869257i 0.900610 + 0.434629i \(0.143120\pi\)
−0.900610 + 0.434629i \(0.856880\pi\)
\(32\) 23.2975 23.2975i 0.728048 0.728048i
\(33\) −12.0036 31.2877i −0.363745 0.948113i
\(34\) 31.2100 0.917942
\(35\) −34.8036 + 3.70223i −0.994390 + 0.105778i
\(36\) −38.5586 42.8557i −1.07107 1.19044i
\(37\) −20.8846 20.8846i −0.564448 0.564448i 0.366120 0.930568i \(-0.380686\pi\)
−0.930568 + 0.366120i \(0.880686\pi\)
\(38\) 57.0831 57.0831i 1.50219 1.50219i
\(39\) 22.5868 + 10.0613i 0.579150 + 0.257983i
\(40\) −35.5013 + 15.6462i −0.887532 + 0.391156i
\(41\) 32.9644 0.804010 0.402005 0.915637i \(-0.368313\pi\)
0.402005 + 0.915637i \(0.368313\pi\)
\(42\) 67.6298 3.87246i 1.61023 0.0922014i
\(43\) 1.25060 1.25060i 0.0290836 0.0290836i −0.692415 0.721499i \(-0.743453\pi\)
0.721499 + 0.692415i \(0.243453\pi\)
\(44\) 71.5513 1.62617
\(45\) −15.9526 42.0775i −0.354502 0.935055i
\(46\) 106.562 2.31657
\(47\) −59.1134 59.1134i −1.25773 1.25773i −0.952173 0.305558i \(-0.901157\pi\)
−0.305558 0.952173i \(-0.598843\pi\)
\(48\) −1.65908 + 0.636508i −0.0345642 + 0.0132606i
\(49\) −28.4018 + 39.9292i −0.579629 + 0.814881i
\(50\) −80.5625 + 3.61381i −1.61125 + 0.0722761i
\(51\) −26.5143 11.8108i −0.519888 0.231585i
\(52\) −37.3312 + 37.3312i −0.717908 + 0.717908i
\(53\) −26.0484 26.0484i −0.491478 0.491478i 0.417293 0.908772i \(-0.362979\pi\)
−0.908772 + 0.417293i \(0.862979\pi\)
\(54\) 26.8677 + 82.8473i 0.497550 + 1.53421i
\(55\) 52.0668 + 20.2119i 0.946669 + 0.367489i
\(56\) −16.5245 + 51.7400i −0.295080 + 0.923929i
\(57\) −70.0965 + 26.8926i −1.22976 + 0.471800i
\(58\) −24.2588 + 24.2588i −0.418254 + 0.418254i
\(59\) 70.2066i 1.18994i 0.803747 + 0.594971i \(0.202837\pi\)
−0.803747 + 0.594971i \(0.797163\pi\)
\(60\) 96.0805 + 0.379712i 1.60134 + 0.00632854i
\(61\) 14.1716i 0.232321i 0.993230 + 0.116161i \(0.0370587\pi\)
−0.993230 + 0.116161i \(0.962941\pi\)
\(62\) 61.4646 + 61.4646i 0.991364 + 0.991364i
\(63\) −58.9200 22.3033i −0.935237 0.354021i
\(64\) 103.911i 1.62362i
\(65\) −37.7107 + 16.6200i −0.580165 + 0.255692i
\(66\) −98.7451 43.9861i −1.49614 0.666456i
\(67\) −6.14458 6.14458i −0.0917101 0.0917101i 0.659763 0.751473i \(-0.270657\pi\)
−0.751473 + 0.659763i \(0.770657\pi\)
\(68\) 43.8225 43.8225i 0.644448 0.644448i
\(69\) −90.5294 40.3264i −1.31202 0.584441i
\(70\) −70.9406 + 87.8297i −1.01344 + 1.25471i
\(71\) 39.0498i 0.549997i 0.961445 + 0.274999i \(0.0886774\pi\)
−0.961445 + 0.274999i \(0.911323\pi\)
\(72\) −69.7361 3.68068i −0.968557 0.0511205i
\(73\) 51.1141 + 51.1141i 0.700193 + 0.700193i 0.964452 0.264259i \(-0.0851274\pi\)
−0.264259 + 0.964452i \(0.585127\pi\)
\(74\) −95.2731 −1.28747
\(75\) 69.8090 + 27.4172i 0.930787 + 0.365563i
\(76\) 160.302i 2.10924i
\(77\) 69.4914 35.8484i 0.902485 0.465564i
\(78\) 74.4687 28.5700i 0.954726 0.366282i
\(79\) 16.8398i 0.213162i 0.994304 + 0.106581i \(0.0339903\pi\)
−0.994304 + 0.106581i \(0.966010\pi\)
\(80\) 1.07177 2.76092i 0.0133971 0.0345115i
\(81\) 8.52661 80.5500i 0.105267 0.994444i
\(82\) 75.1900 75.1900i 0.916951 0.916951i
\(83\) −31.3367 + 31.3367i −0.377551 + 0.377551i −0.870218 0.492667i \(-0.836022\pi\)
0.492667 + 0.870218i \(0.336022\pi\)
\(84\) 89.5226 100.397i 1.06575 1.19521i
\(85\) 44.2679 19.5099i 0.520799 0.229528i
\(86\) 5.70508i 0.0663381i
\(87\) 29.7891 11.4286i 0.342404 0.131364i
\(88\) 61.2879 61.2879i 0.696453 0.696453i
\(89\) 70.8895i 0.796511i 0.917274 + 0.398256i \(0.130384\pi\)
−0.917274 + 0.398256i \(0.869616\pi\)
\(90\) −132.363 59.5894i −1.47070 0.662105i
\(91\) −17.5529 + 54.9600i −0.192889 + 0.603957i
\(92\) 149.626 149.626i 1.62637 1.62637i
\(93\) −28.9568 75.4769i −0.311363 0.811579i
\(94\) −269.669 −2.86882
\(95\) 45.2824 116.650i 0.476657 1.22789i
\(96\) −40.2198 + 90.2902i −0.418957 + 0.940522i
\(97\) 114.216 114.216i 1.17748 1.17748i 0.197101 0.980383i \(-0.436847\pi\)
0.980383 0.197101i \(-0.0631528\pi\)
\(98\) 26.2933 + 155.859i 0.268299 + 1.59040i
\(99\) 67.2426 + 74.7363i 0.679218 + 0.754912i
\(100\) −108.045 + 118.193i −1.08045 + 1.18193i
\(101\) −54.9464 −0.544024 −0.272012 0.962294i \(-0.587689\pi\)
−0.272012 + 0.962294i \(0.587689\pi\)
\(102\) −87.4175 + 33.5378i −0.857034 + 0.328802i
\(103\) −109.306 109.306i −1.06123 1.06123i −0.997999 0.0632258i \(-0.979861\pi\)
−0.0632258 0.997999i \(-0.520139\pi\)
\(104\) 63.9528i 0.614931i
\(105\) 93.5046 47.7692i 0.890520 0.454944i
\(106\) −118.830 −1.12103
\(107\) −89.1318 + 89.1318i −0.833007 + 0.833007i −0.987927 0.154920i \(-0.950488\pi\)
0.154920 + 0.987927i \(0.450488\pi\)
\(108\) 154.052 + 78.6017i 1.42641 + 0.727794i
\(109\) 91.2226i 0.836904i −0.908239 0.418452i \(-0.862573\pi\)
0.908239 0.418452i \(-0.137427\pi\)
\(110\) 164.864 72.6592i 1.49876 0.660538i
\(111\) 80.9387 + 36.0542i 0.729177 + 0.324813i
\(112\) −1.90092 3.68489i −0.0169725 0.0329008i
\(113\) 98.3921 + 98.3921i 0.870726 + 0.870726i 0.992552 0.121825i \(-0.0388747\pi\)
−0.121825 + 0.992552i \(0.538875\pi\)
\(114\) −98.5457 + 221.227i −0.864436 + 1.94059i
\(115\) 151.147 66.6139i 1.31432 0.579251i
\(116\) 68.1242i 0.587277i
\(117\) −74.0762 3.90974i −0.633129 0.0334166i
\(118\) 160.137 + 160.137i 1.35710 + 1.35710i
\(119\) 20.6050 64.5166i 0.173152 0.542157i
\(120\) 82.6238 81.9733i 0.688532 0.683111i
\(121\) −3.77875 −0.0312293
\(122\) 32.3246 + 32.3246i 0.264956 + 0.264956i
\(123\) −92.3314 + 35.4230i −0.750661 + 0.287992i
\(124\) 172.607 1.39199
\(125\) −112.010 + 55.4868i −0.896079 + 0.443894i
\(126\) −185.266 + 83.5204i −1.47036 + 0.662861i
\(127\) 172.312 + 172.312i 1.35679 + 1.35679i 0.877843 + 0.478948i \(0.158982\pi\)
0.478948 + 0.877843i \(0.341018\pi\)
\(128\) −143.826 143.826i −1.12364 1.12364i
\(129\) −2.15897 + 4.84672i −0.0167362 + 0.0375714i
\(130\) −48.1068 + 123.925i −0.370052 + 0.953271i
\(131\) 71.6542 0.546979 0.273489 0.961875i \(-0.411822\pi\)
0.273489 + 0.961875i \(0.411822\pi\)
\(132\) −200.411 + 76.8879i −1.51826 + 0.582484i
\(133\) −80.3142 155.687i −0.603866 1.17058i
\(134\) −28.0309 −0.209186
\(135\) 89.8981 + 100.714i 0.665912 + 0.746031i
\(136\) 75.0730i 0.552008i
\(137\) −57.1182 + 57.1182i −0.416921 + 0.416921i −0.884141 0.467220i \(-0.845256\pi\)
0.467220 + 0.884141i \(0.345256\pi\)
\(138\) −298.475 + 114.510i −2.16286 + 0.829784i
\(139\) −41.4536 −0.298227 −0.149113 0.988820i \(-0.547642\pi\)
−0.149113 + 0.988820i \(0.547642\pi\)
\(140\) 23.7143 + 222.932i 0.169388 + 1.59237i
\(141\) 229.095 + 102.051i 1.62479 + 0.723765i
\(142\) 89.0704 + 89.0704i 0.627256 + 0.627256i
\(143\) 65.1021 65.1021i 0.455260 0.455260i
\(144\) 3.96301 3.56564i 0.0275209 0.0247614i
\(145\) −19.2438 + 49.5729i −0.132716 + 0.341882i
\(146\) 233.177 1.59710
\(147\) 36.6445 142.359i 0.249282 0.968431i
\(148\) −133.774 + 133.774i −0.903880 + 0.903880i
\(149\) −62.9077 −0.422199 −0.211100 0.977465i \(-0.567704\pi\)
−0.211100 + 0.977465i \(0.567704\pi\)
\(150\) 221.768 96.6933i 1.47845 0.644622i
\(151\) −20.6412 −0.136697 −0.0683484 0.997662i \(-0.521773\pi\)
−0.0683484 + 0.997662i \(0.521773\pi\)
\(152\) −137.308 137.308i −0.903345 0.903345i
\(153\) 86.9567 + 4.58958i 0.568344 + 0.0299972i
\(154\) 76.7377 240.274i 0.498297 1.56022i
\(155\) 125.603 + 48.7581i 0.810343 + 0.314568i
\(156\) 64.4470 144.678i 0.413122 0.927423i
\(157\) −213.253 + 213.253i −1.35830 + 1.35830i −0.482284 + 0.876015i \(0.660193\pi\)
−0.876015 + 0.482284i \(0.839807\pi\)
\(158\) 38.4106 + 38.4106i 0.243105 + 0.243105i
\(159\) 100.951 + 44.9687i 0.634912 + 0.282822i
\(160\) −66.4378 150.747i −0.415237 0.942171i
\(161\) 70.3531 220.283i 0.436976 1.36822i
\(162\) −164.281 203.179i −1.01408 1.25419i
\(163\) −19.5250 + 19.5250i −0.119785 + 0.119785i −0.764458 0.644673i \(-0.776993\pi\)
0.644673 + 0.764458i \(0.276993\pi\)
\(164\) 211.151i 1.28750i
\(165\) −167.555 0.662183i −1.01549 0.00401323i
\(166\) 142.955i 0.861173i
\(167\) −151.924 151.924i −0.909725 0.909725i 0.0865247 0.996250i \(-0.472424\pi\)
−0.996250 + 0.0865247i \(0.972424\pi\)
\(168\) −9.31486 162.678i −0.0554456 0.968320i
\(169\) 101.067i 0.598030i
\(170\) 56.4717 145.474i 0.332186 0.855728i
\(171\) 167.438 150.649i 0.979169 0.880990i
\(172\) −8.01059 8.01059i −0.0465732 0.0465732i
\(173\) −19.8589 + 19.8589i −0.114791 + 0.114791i −0.762169 0.647378i \(-0.775866\pi\)
0.647378 + 0.762169i \(0.275866\pi\)
\(174\) 41.8793 94.0154i 0.240685 0.540319i
\(175\) −45.7175 + 168.923i −0.261243 + 0.965273i
\(176\) 6.61658i 0.0375942i
\(177\) −75.4429 196.645i −0.426231 1.11099i
\(178\) 161.695 + 161.695i 0.908399 + 0.908399i
\(179\) 157.790 0.881508 0.440754 0.897628i \(-0.354711\pi\)
0.440754 + 0.897628i \(0.354711\pi\)
\(180\) −269.524 + 102.183i −1.49735 + 0.567683i
\(181\) 58.8019i 0.324872i 0.986719 + 0.162436i \(0.0519351\pi\)
−0.986719 + 0.162436i \(0.948065\pi\)
\(182\) 85.3236 + 165.398i 0.468811 + 0.908780i
\(183\) −15.2286 39.6938i −0.0832162 0.216906i
\(184\) 256.327i 1.39308i
\(185\) −135.134 + 59.5568i −0.730455 + 0.321928i
\(186\) −238.207 106.110i −1.28068 0.570483i
\(187\) −76.4223 + 76.4223i −0.408675 + 0.408675i
\(188\) −378.646 + 378.646i −2.01407 + 2.01407i
\(189\) 188.998 0.844085i 0.999990 0.00446606i
\(190\) −162.784 369.358i −0.856760 1.94399i
\(191\) 8.99622i 0.0471007i −0.999723 0.0235503i \(-0.992503\pi\)
0.999723 0.0235503i \(-0.00749699\pi\)
\(192\) 111.662 + 291.050i 0.581571 + 1.51588i
\(193\) 96.1055 96.1055i 0.497956 0.497956i −0.412845 0.910801i \(-0.635465\pi\)
0.910801 + 0.412845i \(0.135465\pi\)
\(194\) 521.041i 2.68578i
\(195\) 87.7659 87.0749i 0.450082 0.446538i
\(196\) 255.763 + 181.925i 1.30491 + 0.928190i
\(197\) −113.154 + 113.154i −0.574386 + 0.574386i −0.933351 0.358965i \(-0.883130\pi\)
0.358965 + 0.933351i \(0.383130\pi\)
\(198\) 323.846 + 17.0926i 1.63559 + 0.0863262i
\(199\) −122.026 −0.613196 −0.306598 0.951839i \(-0.599191\pi\)
−0.306598 + 0.951839i \(0.599191\pi\)
\(200\) 8.69270 + 193.786i 0.0434635 + 0.968931i
\(201\) 23.8135 + 10.6077i 0.118475 + 0.0527748i
\(202\) −125.330 + 125.330i −0.620444 + 0.620444i
\(203\) 34.1314 + 66.1629i 0.168135 + 0.325926i
\(204\) −75.6532 + 169.835i −0.370849 + 0.832525i
\(205\) 59.6461 153.651i 0.290956 0.749517i
\(206\) −498.643 −2.42060
\(207\) 296.902 + 15.6705i 1.43431 + 0.0757028i
\(208\) −3.45214 3.45214i −0.0165968 0.0165968i
\(209\) 279.552i 1.33757i
\(210\) 104.320 322.238i 0.496762 1.53446i
\(211\) −4.27938 −0.0202814 −0.0101407 0.999949i \(-0.503228\pi\)
−0.0101407 + 0.999949i \(0.503228\pi\)
\(212\) −166.850 + 166.850i −0.787031 + 0.787031i
\(213\) −41.9623 109.376i −0.197006 0.513503i
\(214\) 406.609i 1.90004i
\(215\) −3.56634 8.09202i −0.0165876 0.0376373i
\(216\) 199.282 64.6280i 0.922602 0.299204i
\(217\) 167.637 86.4788i 0.772522 0.398520i
\(218\) −208.074 208.074i −0.954466 0.954466i
\(219\) −198.094 88.2411i −0.904538 0.402928i
\(220\) 129.465 333.509i 0.588480 1.51595i
\(221\) 79.7452i 0.360838i
\(222\) 266.854 102.379i 1.20205 0.461166i
\(223\) 34.9829 + 34.9829i 0.156874 + 0.156874i 0.781180 0.624306i \(-0.214618\pi\)
−0.624306 + 0.781180i \(0.714618\pi\)
\(224\) −219.701 70.1671i −0.980808 0.313246i
\(225\) −224.993 1.77838i −0.999969 0.00790392i
\(226\) 448.854 1.98608
\(227\) 23.2602 + 23.2602i 0.102468 + 0.102468i 0.756482 0.654014i \(-0.226916\pi\)
−0.654014 + 0.756482i \(0.726916\pi\)
\(228\) 172.258 + 448.997i 0.755519 + 1.96929i
\(229\) 91.1105 0.397862 0.198931 0.980013i \(-0.436253\pi\)
0.198931 + 0.980013i \(0.436253\pi\)
\(230\) 192.815 496.700i 0.838326 2.15957i
\(231\) −156.119 + 175.084i −0.675840 + 0.757938i
\(232\) 58.3524 + 58.3524i 0.251519 + 0.251519i
\(233\) 90.6015 + 90.6015i 0.388847 + 0.388847i 0.874276 0.485429i \(-0.161336\pi\)
−0.485429 + 0.874276i \(0.661336\pi\)
\(234\) −177.881 + 160.046i −0.760177 + 0.683956i
\(235\) −382.495 + 168.574i −1.62764 + 0.717338i
\(236\) 449.702 1.90552
\(237\) −18.0958 47.1673i −0.0763535 0.199018i
\(238\) −100.160 194.158i −0.420840 0.815789i
\(239\) −406.988 −1.70288 −0.851439 0.524454i \(-0.824269\pi\)
−0.851439 + 0.524454i \(0.824269\pi\)
\(240\) −0.0351132 + 8.88488i −0.000146305 + 0.0370203i
\(241\) 117.108i 0.485924i −0.970036 0.242962i \(-0.921881\pi\)
0.970036 0.242962i \(-0.0781191\pi\)
\(242\) −8.61911 + 8.61911i −0.0356161 + 0.0356161i
\(243\) 62.6752 + 234.778i 0.257923 + 0.966166i
\(244\) 90.7749 0.372028
\(245\) 134.724 + 204.632i 0.549895 + 0.835234i
\(246\) −129.805 + 291.401i −0.527662 + 1.18456i
\(247\) −145.854 145.854i −0.590501 0.590501i
\(248\) 147.848 147.848i 0.596160 0.596160i
\(249\) 54.0984 121.446i 0.217263 0.487736i
\(250\) −128.926 + 382.051i −0.515705 + 1.52820i
\(251\) −127.808 −0.509195 −0.254597 0.967047i \(-0.581943\pi\)
−0.254597 + 0.967047i \(0.581943\pi\)
\(252\) −142.862 + 377.407i −0.566913 + 1.49765i
\(253\) −260.933 + 260.933i −1.03136 + 1.03136i
\(254\) 786.070 3.09477
\(255\) −103.027 + 102.216i −0.404027 + 0.400846i
\(256\) −240.473 −0.939346
\(257\) 100.099 + 100.099i 0.389491 + 0.389491i 0.874506 0.485015i \(-0.161186\pi\)
−0.485015 + 0.874506i \(0.661186\pi\)
\(258\) 6.13059 + 15.9796i 0.0237620 + 0.0619364i
\(259\) −62.8998 + 196.946i −0.242856 + 0.760410i
\(260\) 106.458 + 241.553i 0.409453 + 0.929049i
\(261\) −71.1566 + 64.0218i −0.272631 + 0.245294i
\(262\) 163.439 163.439i 0.623814 0.623814i
\(263\) −96.5525 96.5525i −0.367120 0.367120i 0.499306 0.866426i \(-0.333588\pi\)
−0.866426 + 0.499306i \(0.833588\pi\)
\(264\) −105.805 + 237.523i −0.400776 + 0.899708i
\(265\) −168.547 + 74.2824i −0.636025 + 0.280311i
\(266\) −538.306 171.922i −2.02371 0.646323i
\(267\) −76.1767 198.557i −0.285306 0.743660i
\(268\) −39.3586 + 39.3586i −0.146860 + 0.146860i
\(269\) 213.738i 0.794565i −0.917696 0.397282i \(-0.869953\pi\)
0.917696 0.397282i \(-0.130047\pi\)
\(270\) 434.776 + 24.6709i 1.61028 + 0.0913736i
\(271\) 525.042i 1.93743i −0.248184 0.968713i \(-0.579834\pi\)
0.248184 0.968713i \(-0.420166\pi\)
\(272\) 4.05241 + 4.05241i 0.0148986 + 0.0148986i
\(273\) −9.89457 172.802i −0.0362439 0.632974i
\(274\) 260.567i 0.950974i
\(275\) 188.420 206.118i 0.685164 0.749520i
\(276\) −258.308 + 579.879i −0.935897 + 2.10101i
\(277\) −122.242 122.242i −0.441307 0.441307i 0.451144 0.892451i \(-0.351016\pi\)
−0.892451 + 0.451144i \(0.851016\pi\)
\(278\) −94.5532 + 94.5532i −0.340120 + 0.340120i
\(279\) 162.213 + 180.290i 0.581407 + 0.646200i
\(280\) 211.267 + 170.641i 0.754525 + 0.609434i
\(281\) 262.680i 0.934803i −0.884045 0.467401i \(-0.845190\pi\)
0.884045 0.467401i \(-0.154810\pi\)
\(282\) 755.326 289.782i 2.67846 1.02759i
\(283\) 266.792 + 266.792i 0.942728 + 0.942728i 0.998446 0.0557189i \(-0.0177451\pi\)
−0.0557189 + 0.998446i \(0.517745\pi\)
\(284\) 250.130 0.880740
\(285\) −1.48354 + 375.388i −0.00520541 + 1.31715i
\(286\) 296.989i 1.03842i
\(287\) −105.790 205.072i −0.368607 0.714536i
\(288\) 15.6291 296.117i 0.0542676 1.02818i
\(289\) 195.389i 0.676085i
\(290\) 69.1790 + 156.967i 0.238548 + 0.541266i
\(291\) −197.178 + 442.647i −0.677586 + 1.52112i
\(292\) 327.407 327.407i 1.12126 1.12126i
\(293\) 284.626 284.626i 0.971421 0.971421i −0.0281818 0.999603i \(-0.508972\pi\)
0.999603 + 0.0281818i \(0.00897172\pi\)
\(294\) −241.130 408.298i −0.820169 1.38877i
\(295\) 327.241 + 127.032i 1.10929 + 0.430618i
\(296\) 229.171i 0.774227i
\(297\) −268.653 137.074i −0.904555 0.461529i
\(298\) −143.489 + 143.489i −0.481507 + 0.481507i
\(299\) 272.279i 0.910632i
\(300\) 175.619 447.156i 0.585395 1.49052i
\(301\) −11.7934 3.76652i −0.0391807 0.0125134i
\(302\) −47.0815 + 47.0815i −0.155899 + 0.155899i
\(303\) 153.902 59.0445i 0.507926 0.194867i
\(304\) 14.8237 0.0487621
\(305\) 66.0555 + 25.6422i 0.216575 + 0.0840727i
\(306\) 208.812 187.875i 0.682392 0.613970i
\(307\) −250.714 + 250.714i −0.816657 + 0.816657i −0.985622 0.168965i \(-0.945958\pi\)
0.168965 + 0.985622i \(0.445958\pi\)
\(308\) −229.624 445.121i −0.745532 1.44520i
\(309\) 423.619 + 188.701i 1.37093 + 0.610684i
\(310\) 397.708 175.279i 1.28293 0.565417i
\(311\) 296.319 0.952794 0.476397 0.879230i \(-0.341943\pi\)
0.476397 + 0.879230i \(0.341943\pi\)
\(312\) −68.7226 179.128i −0.220265 0.574128i
\(313\) −195.491 195.491i −0.624573 0.624573i 0.322124 0.946697i \(-0.395603\pi\)
−0.946697 + 0.322124i \(0.895603\pi\)
\(314\) 972.836i 3.09820i
\(315\) −210.569 + 234.277i −0.668472 + 0.743737i
\(316\) 107.866 0.341348
\(317\) −43.8360 + 43.8360i −0.138284 + 0.138284i −0.772860 0.634576i \(-0.781175\pi\)
0.634576 + 0.772860i \(0.281175\pi\)
\(318\) 332.835 127.692i 1.04665 0.401549i
\(319\) 118.802i 0.372420i
\(320\) −484.344 188.018i −1.51357 0.587557i
\(321\) 153.873 345.432i 0.479356 1.07611i
\(322\) −341.982 662.925i −1.06206 2.05877i
\(323\) 171.215 + 171.215i 0.530078 + 0.530078i
\(324\) −515.956 54.6165i −1.59246 0.168569i
\(325\) 9.23369 + 205.846i 0.0284113 + 0.633374i
\(326\) 89.0709i 0.273224i
\(327\) 98.0263 + 255.509i 0.299775 + 0.781373i
\(328\) −180.863 180.863i −0.551412 0.551412i
\(329\) −178.037 + 557.453i −0.541145 + 1.69438i
\(330\) −383.695 + 380.674i −1.16271 + 1.15356i
\(331\) −452.094 −1.36584 −0.682922 0.730492i \(-0.739291\pi\)
−0.682922 + 0.730492i \(0.739291\pi\)
\(332\) 200.725 + 200.725i 0.604593 + 0.604593i
\(333\) −265.448 14.0103i −0.797140 0.0420731i
\(334\) −693.061 −2.07503
\(335\) −39.7587 + 17.5226i −0.118683 + 0.0523062i
\(336\) 9.28408 + 8.27845i 0.0276312 + 0.0246383i
\(337\) 203.621 + 203.621i 0.604218 + 0.604218i 0.941429 0.337211i \(-0.109484\pi\)
−0.337211 + 0.941429i \(0.609484\pi\)
\(338\) −230.529 230.529i −0.682037 0.682037i
\(339\) −381.321 169.860i −1.12484 0.501061i
\(340\) −124.969 283.554i −0.367556 0.833984i
\(341\) −301.010 −0.882726
\(342\) 38.2940 725.539i 0.111971 2.12146i
\(343\) 339.547 + 48.5462i 0.989933 + 0.141534i
\(344\) −13.7231 −0.0398927
\(345\) −351.771 + 349.002i −1.01963 + 1.01160i
\(346\) 90.5940i 0.261832i
\(347\) −358.869 + 358.869i −1.03421 + 1.03421i −0.0348116 + 0.999394i \(0.511083\pi\)
−0.999394 + 0.0348116i \(0.988917\pi\)
\(348\) −73.2051 190.812i −0.210360 0.548310i
\(349\) −51.4939 −0.147547 −0.0737735 0.997275i \(-0.523504\pi\)
−0.0737735 + 0.997275i \(0.523504\pi\)
\(350\) 281.025 + 489.582i 0.802927 + 1.39881i
\(351\) 211.684 68.6501i 0.603089 0.195584i
\(352\) 260.244 + 260.244i 0.739329 + 0.739329i
\(353\) 212.052 212.052i 0.600714 0.600714i −0.339788 0.940502i \(-0.610355\pi\)
0.940502 + 0.339788i \(0.110355\pi\)
\(354\) −620.616 276.454i −1.75315 0.780944i
\(355\) 182.016 + 70.6570i 0.512721 + 0.199034i
\(356\) 454.077 1.27550
\(357\) 11.6151 + 202.849i 0.0325352 + 0.568205i
\(358\) 359.910 359.910i 1.00534 1.00534i
\(359\) −194.091 −0.540643 −0.270321 0.962770i \(-0.587130\pi\)
−0.270321 + 0.962770i \(0.587130\pi\)
\(360\) −143.337 + 318.389i −0.398159 + 0.884413i
\(361\) 265.304 0.734915
\(362\) 134.124 + 134.124i 0.370508 + 0.370508i
\(363\) 10.5840 4.06058i 0.0291571 0.0111862i
\(364\) 352.042 + 112.434i 0.967148 + 0.308883i
\(365\) 330.735 145.763i 0.906123 0.399350i
\(366\) −125.275 55.8038i −0.342281 0.152469i
\(367\) 291.230 291.230i 0.793542 0.793542i −0.188526 0.982068i \(-0.560371\pi\)
0.982068 + 0.188526i \(0.0603710\pi\)
\(368\) 13.8364 + 13.8364i 0.0375989 + 0.0375989i
\(369\) 220.550 198.436i 0.597696 0.537766i
\(370\) −172.388 + 444.079i −0.465913 + 1.20021i
\(371\) −78.4520 + 245.642i −0.211461 + 0.662107i
\(372\) −483.461 + 185.480i −1.29963 + 0.498603i
\(373\) 39.6194 39.6194i 0.106218 0.106218i −0.652000 0.758219i \(-0.726070\pi\)
0.758219 + 0.652000i \(0.226070\pi\)
\(374\) 348.630i 0.932165i
\(375\) 254.108 275.779i 0.677621 0.735411i
\(376\) 648.665i 1.72517i
\(377\) 61.9839 + 61.9839i 0.164414 + 0.164414i
\(378\) 429.169 433.019i 1.13537 1.14555i
\(379\) 391.187i 1.03216i −0.856541 0.516078i \(-0.827391\pi\)
0.856541 0.516078i \(-0.172609\pi\)
\(380\) −747.188 290.052i −1.96629 0.763296i
\(381\) −667.801 297.473i −1.75276 0.780769i
\(382\) −20.5199 20.5199i −0.0537170 0.0537170i
\(383\) −6.31835 + 6.31835i −0.0164970 + 0.0164970i −0.715307 0.698810i \(-0.753713\pi\)
0.698810 + 0.715307i \(0.253713\pi\)
\(384\) 557.401 + 248.295i 1.45157 + 0.646602i
\(385\) −41.3555 388.772i −0.107417 1.00980i
\(386\) 438.422i 1.13581i
\(387\) 0.838958 15.8954i 0.00216785 0.0410733i
\(388\) −731.601 731.601i −1.88557 1.88557i
\(389\) 234.607 0.603103 0.301551 0.953450i \(-0.402496\pi\)
0.301551 + 0.953450i \(0.402496\pi\)
\(390\) 1.57608 398.802i 0.00404122 1.02257i
\(391\) 319.624i 0.817452i
\(392\) 374.906 63.2462i 0.956392 0.161342i
\(393\) −200.699 + 76.9985i −0.510685 + 0.195925i
\(394\) 516.196i 1.31014i
\(395\) 78.4923 + 30.4701i 0.198715 + 0.0771394i
\(396\) 478.717 430.717i 1.20888 1.08767i
\(397\) −244.142 + 244.142i −0.614967 + 0.614967i −0.944236 0.329269i \(-0.893198\pi\)
0.329269 + 0.944236i \(0.393198\pi\)
\(398\) −278.335 + 278.335i −0.699333 + 0.699333i
\(399\) 392.254 + 349.767i 0.983094 + 0.876608i
\(400\) −10.9297 9.99126i −0.0273243 0.0249782i
\(401\) 255.719i 0.637703i 0.947805 + 0.318851i \(0.103297\pi\)
−0.947805 + 0.318851i \(0.896703\pi\)
\(402\) 78.5128 30.1215i 0.195306 0.0749292i
\(403\) 157.049 157.049i 0.389700 0.389700i
\(404\) 351.955i 0.871175i
\(405\) −360.025 185.491i −0.888951 0.458003i
\(406\) 228.766 + 73.0621i 0.563462 + 0.179956i
\(407\) 233.290 233.290i 0.573194 0.573194i
\(408\) 80.6723 + 210.275i 0.197726 + 0.515380i
\(409\) 549.262 1.34294 0.671469 0.741033i \(-0.265664\pi\)
0.671469 + 0.741033i \(0.265664\pi\)
\(410\) −214.420 486.519i −0.522976 1.18663i
\(411\) 98.6064 221.363i 0.239918 0.538596i
\(412\) −700.151 + 700.151i −1.69940 + 1.69940i
\(413\) 436.756 225.309i 1.05752 0.545541i
\(414\) 712.960 641.473i 1.72213 1.54945i
\(415\) 89.3634 + 202.765i 0.215333 + 0.488591i
\(416\) −271.559 −0.652787
\(417\) 116.109 44.5453i 0.278439 0.106823i
\(418\) 637.643 + 637.643i 1.52546 + 1.52546i
\(419\) 476.333i 1.13683i −0.822741 0.568417i \(-0.807556\pi\)
0.822741 0.568417i \(-0.192444\pi\)
\(420\) −305.981 598.936i −0.728527 1.42604i
\(421\) −736.969 −1.75052 −0.875261 0.483652i \(-0.839310\pi\)
−0.875261 + 0.483652i \(0.839310\pi\)
\(422\) −9.76103 + 9.76103i −0.0231304 + 0.0231304i
\(423\) −751.345 39.6560i −1.77623 0.0937494i
\(424\) 285.835i 0.674138i
\(425\) −10.8393 241.640i −0.0255041 0.568564i
\(426\) −345.195 153.767i −0.810316 0.360956i
\(427\) 88.1615 45.4798i 0.206467 0.106510i
\(428\) 570.926 + 570.926i 1.33394 + 1.33394i
\(429\) −112.390 + 252.305i −0.261980 + 0.588123i
\(430\) −26.5921 10.3228i −0.0618420 0.0240066i
\(431\) 95.9393i 0.222597i 0.993787 + 0.111299i \(0.0355010\pi\)
−0.993787 + 0.111299i \(0.964499\pi\)
\(432\) −7.26856 + 14.2457i −0.0168254 + 0.0329762i
\(433\) 273.161 + 273.161i 0.630857 + 0.630857i 0.948283 0.317426i \(-0.102818\pi\)
−0.317426 + 0.948283i \(0.602818\pi\)
\(434\) 185.118 579.625i 0.426539 1.33554i
\(435\) 0.630465 159.530i 0.00144935 0.366735i
\(436\) −584.318 −1.34018
\(437\) 584.591 + 584.591i 1.33774 + 1.33774i
\(438\) −653.114 + 250.568i −1.49113 + 0.572073i
\(439\) 396.491 0.903169 0.451585 0.892228i \(-0.350859\pi\)
0.451585 + 0.892228i \(0.350859\pi\)
\(440\) −174.775 396.565i −0.397217 0.901284i
\(441\) 50.3379 + 438.118i 0.114145 + 0.993464i
\(442\) −181.894 181.894i −0.411526 0.411526i
\(443\) −214.203 214.203i −0.483528 0.483528i 0.422728 0.906256i \(-0.361072\pi\)
−0.906256 + 0.422728i \(0.861072\pi\)
\(444\) 230.942 518.446i 0.520140 1.16767i
\(445\) 330.425 + 128.268i 0.742527 + 0.288243i
\(446\) 159.588 0.357821
\(447\) 176.201 67.5996i 0.394185 0.151230i
\(448\) −646.433 + 333.475i −1.44293 + 0.744363i
\(449\) 147.297 0.328055 0.164027 0.986456i \(-0.447551\pi\)
0.164027 + 0.986456i \(0.447551\pi\)
\(450\) −517.253 + 509.140i −1.14945 + 1.13142i
\(451\) 368.227i 0.816468i
\(452\) 630.242 630.242i 1.39434 1.39434i
\(453\) 57.8148 22.1807i 0.127627 0.0489641i
\(454\) 106.110 0.233723
\(455\) 224.415 + 181.261i 0.493220 + 0.398376i
\(456\) 532.142 + 237.043i 1.16698 + 0.519832i
\(457\) 18.8754 + 18.8754i 0.0413028 + 0.0413028i 0.727457 0.686154i \(-0.240702\pi\)
−0.686154 + 0.727457i \(0.740702\pi\)
\(458\) 207.818 207.818i 0.453751 0.453751i
\(459\) −248.492 + 80.5871i −0.541378 + 0.175571i
\(460\) −426.690 968.158i −0.927586 2.10469i
\(461\) 191.433 0.415256 0.207628 0.978208i \(-0.433426\pi\)
0.207628 + 0.978208i \(0.433426\pi\)
\(462\) 43.2571 + 755.455i 0.0936300 + 1.63518i
\(463\) 362.672 362.672i 0.783309 0.783309i −0.197079 0.980388i \(-0.563145\pi\)
0.980388 + 0.197079i \(0.0631454\pi\)
\(464\) −6.29967 −0.0135769
\(465\) −404.201 1.59741i −0.869251 0.00343530i
\(466\) 413.314 0.886939
\(467\) −61.5519 61.5519i −0.131803 0.131803i 0.638128 0.769931i \(-0.279709\pi\)
−0.769931 + 0.638128i \(0.779709\pi\)
\(468\) −25.0435 + 474.488i −0.0535118 + 1.01386i
\(469\) −18.5061 + 57.9448i −0.0394587 + 0.123550i
\(470\) −487.941 + 1256.96i −1.03817 + 2.67438i
\(471\) 368.151 826.467i 0.781636 1.75471i
\(472\) 385.197 385.197i 0.816094 0.816094i
\(473\) 13.9697 + 13.9697i 0.0295343 + 0.0295343i
\(474\) −148.861 66.3104i −0.314053 0.139895i
\(475\) −461.783 422.133i −0.972175 0.888701i
\(476\) −413.256 131.984i −0.868184 0.277277i
\(477\) −331.081 17.4744i −0.694089 0.0366340i
\(478\) −928.316 + 928.316i −1.94208 + 1.94208i
\(479\) 572.620i 1.19545i −0.801702 0.597724i \(-0.796072\pi\)
0.801702 0.597724i \(-0.203928\pi\)
\(480\) 348.079 + 350.841i 0.725165 + 0.730919i
\(481\) 243.434i 0.506099i
\(482\) −267.116 267.116i −0.554183 0.554183i
\(483\) 39.6580 + 692.601i 0.0821078 + 1.43396i
\(484\) 24.2044i 0.0500092i
\(485\) −325.711 739.038i −0.671569 1.52379i
\(486\) 678.475 + 392.558i 1.39604 + 0.807732i
\(487\) 358.153 + 358.153i 0.735427 + 0.735427i 0.971689 0.236262i \(-0.0759224\pi\)
−0.236262 + 0.971689i \(0.575922\pi\)
\(488\) 77.7540 77.7540i 0.159332 0.159332i
\(489\) 33.7071 75.6696i 0.0689307 0.154744i
\(490\) 774.053 + 159.457i 1.57970 + 0.325422i
\(491\) 644.045i 1.31170i −0.754891 0.655850i \(-0.772310\pi\)
0.754891 0.655850i \(-0.227690\pi\)
\(492\) 226.899 + 591.421i 0.461177 + 1.20207i
\(493\) −72.7618 72.7618i −0.147590 0.147590i
\(494\) −665.369 −1.34690
\(495\) 470.024 178.198i 0.949544 0.359995i
\(496\) 15.9615i 0.0321804i
\(497\) 242.929 125.319i 0.488791 0.252152i
\(498\) −153.617 400.408i −0.308468 0.804032i
\(499\) 530.323i 1.06277i −0.847130 0.531386i \(-0.821672\pi\)
0.847130 0.531386i \(-0.178328\pi\)
\(500\) 355.416 + 717.470i 0.710831 + 1.43494i
\(501\) 588.786 + 262.275i 1.17522 + 0.523503i
\(502\) −291.523 + 291.523i −0.580723 + 0.580723i
\(503\) −515.298 + 515.298i −1.02445 + 1.02445i −0.0247567 + 0.999694i \(0.507881\pi\)
−0.999694 + 0.0247567i \(0.992119\pi\)
\(504\) 200.901 + 445.641i 0.398614 + 0.884208i
\(505\) −99.4205 + 256.112i −0.196872 + 0.507152i
\(506\) 1190.35i 2.35247i
\(507\) 108.605 + 283.083i 0.214211 + 0.558349i
\(508\) 1103.73 1103.73i 2.17270 2.17270i
\(509\) 648.378i 1.27383i 0.770935 + 0.636914i \(0.219789\pi\)
−0.770935 + 0.636914i \(0.780211\pi\)
\(510\) −1.85013 + 468.147i −0.00362770 + 0.917935i
\(511\) 153.945 482.017i 0.301261 0.943282i
\(512\) 26.7994 26.7994i 0.0523425 0.0523425i
\(513\) −307.098 + 601.886i −0.598632 + 1.17327i
\(514\) 456.642 0.888408
\(515\) −707.269 + 311.710i −1.37334 + 0.605262i
\(516\) 31.0452 + 13.8291i 0.0601652 + 0.0268006i
\(517\) 660.323 660.323i 1.27722 1.27722i
\(518\) 305.752 + 592.694i 0.590256 + 1.14420i
\(519\) 34.2835 76.9636i 0.0660568 0.148292i
\(520\) 298.092 + 115.717i 0.573253 + 0.222532i
\(521\) 195.439 0.375123 0.187561 0.982253i \(-0.439942\pi\)
0.187561 + 0.982253i \(0.439942\pi\)
\(522\) −16.2739 + 308.334i −0.0311761 + 0.590679i
\(523\) −516.575 516.575i −0.987715 0.987715i 0.0122109 0.999925i \(-0.496113\pi\)
−0.999925 + 0.0122109i \(0.996113\pi\)
\(524\) 458.975i 0.875906i
\(525\) −53.4699 522.270i −0.101847 0.994800i
\(526\) −440.462 −0.837380
\(527\) −184.357 + 184.357i −0.349824 + 0.349824i
\(528\) −7.11008 18.5327i −0.0134661 0.0350997i
\(529\) 562.311i 1.06297i
\(530\) −215.011 + 553.879i −0.405682 + 1.04506i
\(531\) 422.622 + 469.720i 0.795899 + 0.884595i
\(532\) −997.242 + 514.446i −1.87451 + 0.967003i
\(533\) −192.119 192.119i −0.360448 0.360448i
\(534\) −626.653 279.143i −1.17351 0.522740i
\(535\) 254.178 + 576.730i 0.475099 + 1.07800i
\(536\) 67.4259i 0.125795i
\(537\) −441.960 + 169.559i −0.823018 + 0.315752i
\(538\) −487.524 487.524i −0.906179 0.906179i
\(539\) −446.026 317.261i −0.827507 0.588610i
\(540\) 645.116 575.834i 1.19466 1.06636i
\(541\) −165.071 −0.305123 −0.152561 0.988294i \(-0.548752\pi\)
−0.152561 + 0.988294i \(0.548752\pi\)
\(542\) −1197.59 1197.59i −2.20958 2.20958i
\(543\) −63.1875 164.701i −0.116367 0.303316i
\(544\) 318.779 0.585990
\(545\) −425.199 165.059i −0.780182 0.302860i
\(546\) −416.720 371.583i −0.763224 0.680554i
\(547\) −259.758 259.758i −0.474878 0.474878i 0.428611 0.903489i \(-0.359003\pi\)
−0.903489 + 0.428611i \(0.859003\pi\)
\(548\) 365.866 + 365.866i 0.667638 + 0.667638i
\(549\) 85.3086 + 94.8155i 0.155389 + 0.172706i
\(550\) −40.3678 899.919i −0.0733960 1.63622i
\(551\) −266.162 −0.483053
\(552\) 275.445 + 717.956i 0.498994 + 1.30064i
\(553\) 104.760 54.0426i 0.189440 0.0977263i
\(554\) −557.655 −1.00660
\(555\) 314.504 312.028i 0.566674 0.562213i
\(556\) 265.527i 0.477567i
\(557\) 118.212 118.212i 0.212230 0.212230i −0.592984 0.805214i \(-0.702050\pi\)
0.805214 + 0.592984i \(0.202050\pi\)
\(558\) 781.229 + 41.2333i 1.40005 + 0.0738947i
\(559\) −14.5771 −0.0260772
\(560\) −20.6152 + 2.19294i −0.0368129 + 0.00391597i
\(561\) 131.932 296.176i 0.235173 0.527944i
\(562\) −599.158 599.158i −1.06612 1.06612i
\(563\) −569.301 + 569.301i −1.01119 + 1.01119i −0.0112552 + 0.999937i \(0.503583\pi\)
−0.999937 + 0.0112552i \(0.996417\pi\)
\(564\) 653.678 1467.45i 1.15900 2.60186i
\(565\) 636.649 280.586i 1.12681 0.496612i
\(566\) 1217.08 2.15031
\(567\) −528.465 + 205.459i −0.932038 + 0.362361i
\(568\) 214.251 214.251i 0.377203 0.377203i
\(569\) 602.118 1.05820 0.529102 0.848558i \(-0.322529\pi\)
0.529102 + 0.848558i \(0.322529\pi\)
\(570\) 852.855 + 859.623i 1.49624 + 1.50811i
\(571\) −883.761 −1.54774 −0.773871 0.633343i \(-0.781682\pi\)
−0.773871 + 0.633343i \(0.781682\pi\)
\(572\) −417.006 417.006i −0.729032 0.729032i
\(573\) 9.66720 + 25.1979i 0.0168712 + 0.0439754i
\(574\) −709.058 226.456i −1.23529 0.394523i
\(575\) −37.0092 825.045i −0.0643638 1.43486i
\(576\) −625.515 695.223i −1.08596 1.20698i
\(577\) 64.3197 64.3197i 0.111473 0.111473i −0.649170 0.760643i \(-0.724884\pi\)
0.760643 + 0.649170i \(0.224884\pi\)
\(578\) −445.670 445.670i −0.771056 0.771056i
\(579\) −165.912 + 372.459i −0.286550 + 0.643280i
\(580\) 317.535 + 123.264i 0.547474 + 0.212525i
\(581\) 295.513 + 94.3795i 0.508627 + 0.162443i
\(582\) 559.902 + 1459.40i 0.962031 + 2.50757i
\(583\) 290.972 290.972i 0.499094 0.499094i
\(584\) 560.886i 0.960422i
\(585\) −152.258 + 338.204i −0.260270 + 0.578126i
\(586\) 1298.43i 2.21576i
\(587\) −512.337 512.337i −0.872806 0.872806i 0.119971 0.992777i \(-0.461720\pi\)
−0.992777 + 0.119971i \(0.961720\pi\)
\(588\) −911.870 234.723i −1.55080 0.399189i
\(589\) 674.377i 1.14495i
\(590\) 1036.17 456.666i 1.75623 0.774010i
\(591\) 195.344 438.531i 0.330532 0.742016i
\(592\) −12.3706 12.3706i −0.0208962 0.0208962i
\(593\) 195.165 195.165i 0.329114 0.329114i −0.523135 0.852250i \(-0.675238\pi\)
0.852250 + 0.523135i \(0.175238\pi\)
\(594\) −925.441 + 300.124i −1.55798 + 0.505260i
\(595\) −263.437 212.779i −0.442751 0.357613i
\(596\) 402.950i 0.676090i
\(597\) 341.788 131.127i 0.572509 0.219644i
\(598\) −621.053 621.053i −1.03855 1.03855i
\(599\) 93.4354 0.155986 0.0779928 0.996954i \(-0.475149\pi\)
0.0779928 + 0.996954i \(0.475149\pi\)
\(600\) −232.587 533.443i −0.387646 0.889071i
\(601\) 47.3325i 0.0787563i 0.999224 + 0.0393782i \(0.0125377\pi\)
−0.999224 + 0.0393782i \(0.987462\pi\)
\(602\) −35.4913 + 18.3089i −0.0589557 + 0.0304134i
\(603\) −78.0990 4.12207i −0.129517 0.00683593i
\(604\) 132.216i 0.218900i
\(605\) −6.83729 + 17.6132i −0.0113013 + 0.0291127i
\(606\) 216.364 485.719i 0.357036 0.801516i
\(607\) −782.862 + 782.862i −1.28972 + 1.28972i −0.354769 + 0.934954i \(0.615440\pi\)
−0.934954 + 0.354769i \(0.884560\pi\)
\(608\) 583.046 583.046i 0.958957 0.958957i
\(609\) −166.697 148.641i −0.273723 0.244074i
\(610\) 209.157 92.1804i 0.342881 0.151115i
\(611\) 689.034i 1.12772i
\(612\) 29.3981 556.994i 0.0480362 0.910120i
\(613\) 587.076 587.076i 0.957710 0.957710i −0.0414311 0.999141i \(-0.513192\pi\)
0.999141 + 0.0414311i \(0.0131917\pi\)
\(614\) 1143.73i 1.86275i
\(615\) −1.95413 + 494.462i −0.00317744 + 0.804004i
\(616\) −577.959 184.586i −0.938245 0.299652i
\(617\) 400.922 400.922i 0.649793 0.649793i −0.303150 0.952943i \(-0.598038\pi\)
0.952943 + 0.303150i \(0.0980383\pi\)
\(618\) 1396.67 535.833i 2.25998 0.867044i
\(619\) −382.132 −0.617338 −0.308669 0.951170i \(-0.599883\pi\)
−0.308669 + 0.951170i \(0.599883\pi\)
\(620\) 312.316 804.540i 0.503735 1.29764i
\(621\) −848.443 + 275.154i −1.36625 + 0.443082i
\(622\) 675.887 675.887i 1.08663 1.08663i
\(623\) 441.004 227.500i 0.707872 0.365169i
\(624\) 13.3789 + 5.95963i 0.0214405 + 0.00955068i
\(625\) 55.9588 + 622.490i 0.0895341 + 0.995984i
\(626\) −891.810 −1.42462
\(627\) −300.402 783.009i −0.479111 1.24882i
\(628\) 1365.97 + 1365.97i 2.17512 + 2.17512i
\(629\) 285.762i 0.454312i
\(630\) 54.0773 + 1014.67i 0.0858370 + 1.61059i
\(631\) 1097.98 1.74006 0.870031 0.492997i \(-0.164099\pi\)
0.870031 + 0.492997i \(0.164099\pi\)
\(632\) 92.3934 92.3934i 0.146192 0.146192i
\(633\) 11.9863 4.59856i 0.0189357 0.00726470i
\(634\) 199.975i 0.315418i
\(635\) 1114.95 491.386i 1.75583 0.773836i
\(636\) 288.043 646.633i 0.452898 1.01672i
\(637\) 398.238 67.1823i 0.625177 0.105467i
\(638\) −270.981 270.981i −0.424735 0.424735i
\(639\) 235.068 + 261.264i 0.367868 + 0.408864i
\(640\) −930.630 + 410.150i −1.45411 + 0.640860i
\(641\) 137.826i 0.215017i −0.994204 0.107509i \(-0.965713\pi\)
0.994204 0.107509i \(-0.0342873\pi\)
\(642\) −436.936 1138.89i −0.680585 1.77397i
\(643\) 340.846 + 340.846i 0.530087 + 0.530087i 0.920598 0.390511i \(-0.127702\pi\)
−0.390511 + 0.920598i \(0.627702\pi\)
\(644\) −1411.01 450.640i −2.19100 0.699752i
\(645\) 18.6847 + 18.8329i 0.0289685 + 0.0291983i
\(646\) 781.065 1.20908
\(647\) −192.497 192.497i −0.297523 0.297523i 0.542520 0.840043i \(-0.317470\pi\)
−0.840043 + 0.542520i \(0.817470\pi\)
\(648\) −488.729 + 395.164i −0.754211 + 0.609822i
\(649\) −784.239 −1.20838
\(650\) 490.586 + 448.463i 0.754748 + 0.689943i
\(651\) −376.613 + 422.362i −0.578515 + 0.648790i
\(652\) 125.066 + 125.066i 0.191819 + 0.191819i
\(653\) 178.554 + 178.554i 0.273436 + 0.273436i 0.830482 0.557046i \(-0.188065\pi\)
−0.557046 + 0.830482i \(0.688065\pi\)
\(654\) 806.394 + 359.209i 1.23302 + 0.549250i
\(655\) 129.652 333.989i 0.197942 0.509907i
\(656\) 19.5258 0.0297649
\(657\) 649.672 + 34.2897i 0.988846 + 0.0521913i
\(658\) 865.427 + 1677.61i 1.31524 + 2.54956i
\(659\) −984.529 −1.49397 −0.746987 0.664838i \(-0.768500\pi\)
−0.746987 + 0.664838i \(0.768500\pi\)
\(660\) −4.24155 + 1073.26i −0.00642660 + 1.62615i
\(661\) 730.936i 1.10580i 0.833247 + 0.552901i \(0.186479\pi\)
−0.833247 + 0.552901i \(0.813521\pi\)
\(662\) −1031.20 + 1031.20i −1.55771 + 1.55771i
\(663\) 85.6929 + 223.362i 0.129250 + 0.336895i
\(664\) 343.865 0.517869
\(665\) −870.998 + 92.6523i −1.30977 + 0.139327i
\(666\) −637.428 + 573.515i −0.957099 + 0.861133i
\(667\) −248.435 248.435i −0.372467 0.372467i
\(668\) −973.137 + 973.137i −1.45679 + 1.45679i
\(669\) −135.577 60.3930i −0.202656 0.0902735i
\(670\) −50.7193 + 130.655i −0.0757004 + 0.195008i
\(671\) −158.303 −0.235921
\(672\) 690.770 39.5532i 1.02793 0.0588590i
\(673\) −770.416 + 770.416i −1.14475 + 1.14475i −0.157179 + 0.987570i \(0.550240\pi\)
−0.987570 + 0.157179i \(0.949760\pi\)
\(674\) 928.898 1.37819
\(675\) 632.103 236.793i 0.936449 0.350804i
\(676\) −647.377 −0.957658
\(677\) 430.936 + 430.936i 0.636538 + 0.636538i 0.949700 0.313162i \(-0.101388\pi\)
−0.313162 + 0.949700i \(0.601388\pi\)
\(678\) −1257.21 + 482.331i −1.85430 + 0.711403i
\(679\) −1077.08 343.994i −1.58628 0.506618i
\(680\) −349.924 135.838i −0.514595 0.199761i
\(681\) −90.1453 40.1553i −0.132372 0.0589652i
\(682\) −686.586 + 686.586i −1.00672 + 1.00672i
\(683\) 952.879 + 952.879i 1.39514 + 1.39514i 0.813319 + 0.581818i \(0.197658\pi\)
0.581818 + 0.813319i \(0.302342\pi\)
\(684\) −964.971 1072.51i −1.41078 1.56800i
\(685\) 162.885 + 369.585i 0.237788 + 0.539540i
\(686\) 885.219 663.757i 1.29041 0.967576i
\(687\) −255.195 + 97.9059i −0.371463 + 0.142512i
\(688\) 0.740765 0.740765i 0.00107669 0.00107669i
\(689\) 303.623i 0.440673i
\(690\) −6.31701 + 1598.42i −0.00915508 + 2.31656i
\(691\) 428.205i 0.619689i −0.950787 0.309844i \(-0.899723\pi\)
0.950787 0.309844i \(-0.100277\pi\)
\(692\) 127.204 + 127.204i 0.183821 + 0.183821i
\(693\) 249.138 658.162i 0.359507 0.949728i
\(694\) 1637.12i 2.35897i
\(695\) −75.0064 + 193.220i −0.107923 + 0.278014i
\(696\) −226.146 100.737i −0.324922 0.144737i
\(697\) 225.525 + 225.525i 0.323565 + 0.323565i
\(698\) −117.455 + 117.455i −0.168273 + 0.168273i
\(699\) −351.128 156.410i −0.502329 0.223763i
\(700\) 1082.02 + 292.839i 1.54574 + 0.418342i
\(701\) 1086.06i 1.54929i 0.632393 + 0.774647i \(0.282073\pi\)
−0.632393 + 0.774647i \(0.717927\pi\)
\(702\) 326.253 639.427i 0.464748 0.910865i
\(703\) −522.659 522.659i −0.743469 0.743469i
\(704\) 1160.74 1.64877
\(705\) 890.198 883.190i 1.26269 1.25275i
\(706\) 967.358i 1.37020i
\(707\) 176.335 + 341.822i 0.249413 + 0.483482i
\(708\) −1259.59 + 483.243i −1.77908 + 0.682547i
\(709\) 384.594i 0.542446i 0.962516 + 0.271223i \(0.0874281\pi\)
−0.962516 + 0.271223i \(0.912572\pi\)
\(710\) 576.333 254.003i 0.811736 0.357751i
\(711\) 101.370 + 112.667i 0.142574 + 0.158463i
\(712\) 388.943 388.943i 0.546269 0.546269i
\(713\) −629.462 + 629.462i −0.882836 + 0.882836i
\(714\) 489.181 + 436.194i 0.685127 + 0.610916i
\(715\) −185.653 421.245i −0.259654 0.589154i
\(716\) 1010.71i 1.41161i
\(717\) 1139.95 437.342i 1.58989 0.609961i
\(718\) −442.710 + 442.710i −0.616588 + 0.616588i
\(719\) 160.221i 0.222838i 0.993773 + 0.111419i \(0.0355396\pi\)
−0.993773 + 0.111419i \(0.964460\pi\)
\(720\) −9.44920 24.9237i −0.0131239 0.0346163i
\(721\) −329.207 + 1030.78i −0.456597 + 1.42966i
\(722\) 605.144 605.144i 0.838150 0.838150i
\(723\) 125.842 + 328.012i 0.174056 + 0.453682i
\(724\) 376.650 0.520235
\(725\) 196.245 + 179.395i 0.270683 + 0.247442i
\(726\) 14.8797 33.4036i 0.0204954 0.0460104i
\(727\) 655.048 655.048i 0.901029 0.901029i −0.0944960 0.995525i \(-0.530124\pi\)
0.995525 + 0.0944960i \(0.0301240\pi\)
\(728\) 397.851 205.239i 0.546498 0.281921i
\(729\) −427.838 590.250i −0.586884 0.809671i
\(730\) 421.912 1086.86i 0.577961 1.48886i
\(731\) 17.1118 0.0234088
\(732\) −254.255 + 97.5452i −0.347343 + 0.133258i
\(733\) −222.518 222.518i −0.303572 0.303572i 0.538838 0.842410i \(-0.318864\pi\)
−0.842410 + 0.538838i \(0.818864\pi\)
\(734\) 1328.56i 1.81003i
\(735\) −597.249 428.391i −0.812584 0.582844i
\(736\) 1088.43 1.47884
\(737\) 68.6376 68.6376i 0.0931311 0.0931311i
\(738\) 50.4409 955.682i 0.0683481 1.29496i
\(739\) 343.180i 0.464385i 0.972670 + 0.232192i \(0.0745899\pi\)
−0.972670 + 0.232192i \(0.925410\pi\)
\(740\) 381.486 + 865.590i 0.515521 + 1.16972i
\(741\) 565.260 + 251.796i 0.762834 + 0.339805i
\(742\) 381.351 + 739.240i 0.513950 + 0.996280i
\(743\) 54.5399 + 54.5399i 0.0734050 + 0.0734050i 0.742856 0.669451i \(-0.233471\pi\)
−0.669451 + 0.742856i \(0.733471\pi\)
\(744\) −255.238 + 572.987i −0.343062 + 0.770144i
\(745\) −113.826 + 293.220i −0.152786 + 0.393584i
\(746\) 180.739i 0.242278i
\(747\) −21.0221 + 398.297i −0.0281421 + 0.533196i
\(748\) 489.516 + 489.516i 0.654433 + 0.654433i
\(749\) 840.533 + 268.446i 1.12221 + 0.358405i
\(750\) −49.4309 1208.64i −0.0659079 1.61152i
\(751\) 969.222 1.29057 0.645287 0.763940i \(-0.276738\pi\)
0.645287 + 0.763940i \(0.276738\pi\)
\(752\) −35.0146 35.0146i −0.0465620 0.0465620i
\(753\) 357.982 137.340i 0.475408 0.182391i
\(754\) 282.764 0.375018
\(755\) −37.3484 + 96.2112i −0.0494681 + 0.127432i
\(756\) −5.40671 1210.61i −0.00715174 1.60134i
\(757\) −881.940 881.940i −1.16505 1.16505i −0.983356 0.181690i \(-0.941843\pi\)
−0.181690 0.983356i \(-0.558157\pi\)
\(758\) −892.277 892.277i −1.17715 1.17715i
\(759\) 450.464 1011.25i 0.593497 1.33235i
\(760\) −888.458 + 391.564i −1.16902 + 0.515216i
\(761\) −1174.77 −1.54372 −0.771859 0.635794i \(-0.780673\pi\)
−0.771859 + 0.635794i \(0.780673\pi\)
\(762\) −2201.74 + 844.699i −2.88942 + 1.10853i
\(763\) −567.496 + 292.753i −0.743769 + 0.383687i
\(764\) −57.6245 −0.0754248
\(765\) 178.733 397.011i 0.233638 0.518969i
\(766\) 28.8236i 0.0376288i
\(767\) 409.169 409.169i 0.533467 0.533467i