Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [105,3,Mod(62,105)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(105, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 1, 2]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("105.62");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 105 = 3 \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 105.k (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.86104277578\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(16\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
62.1 | −2.63482 | + | 2.63482i | −2.54097 | − | 1.59482i | − | 9.88460i | −4.15332 | − | 2.78387i | 10.8971 | − | 2.49295i | 2.39850 | + | 6.57626i | 15.5049 | + | 15.5049i | 3.91310 | + | 8.10479i | 18.2783 | − | 3.60824i | |
62.2 | −2.63482 | + | 2.63482i | 2.54097 | + | 1.59482i | − | 9.88460i | 4.15332 | + | 2.78387i | −10.8971 | + | 2.49295i | 6.57626 | + | 2.39850i | 15.5049 | + | 15.5049i | 3.91310 | + | 8.10479i | −18.2783 | + | 3.60824i | |
62.3 | −2.28094 | + | 2.28094i | −1.07458 | + | 2.80094i | − | 6.40541i | 1.80941 | − | 4.66112i | −3.93772 | − | 8.83986i | −6.22100 | − | 3.20922i | 5.48661 | + | 5.48661i | −6.69054 | − | 6.01969i | 6.50460 | + | 14.7589i | |
62.4 | −2.28094 | + | 2.28094i | 1.07458 | − | 2.80094i | − | 6.40541i | −1.80941 | + | 4.66112i | 3.93772 | + | 8.83986i | −3.20922 | − | 6.22100i | 5.48661 | + | 5.48661i | −6.69054 | − | 6.01969i | −6.50460 | − | 14.7589i | |
62.5 | −1.88692 | + | 1.88692i | −2.65373 | − | 1.39918i | − | 3.12092i | 4.96950 | + | 0.551428i | 7.64751 | − | 2.36725i | 2.09055 | − | 6.68054i | −1.65875 | − | 1.65875i | 5.08462 | + | 7.42608i | −10.4175 | + | 8.33654i | |
62.6 | −1.88692 | + | 1.88692i | 2.65373 | + | 1.39918i | − | 3.12092i | −4.96950 | − | 0.551428i | −7.64751 | + | 2.36725i | −6.68054 | + | 2.09055i | −1.65875 | − | 1.65875i | 5.08462 | + | 7.42608i | 10.4175 | − | 8.33654i | |
62.7 | −1.67168 | + | 1.67168i | −2.55943 | + | 1.56503i | − | 1.58906i | 0.529219 | + | 4.97191i | 1.66231 | − | 6.89480i | −1.73590 | + | 6.78135i | −4.03033 | − | 4.03033i | 4.10134 | − | 8.01118i | −9.19616 | − | 7.42678i | |
62.8 | −1.67168 | + | 1.67168i | 2.55943 | − | 1.56503i | − | 1.58906i | −0.529219 | − | 4.97191i | −1.66231 | + | 6.89480i | 6.78135 | − | 1.73590i | −4.03033 | − | 4.03033i | 4.10134 | − | 8.01118i | 9.19616 | + | 7.42678i | |
62.9 | 1.67168 | − | 1.67168i | −1.56503 | + | 2.55943i | − | 1.58906i | 0.529219 | + | 4.97191i | 1.66231 | + | 6.89480i | 6.78135 | − | 1.73590i | 4.03033 | + | 4.03033i | −4.10134 | − | 8.01118i | 9.19616 | + | 7.42678i | |
62.10 | 1.67168 | − | 1.67168i | 1.56503 | − | 2.55943i | − | 1.58906i | −0.529219 | − | 4.97191i | −1.66231 | − | 6.89480i | −1.73590 | + | 6.78135i | 4.03033 | + | 4.03033i | −4.10134 | − | 8.01118i | −9.19616 | − | 7.42678i | |
62.11 | 1.88692 | − | 1.88692i | −1.39918 | − | 2.65373i | − | 3.12092i | −4.96950 | − | 0.551428i | −7.64751 | − | 2.36725i | 2.09055 | − | 6.68054i | 1.65875 | + | 1.65875i | −5.08462 | + | 7.42608i | −10.4175 | + | 8.33654i | |
62.12 | 1.88692 | − | 1.88692i | 1.39918 | + | 2.65373i | − | 3.12092i | 4.96950 | + | 0.551428i | 7.64751 | + | 2.36725i | −6.68054 | + | 2.09055i | 1.65875 | + | 1.65875i | −5.08462 | + | 7.42608i | 10.4175 | − | 8.33654i | |
62.13 | 2.28094 | − | 2.28094i | −2.80094 | + | 1.07458i | − | 6.40541i | 1.80941 | − | 4.66112i | −3.93772 | + | 8.83986i | −3.20922 | − | 6.22100i | −5.48661 | − | 5.48661i | 6.69054 | − | 6.01969i | −6.50460 | − | 14.7589i | |
62.14 | 2.28094 | − | 2.28094i | 2.80094 | − | 1.07458i | − | 6.40541i | −1.80941 | + | 4.66112i | 3.93772 | − | 8.83986i | −6.22100 | − | 3.20922i | −5.48661 | − | 5.48661i | 6.69054 | − | 6.01969i | 6.50460 | + | 14.7589i | |
62.15 | 2.63482 | − | 2.63482i | −1.59482 | − | 2.54097i | − | 9.88460i | 4.15332 | + | 2.78387i | −10.8971 | − | 2.49295i | 2.39850 | + | 6.57626i | −15.5049 | − | 15.5049i | −3.91310 | + | 8.10479i | 18.2783 | − | 3.60824i | |
62.16 | 2.63482 | − | 2.63482i | 1.59482 | + | 2.54097i | − | 9.88460i | −4.15332 | − | 2.78387i | 10.8971 | + | 2.49295i | 6.57626 | + | 2.39850i | −15.5049 | − | 15.5049i | −3.91310 | + | 8.10479i | −18.2783 | + | 3.60824i | |
83.1 | −2.63482 | − | 2.63482i | −2.54097 | + | 1.59482i | 9.88460i | −4.15332 | + | 2.78387i | 10.8971 | + | 2.49295i | 2.39850 | − | 6.57626i | 15.5049 | − | 15.5049i | 3.91310 | − | 8.10479i | 18.2783 | + | 3.60824i | ||
83.2 | −2.63482 | − | 2.63482i | 2.54097 | − | 1.59482i | 9.88460i | 4.15332 | − | 2.78387i | −10.8971 | − | 2.49295i | 6.57626 | − | 2.39850i | 15.5049 | − | 15.5049i | 3.91310 | − | 8.10479i | −18.2783 | − | 3.60824i | ||
83.3 | −2.28094 | − | 2.28094i | −1.07458 | − | 2.80094i | 6.40541i | 1.80941 | + | 4.66112i | −3.93772 | + | 8.83986i | −6.22100 | + | 3.20922i | 5.48661 | − | 5.48661i | −6.69054 | + | 6.01969i | 6.50460 | − | 14.7589i | ||
83.4 | −2.28094 | − | 2.28094i | 1.07458 | + | 2.80094i | 6.40541i | −1.80941 | − | 4.66112i | 3.93772 | − | 8.83986i | −3.20922 | + | 6.22100i | 5.48661 | − | 5.48661i | −6.69054 | + | 6.01969i | −6.50460 | + | 14.7589i | ||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.c | odd | 4 | 1 | inner |
7.b | odd | 2 | 1 | inner |
15.e | even | 4 | 1 | inner |
21.c | even | 2 | 1 | inner |
35.f | even | 4 | 1 | inner |
105.k | odd | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 105.3.k.d | ✓ | 32 |
3.b | odd | 2 | 1 | inner | 105.3.k.d | ✓ | 32 |
5.c | odd | 4 | 1 | inner | 105.3.k.d | ✓ | 32 |
7.b | odd | 2 | 1 | inner | 105.3.k.d | ✓ | 32 |
15.e | even | 4 | 1 | inner | 105.3.k.d | ✓ | 32 |
21.c | even | 2 | 1 | inner | 105.3.k.d | ✓ | 32 |
35.f | even | 4 | 1 | inner | 105.3.k.d | ✓ | 32 |
105.k | odd | 4 | 1 | inner | 105.3.k.d | ✓ | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
105.3.k.d | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
105.3.k.d | ✓ | 32 | 3.b | odd | 2 | 1 | inner |
105.3.k.d | ✓ | 32 | 5.c | odd | 4 | 1 | inner |
105.3.k.d | ✓ | 32 | 7.b | odd | 2 | 1 | inner |
105.3.k.d | ✓ | 32 | 15.e | even | 4 | 1 | inner |
105.3.k.d | ✓ | 32 | 21.c | even | 2 | 1 | inner |
105.3.k.d | ✓ | 32 | 35.f | even | 4 | 1 | inner |
105.3.k.d | ✓ | 32 | 105.k | odd | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(105, [\chi])\):
\( T_{2}^{16} + 383T_{2}^{12} + 47127T_{2}^{8} + 2187309T_{2}^{4} + 33062500 \)
|
\( T_{11}^{8} + 497T_{11}^{6} + 63614T_{11}^{4} + 2343020T_{11}^{2} + 25047000 \)
|
\( T_{13}^{16} + 66241T_{13}^{12} + 288088400T_{13}^{8} + 17091165504T_{13}^{4} + 253806379264 \)
|