# Properties

 Label 105.3.k.b.83.2 Level 105 Weight 3 Character 105.83 Analytic conductor 2.861 Analytic rank 0 Dimension 4 CM no Inner twists 4

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$105 = 3 \cdot 5 \cdot 7$$ Weight: $$k$$ $$=$$ $$3$$ Character orbit: $$[\chi]$$ $$=$$ 105.k (of order $$4$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.86104277578$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(i)$$ Coefficient field: $$\Q(\zeta_{8})$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

## Embedding invariants

 Embedding label 83.2 Root $$0.707107 + 0.707107i$$ of $$x^{4} + 1$$ Character $$\chi$$ $$=$$ 105.83 Dual form 105.3.k.b.62.2

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.707107 + 0.707107i) q^{2} +(2.70711 - 1.29289i) q^{3} -3.00000i q^{4} +(0.707107 + 4.94975i) q^{5} +(2.82843 + 1.00000i) q^{6} +7.00000i q^{7} +(4.94975 - 4.94975i) q^{8} +(5.65685 - 7.00000i) q^{9} +O(q^{10})$$ $$q+(0.707107 + 0.707107i) q^{2} +(2.70711 - 1.29289i) q^{3} -3.00000i q^{4} +(0.707107 + 4.94975i) q^{5} +(2.82843 + 1.00000i) q^{6} +7.00000i q^{7} +(4.94975 - 4.94975i) q^{8} +(5.65685 - 7.00000i) q^{9} +(-3.00000 + 4.00000i) q^{10} -9.89949i q^{11} +(-3.87868 - 8.12132i) q^{12} +(8.00000 - 8.00000i) q^{13} +(-4.94975 + 4.94975i) q^{14} +(8.31371 + 12.4853i) q^{15} -5.00000 q^{16} +(-18.3848 + 18.3848i) q^{17} +(8.94975 - 0.949747i) q^{18} -10.0000 q^{19} +(14.8492 - 2.12132i) q^{20} +(9.05025 + 18.9497i) q^{21} +(7.00000 - 7.00000i) q^{22} +(-24.0416 + 24.0416i) q^{23} +(7.00000 - 19.7990i) q^{24} +(-24.0000 + 7.00000i) q^{25} +11.3137 q^{26} +(6.26346 - 26.2635i) q^{27} +21.0000 q^{28} -4.24264 q^{29} +(-2.94975 + 14.7071i) q^{30} +14.0000i q^{31} +(-23.3345 - 23.3345i) q^{32} +(-12.7990 - 26.7990i) q^{33} -26.0000 q^{34} +(-34.6482 + 4.94975i) q^{35} +(-21.0000 - 16.9706i) q^{36} +(30.0000 - 30.0000i) q^{37} +(-7.07107 - 7.07107i) q^{38} +(11.3137 - 32.0000i) q^{39} +(28.0000 + 21.0000i) q^{40} -33.9411 q^{41} +(-7.00000 + 19.7990i) q^{42} +(36.0000 + 36.0000i) q^{43} -29.6985 q^{44} +(38.6482 + 23.0503i) q^{45} -34.0000 q^{46} +(-4.24264 + 4.24264i) q^{47} +(-13.5355 + 6.46447i) q^{48} -49.0000 q^{49} +(-21.9203 - 12.0208i) q^{50} +(-26.0000 + 73.5391i) q^{51} +(-24.0000 - 24.0000i) q^{52} +(70.7107 - 70.7107i) q^{53} +(23.0000 - 14.1421i) q^{54} +(49.0000 - 7.00000i) q^{55} +(34.6482 + 34.6482i) q^{56} +(-27.0711 + 12.9289i) q^{57} +(-3.00000 - 3.00000i) q^{58} +29.6985i q^{59} +(37.4558 - 24.9411i) q^{60} -14.0000i q^{61} +(-9.89949 + 9.89949i) q^{62} +(49.0000 + 39.5980i) q^{63} -13.0000i q^{64} +(45.2548 + 33.9411i) q^{65} +(9.89949 - 28.0000i) q^{66} +(32.0000 - 32.0000i) q^{67} +(55.1543 + 55.1543i) q^{68} +(-34.0000 + 96.1665i) q^{69} +(-28.0000 - 21.0000i) q^{70} -59.3970i q^{71} +(-6.64823 - 62.6482i) q^{72} +(39.0000 - 39.0000i) q^{73} +42.4264 q^{74} +(-55.9203 + 49.9792i) q^{75} +30.0000i q^{76} +69.2965 q^{77} +(30.6274 - 14.6274i) q^{78} +56.0000i q^{79} +(-3.53553 - 24.7487i) q^{80} +(-17.0000 - 79.1960i) q^{81} +(-24.0000 - 24.0000i) q^{82} +(-36.7696 - 36.7696i) q^{83} +(56.8492 - 27.1508i) q^{84} +(-104.000 - 78.0000i) q^{85} +50.9117i q^{86} +(-11.4853 + 5.48528i) q^{87} +(-49.0000 - 49.0000i) q^{88} +19.7990i q^{89} +(11.0294 + 43.6274i) q^{90} +(56.0000 + 56.0000i) q^{91} +(72.1249 + 72.1249i) q^{92} +(18.1005 + 37.8995i) q^{93} -6.00000 q^{94} +(-7.07107 - 49.4975i) q^{95} +(-93.3381 - 33.0000i) q^{96} +(113.000 + 113.000i) q^{97} +(-34.6482 - 34.6482i) q^{98} +(-69.2965 - 56.0000i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q + 8q^{3} + O(q^{10})$$ $$4q + 8q^{3} - 12q^{10} - 24q^{12} + 32q^{13} - 12q^{15} - 20q^{16} + 16q^{18} - 40q^{19} + 56q^{21} + 28q^{22} + 28q^{24} - 96q^{25} - 40q^{27} + 84q^{28} + 8q^{30} + 28q^{33} - 104q^{34} - 84q^{36} + 120q^{37} + 112q^{40} - 28q^{42} + 144q^{43} + 16q^{45} - 136q^{46} - 40q^{48} - 196q^{49} - 104q^{51} - 96q^{52} + 92q^{54} + 196q^{55} - 80q^{57} - 12q^{58} + 48q^{60} + 196q^{63} + 128q^{67} - 136q^{69} - 112q^{70} + 112q^{72} + 156q^{73} - 136q^{75} + 32q^{78} - 68q^{81} - 96q^{82} + 168q^{84} - 416q^{85} - 12q^{87} - 196q^{88} + 112q^{90} + 224q^{91} + 112q^{93} - 24q^{94} + 452q^{97} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/105\mathbb{Z}\right)^\times$$.

 $$n$$ $$22$$ $$31$$ $$71$$ $$\chi(n)$$ $$e\left(\frac{3}{4}\right)$$ $$-1$$ $$-1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.707107 + 0.707107i 0.353553 + 0.353553i 0.861430 0.507877i $$-0.169569\pi$$
−0.507877 + 0.861430i $$0.669569\pi$$
$$3$$ 2.70711 1.29289i 0.902369 0.430964i
$$4$$ 3.00000i 0.750000i
$$5$$ 0.707107 + 4.94975i 0.141421 + 0.989949i
$$6$$ 2.82843 + 1.00000i 0.471405 + 0.166667i
$$7$$ 7.00000i 1.00000i
$$8$$ 4.94975 4.94975i 0.618718 0.618718i
$$9$$ 5.65685 7.00000i 0.628539 0.777778i
$$10$$ −3.00000 + 4.00000i −0.300000 + 0.400000i
$$11$$ 9.89949i 0.899954i −0.893040 0.449977i $$-0.851432\pi$$
0.893040 0.449977i $$-0.148568\pi$$
$$12$$ −3.87868 8.12132i −0.323223 0.676777i
$$13$$ 8.00000 8.00000i 0.615385 0.615385i −0.328959 0.944344i $$-0.606698\pi$$
0.944344 + 0.328959i $$0.106698\pi$$
$$14$$ −4.94975 + 4.94975i −0.353553 + 0.353553i
$$15$$ 8.31371 + 12.4853i 0.554247 + 0.832352i
$$16$$ −5.00000 −0.312500
$$17$$ −18.3848 + 18.3848i −1.08146 + 1.08146i −0.0850836 + 0.996374i $$0.527116\pi$$
−0.996374 + 0.0850836i $$0.972884\pi$$
$$18$$ 8.94975 0.949747i 0.497208 0.0527637i
$$19$$ −10.0000 −0.526316 −0.263158 0.964753i $$-0.584764\pi$$
−0.263158 + 0.964753i $$0.584764\pi$$
$$20$$ 14.8492 2.12132i 0.742462 0.106066i
$$21$$ 9.05025 + 18.9497i 0.430964 + 0.902369i
$$22$$ 7.00000 7.00000i 0.318182 0.318182i
$$23$$ −24.0416 + 24.0416i −1.04529 + 1.04529i −0.0463637 + 0.998925i $$0.514763\pi$$
−0.998925 + 0.0463637i $$0.985237\pi$$
$$24$$ 7.00000 19.7990i 0.291667 0.824958i
$$25$$ −24.0000 + 7.00000i −0.960000 + 0.280000i
$$26$$ 11.3137 0.435143
$$27$$ 6.26346 26.2635i 0.231980 0.972721i
$$28$$ 21.0000 0.750000
$$29$$ −4.24264 −0.146298 −0.0731490 0.997321i $$-0.523305\pi$$
−0.0731490 + 0.997321i $$0.523305\pi$$
$$30$$ −2.94975 + 14.7071i −0.0983249 + 0.490237i
$$31$$ 14.0000i 0.451613i 0.974172 + 0.225806i $$0.0725017\pi$$
−0.974172 + 0.225806i $$0.927498\pi$$
$$32$$ −23.3345 23.3345i −0.729204 0.729204i
$$33$$ −12.7990 26.7990i −0.387848 0.812091i
$$34$$ −26.0000 −0.764706
$$35$$ −34.6482 + 4.94975i −0.989949 + 0.141421i
$$36$$ −21.0000 16.9706i −0.583333 0.471405i
$$37$$ 30.0000 30.0000i 0.810811 0.810811i −0.173945 0.984755i $$-0.555651\pi$$
0.984755 + 0.173945i $$0.0556514\pi$$
$$38$$ −7.07107 7.07107i −0.186081 0.186081i
$$39$$ 11.3137 32.0000i 0.290095 0.820513i
$$40$$ 28.0000 + 21.0000i 0.700000 + 0.525000i
$$41$$ −33.9411 −0.827832 −0.413916 0.910315i $$-0.635839\pi$$
−0.413916 + 0.910315i $$0.635839\pi$$
$$42$$ −7.00000 + 19.7990i −0.166667 + 0.471405i
$$43$$ 36.0000 + 36.0000i 0.837209 + 0.837209i 0.988491 0.151281i $$-0.0483400\pi$$
−0.151281 + 0.988491i $$0.548340\pi$$
$$44$$ −29.6985 −0.674966
$$45$$ 38.6482 + 23.0503i 0.858850 + 0.512228i
$$46$$ −34.0000 −0.739130
$$47$$ −4.24264 + 4.24264i −0.0902690 + 0.0902690i −0.750799 0.660530i $$-0.770331\pi$$
0.660530 + 0.750799i $$0.270331\pi$$
$$48$$ −13.5355 + 6.46447i −0.281990 + 0.134676i
$$49$$ −49.0000 −1.00000
$$50$$ −21.9203 12.0208i −0.438406 0.240416i
$$51$$ −26.0000 + 73.5391i −0.509804 + 1.44194i
$$52$$ −24.0000 24.0000i −0.461538 0.461538i
$$53$$ 70.7107 70.7107i 1.33416 1.33416i 0.432557 0.901606i $$-0.357611\pi$$
0.901606 0.432557i $$-0.142389\pi$$
$$54$$ 23.0000 14.1421i 0.425926 0.261891i
$$55$$ 49.0000 7.00000i 0.890909 0.127273i
$$56$$ 34.6482 + 34.6482i 0.618718 + 0.618718i
$$57$$ −27.0711 + 12.9289i −0.474931 + 0.226823i
$$58$$ −3.00000 3.00000i −0.0517241 0.0517241i
$$59$$ 29.6985i 0.503364i 0.967810 + 0.251682i $$0.0809837\pi$$
−0.967810 + 0.251682i $$0.919016\pi$$
$$60$$ 37.4558 24.9411i 0.624264 0.415685i
$$61$$ 14.0000i 0.229508i −0.993394 0.114754i $$-0.963392\pi$$
0.993394 0.114754i $$-0.0366080\pi$$
$$62$$ −9.89949 + 9.89949i −0.159669 + 0.159669i
$$63$$ 49.0000 + 39.5980i 0.777778 + 0.628539i
$$64$$ 13.0000i 0.203125i
$$65$$ 45.2548 + 33.9411i 0.696228 + 0.522171i
$$66$$ 9.89949 28.0000i 0.149992 0.424242i
$$67$$ 32.0000 32.0000i 0.477612 0.477612i −0.426755 0.904367i $$-0.640343\pi$$
0.904367 + 0.426755i $$0.140343\pi$$
$$68$$ 55.1543 + 55.1543i 0.811093 + 0.811093i
$$69$$ −34.0000 + 96.1665i −0.492754 + 1.39372i
$$70$$ −28.0000 21.0000i −0.400000 0.300000i
$$71$$ 59.3970i 0.836577i −0.908314 0.418289i $$-0.862630\pi$$
0.908314 0.418289i $$-0.137370\pi$$
$$72$$ −6.64823 62.6482i −0.0923366 0.870114i
$$73$$ 39.0000 39.0000i 0.534247 0.534247i −0.387587 0.921833i $$-0.626691\pi$$
0.921833 + 0.387587i $$0.126691\pi$$
$$74$$ 42.4264 0.573330
$$75$$ −55.9203 + 49.9792i −0.745604 + 0.666389i
$$76$$ 30.0000i 0.394737i
$$77$$ 69.2965 0.899954
$$78$$ 30.6274 14.6274i 0.392659 0.187531i
$$79$$ 56.0000i 0.708861i 0.935082 + 0.354430i $$0.115325\pi$$
−0.935082 + 0.354430i $$0.884675\pi$$
$$80$$ −3.53553 24.7487i −0.0441942 0.309359i
$$81$$ −17.0000 79.1960i −0.209877 0.977728i
$$82$$ −24.0000 24.0000i −0.292683 0.292683i
$$83$$ −36.7696 36.7696i −0.443007 0.443007i 0.450015 0.893021i $$-0.351419\pi$$
−0.893021 + 0.450015i $$0.851419\pi$$
$$84$$ 56.8492 27.1508i 0.676777 0.323223i
$$85$$ −104.000 78.0000i −1.22353 0.917647i
$$86$$ 50.9117i 0.591996i
$$87$$ −11.4853 + 5.48528i −0.132015 + 0.0630492i
$$88$$ −49.0000 49.0000i −0.556818 0.556818i
$$89$$ 19.7990i 0.222461i 0.993795 + 0.111230i $$0.0354791\pi$$
−0.993795 + 0.111230i $$0.964521\pi$$
$$90$$ 11.0294 + 43.6274i 0.122549 + 0.484749i
$$91$$ 56.0000 + 56.0000i 0.615385 + 0.615385i
$$92$$ 72.1249 + 72.1249i 0.783966 + 0.783966i
$$93$$ 18.1005 + 37.8995i 0.194629 + 0.407521i
$$94$$ −6.00000 −0.0638298
$$95$$ −7.07107 49.4975i −0.0744323 0.521026i
$$96$$ −93.3381 33.0000i −0.972272 0.343750i
$$97$$ 113.000 + 113.000i 1.16495 + 1.16495i 0.983378 + 0.181571i $$0.0581181\pi$$
0.181571 + 0.983378i $$0.441882\pi$$
$$98$$ −34.6482 34.6482i −0.353553 0.353553i
$$99$$ −69.2965 56.0000i −0.699964 0.565657i
$$100$$ 21.0000 + 72.0000i 0.210000 + 0.720000i
$$101$$ 91.9239 0.910137 0.455069 0.890456i $$-0.349615\pi$$
0.455069 + 0.890456i $$0.349615\pi$$
$$102$$ −70.3848 + 33.6152i −0.690047 + 0.329561i
$$103$$ −5.00000 + 5.00000i −0.0485437 + 0.0485437i −0.730962 0.682418i $$-0.760928\pi$$
0.682418 + 0.730962i $$0.260928\pi$$
$$104$$ 79.1960i 0.761500i
$$105$$ −87.3970 + 58.1960i −0.832352 + 0.554247i
$$106$$ 100.000 0.943396
$$107$$ −4.24264 4.24264i −0.0396508 0.0396508i 0.687003 0.726654i $$-0.258926\pi$$
−0.726654 + 0.687003i $$0.758926\pi$$
$$108$$ −78.7904 18.7904i −0.729540 0.173985i
$$109$$ 70.0000i 0.642202i 0.947045 + 0.321101i $$0.104053\pi$$
−0.947045 + 0.321101i $$0.895947\pi$$
$$110$$ 39.5980 + 29.6985i 0.359982 + 0.269986i
$$111$$ 42.4264 120.000i 0.382220 1.08108i
$$112$$ 35.0000i 0.312500i
$$113$$ 12.7279 12.7279i 0.112636 0.112636i −0.648542 0.761179i $$-0.724621\pi$$
0.761179 + 0.648542i $$0.224621\pi$$
$$114$$ −28.2843 10.0000i −0.248108 0.0877193i
$$115$$ −136.000 102.000i −1.18261 0.886957i
$$116$$ 12.7279i 0.109723i
$$117$$ −10.7452 101.255i −0.0918390 0.865426i
$$118$$ −21.0000 + 21.0000i −0.177966 + 0.177966i
$$119$$ −128.693 128.693i −1.08146 1.08146i
$$120$$ 102.950 + 20.6482i 0.857915 + 0.172069i
$$121$$ 23.0000 0.190083
$$122$$ 9.89949 9.89949i 0.0811434 0.0811434i
$$123$$ −91.8823 + 43.8823i −0.747010 + 0.356766i
$$124$$ 42.0000 0.338710
$$125$$ −51.6188 113.844i −0.412950 0.910754i
$$126$$ 6.64823 + 62.6482i 0.0527637 + 0.497208i
$$127$$ −111.000 + 111.000i −0.874016 + 0.874016i −0.992907 0.118892i $$-0.962066\pi$$
0.118892 + 0.992907i $$0.462066\pi$$
$$128$$ −84.1457 + 84.1457i −0.657388 + 0.657388i
$$129$$ 144.000 + 50.9117i 1.11628 + 0.394664i
$$130$$ 8.00000 + 56.0000i 0.0615385 + 0.430769i
$$131$$ −38.1838 −0.291479 −0.145740 0.989323i $$-0.546556\pi$$
−0.145740 + 0.989323i $$0.546556\pi$$
$$132$$ −80.3970 + 38.3970i −0.609068 + 0.290886i
$$133$$ 70.0000i 0.526316i
$$134$$ 45.2548 0.337723
$$135$$ 134.426 + 12.4315i 0.995751 + 0.0920849i
$$136$$ 182.000i 1.33824i
$$137$$ −18.3848 18.3848i −0.134195 0.134195i 0.636818 0.771014i $$-0.280250\pi$$
−0.771014 + 0.636818i $$0.780250\pi$$
$$138$$ −92.0416 + 43.9584i −0.666968 + 0.318539i
$$139$$ −138.000 −0.992806 −0.496403 0.868092i $$-0.665346\pi$$
−0.496403 + 0.868092i $$0.665346\pi$$
$$140$$ 14.8492 + 103.945i 0.106066 + 0.742462i
$$141$$ −6.00000 + 16.9706i −0.0425532 + 0.120359i
$$142$$ 42.0000 42.0000i 0.295775 0.295775i
$$143$$ −79.1960 79.1960i −0.553818 0.553818i
$$144$$ −28.2843 + 35.0000i −0.196419 + 0.243056i
$$145$$ −3.00000 21.0000i −0.0206897 0.144828i
$$146$$ 55.1543 0.377769
$$147$$ −132.648 + 63.3518i −0.902369 + 0.430964i
$$148$$ −90.0000 90.0000i −0.608108 0.608108i
$$149$$ 199.404 1.33828 0.669141 0.743135i $$-0.266662\pi$$
0.669141 + 0.743135i $$0.266662\pi$$
$$150$$ −74.8823 4.20101i −0.499215 0.0280067i
$$151$$ 78.0000 0.516556 0.258278 0.966071i $$-0.416845\pi$$
0.258278 + 0.966071i $$0.416845\pi$$
$$152$$ −49.4975 + 49.4975i −0.325641 + 0.325641i
$$153$$ 24.6934 + 232.693i 0.161395 + 1.52087i
$$154$$ 49.0000 + 49.0000i 0.318182 + 0.318182i
$$155$$ −69.2965 + 9.89949i −0.447074 + 0.0638677i
$$156$$ −96.0000 33.9411i −0.615385 0.217571i
$$157$$ 46.0000 + 46.0000i 0.292994 + 0.292994i 0.838262 0.545268i $$-0.183572\pi$$
−0.545268 + 0.838262i $$0.683572\pi$$
$$158$$ −39.5980 + 39.5980i −0.250620 + 0.250620i
$$159$$ 100.000 282.843i 0.628931 1.77888i
$$160$$ 99.0000 132.000i 0.618750 0.825000i
$$161$$ −168.291 168.291i −1.04529 1.04529i
$$162$$ 43.9792 68.0208i 0.271476 0.419882i
$$163$$ −138.000 138.000i −0.846626 0.846626i 0.143085 0.989710i $$-0.454298\pi$$
−0.989710 + 0.143085i $$0.954298\pi$$
$$164$$ 101.823i 0.620874i
$$165$$ 123.598 82.3015i 0.749079 0.498797i
$$166$$ 52.0000i 0.313253i
$$167$$ 91.9239 91.9239i 0.550442 0.550442i −0.376126 0.926568i $$-0.622744\pi$$
0.926568 + 0.376126i $$0.122744\pi$$
$$168$$ 138.593 + 49.0000i 0.824958 + 0.291667i
$$169$$ 41.0000i 0.242604i
$$170$$ −18.3848 128.693i −0.108146 0.757020i
$$171$$ −56.5685 + 70.0000i −0.330810 + 0.409357i
$$172$$ 108.000 108.000i 0.627907 0.627907i
$$173$$ 223.446 + 223.446i 1.29159 + 1.29159i 0.933801 + 0.357793i $$0.116471\pi$$
0.357793 + 0.933801i $$0.383529\pi$$
$$174$$ −12.0000 4.24264i −0.0689655 0.0243830i
$$175$$ −49.0000 168.000i −0.280000 0.960000i
$$176$$ 49.4975i 0.281236i
$$177$$ 38.3970 + 80.3970i 0.216932 + 0.454220i
$$178$$ −14.0000 + 14.0000i −0.0786517 + 0.0786517i
$$179$$ 12.7279 0.0711057 0.0355529 0.999368i $$-0.488681\pi$$
0.0355529 + 0.999368i $$0.488681\pi$$
$$180$$ 69.1508 115.945i 0.384171 0.644137i
$$181$$ 350.000i 1.93370i −0.255342 0.966851i $$-0.582188\pi$$
0.255342 0.966851i $$-0.417812\pi$$
$$182$$ 79.1960i 0.435143i
$$183$$ −18.1005 37.8995i −0.0989099 0.207101i
$$184$$ 238.000i 1.29348i
$$185$$ 169.706 + 127.279i 0.917328 + 0.687996i
$$186$$ −14.0000 + 39.5980i −0.0752688 + 0.212892i
$$187$$ 182.000 + 182.000i 0.973262 + 0.973262i
$$188$$ 12.7279 + 12.7279i 0.0677017 + 0.0677017i
$$189$$ 183.844 + 43.8442i 0.972721 + 0.231980i
$$190$$ 30.0000 40.0000i 0.157895 0.210526i
$$191$$ 118.794i 0.621958i −0.950417 0.310979i $$-0.899343\pi$$
0.950417 0.310979i $$-0.100657\pi$$
$$192$$ −16.8076 35.1924i −0.0875396 0.183294i
$$193$$ 67.0000 + 67.0000i 0.347150 + 0.347150i 0.859047 0.511897i $$-0.171057\pi$$
−0.511897 + 0.859047i $$0.671057\pi$$
$$194$$ 159.806i 0.823743i
$$195$$ 166.392 + 33.3726i 0.853292 + 0.171141i
$$196$$ 147.000i 0.750000i
$$197$$ −56.5685 56.5685i −0.287150 0.287150i 0.548802 0.835952i $$-0.315084\pi$$
−0.835952 + 0.548802i $$0.815084\pi$$
$$198$$ −9.40202 88.5980i −0.0474850 0.447465i
$$199$$ 120.000 0.603015 0.301508 0.953464i $$-0.402510\pi$$
0.301508 + 0.953464i $$0.402510\pi$$
$$200$$ −84.1457 + 153.442i −0.420729 + 0.767211i
$$201$$ 45.2548 128.000i 0.225148 0.636816i
$$202$$ 65.0000 + 65.0000i 0.321782 + 0.321782i
$$203$$ 29.6985i 0.146298i
$$204$$ 220.617 + 78.0000i 1.08146 + 0.382353i
$$205$$ −24.0000 168.000i −0.117073 0.819512i
$$206$$ −7.07107 −0.0343256
$$207$$ 32.2914 + 304.291i 0.155997 + 1.47001i
$$208$$ −40.0000 + 40.0000i −0.192308 + 0.192308i
$$209$$ 98.9949i 0.473660i
$$210$$ −102.950 20.6482i −0.490237 0.0983249i
$$211$$ 86.0000 0.407583 0.203791 0.979014i $$-0.434674\pi$$
0.203791 + 0.979014i $$0.434674\pi$$
$$212$$ −212.132 212.132i −1.00062 1.00062i
$$213$$ −76.7939 160.794i −0.360535 0.754901i
$$214$$ 6.00000i 0.0280374i
$$215$$ −152.735 + 203.647i −0.710396 + 0.947194i
$$216$$ −98.9949 161.000i −0.458310 0.745370i
$$217$$ −98.0000 −0.451613
$$218$$ −49.4975 + 49.4975i −0.227053 + 0.227053i
$$219$$ 55.1543 156.000i 0.251846 0.712329i
$$220$$ −21.0000 147.000i −0.0954545 0.668182i
$$221$$ 294.156i 1.33102i
$$222$$ 114.853 54.8528i 0.517355 0.247085i
$$223$$ −237.000 + 237.000i −1.06278 + 1.06278i −0.0648877 + 0.997893i $$0.520669\pi$$
−0.997893 + 0.0648877i $$0.979331\pi$$
$$224$$ 163.342 163.342i 0.729204 0.729204i
$$225$$ −86.7645 + 207.598i −0.385620 + 0.922658i
$$226$$ 18.0000 0.0796460
$$227$$ −117.380 + 117.380i −0.517091 + 0.517091i −0.916690 0.399599i $$-0.869149\pi$$
0.399599 + 0.916690i $$0.369149\pi$$
$$228$$ 38.7868 + 81.2132i 0.170118 + 0.356198i
$$229$$ −374.000 −1.63319 −0.816594 0.577213i $$-0.804140\pi$$
−0.816594 + 0.577213i $$0.804140\pi$$
$$230$$ −24.0416 168.291i −0.104529 0.731702i
$$231$$ 187.593 89.5929i 0.812091 0.387848i
$$232$$ −21.0000 + 21.0000i −0.0905172 + 0.0905172i
$$233$$ 173.948 173.948i 0.746559 0.746559i −0.227272 0.973831i $$-0.572981\pi$$
0.973831 + 0.227272i $$0.0729807\pi$$
$$234$$ 64.0000 79.1960i 0.273504 0.338444i
$$235$$ −24.0000 18.0000i −0.102128 0.0765957i
$$236$$ 89.0955 0.377523
$$237$$ 72.4020 + 151.598i 0.305494 + 0.639654i
$$238$$ 182.000i 0.764706i
$$239$$ −291.328 −1.21895 −0.609473 0.792807i $$-0.708619\pi$$
−0.609473 + 0.792807i $$0.708619\pi$$
$$240$$ −41.5685 62.4264i −0.173202 0.260110i
$$241$$ 14.0000i 0.0580913i −0.999578 0.0290456i $$-0.990753\pi$$
0.999578 0.0290456i $$-0.00924682\pi$$
$$242$$ 16.2635 + 16.2635i 0.0672044 + 0.0672044i
$$243$$ −148.413 192.413i −0.610752 0.791822i
$$244$$ −42.0000 −0.172131
$$245$$ −34.6482 242.538i −0.141421 0.989949i
$$246$$ −96.0000 33.9411i −0.390244 0.137972i
$$247$$ −80.0000 + 80.0000i −0.323887 + 0.323887i
$$248$$ 69.2965 + 69.2965i 0.279421 + 0.279421i
$$249$$ −147.078 52.0000i −0.590676 0.208835i
$$250$$ 44.0000 117.000i 0.176000 0.468000i
$$251$$ −439.820 −1.75227 −0.876136 0.482063i $$-0.839887\pi$$
−0.876136 + 0.482063i $$0.839887\pi$$
$$252$$ 118.794 147.000i 0.471405 0.583333i
$$253$$ 238.000 + 238.000i 0.940711 + 0.940711i
$$254$$ −156.978 −0.618022
$$255$$ −382.385 76.6934i −1.49955 0.300759i
$$256$$ −171.000 −0.667969
$$257$$ 35.3553 35.3553i 0.137569 0.137569i −0.634969 0.772538i $$-0.718987\pi$$
0.772538 + 0.634969i $$0.218987\pi$$
$$258$$ 65.8234 + 137.823i 0.255129 + 0.534199i
$$259$$ 210.000 + 210.000i 0.810811 + 0.810811i
$$260$$ 101.823 135.765i 0.391628 0.522171i
$$261$$ −24.0000 + 29.6985i −0.0919540 + 0.113787i
$$262$$ −27.0000 27.0000i −0.103053 0.103053i
$$263$$ −315.370 + 315.370i −1.19912 + 1.19912i −0.224695 + 0.974429i $$0.572139\pi$$
−0.974429 + 0.224695i $$0.927861\pi$$
$$264$$ −196.000 69.2965i −0.742424 0.262487i
$$265$$ 400.000 + 300.000i 1.50943 + 1.13208i
$$266$$ 49.4975 49.4975i 0.186081 0.186081i
$$267$$ 25.5980 + 53.5980i 0.0958726 + 0.200741i
$$268$$ −96.0000 96.0000i −0.358209 0.358209i
$$269$$ 267.286i 0.993630i −0.867857 0.496815i $$-0.834503\pi$$
0.867857 0.496815i $$-0.165497\pi$$
$$270$$ 86.2635 + 103.844i 0.319494 + 0.384608i
$$271$$ 112.000i 0.413284i 0.978417 + 0.206642i $$0.0662536\pi$$
−0.978417 + 0.206642i $$0.933746\pi$$
$$272$$ 91.9239 91.9239i 0.337955 0.337955i
$$273$$ 224.000 + 79.1960i 0.820513 + 0.290095i
$$274$$ 26.0000i 0.0948905i
$$275$$ 69.2965 + 237.588i 0.251987 + 0.863956i
$$276$$ 288.500 + 102.000i 1.04529 + 0.369565i
$$277$$ 102.000 102.000i 0.368231 0.368231i −0.498601 0.866832i $$-0.666153\pi$$
0.866832 + 0.498601i $$0.166153\pi$$
$$278$$ −97.5807 97.5807i −0.351010 0.351010i
$$279$$ 98.0000 + 79.1960i 0.351254 + 0.283856i
$$280$$ −147.000 + 196.000i −0.525000 + 0.700000i
$$281$$ 296.985i 1.05689i 0.848969 + 0.528443i $$0.177224\pi$$
−0.848969 + 0.528443i $$0.822776\pi$$
$$282$$ −16.2426 + 7.75736i −0.0575980 + 0.0275084i
$$283$$ 102.000 102.000i 0.360424 0.360424i −0.503545 0.863969i $$-0.667971\pi$$
0.863969 + 0.503545i $$0.167971\pi$$
$$284$$ −178.191 −0.627433
$$285$$ −83.1371 124.853i −0.291709 0.438080i
$$286$$ 112.000i 0.391608i
$$287$$ 237.588i 0.827832i
$$288$$ −295.342 + 31.3417i −1.02549 + 0.108825i
$$289$$ 387.000i 1.33910i
$$290$$ 12.7279 16.9706i 0.0438894 0.0585192i
$$291$$ 452.000 + 159.806i 1.55326 + 0.549162i
$$292$$ −117.000 117.000i −0.400685 0.400685i
$$293$$ −185.262 185.262i −0.632293 0.632293i 0.316349 0.948643i $$-0.397543\pi$$
−0.948643 + 0.316349i $$0.897543\pi$$
$$294$$ −138.593 49.0000i −0.471405 0.166667i
$$295$$ −147.000 + 21.0000i −0.498305 + 0.0711864i
$$296$$ 296.985i 1.00333i
$$297$$ −259.995 62.0051i −0.875404 0.208771i
$$298$$ 141.000 + 141.000i 0.473154 + 0.473154i
$$299$$ 384.666i 1.28651i
$$300$$ 149.938 + 167.761i 0.499792 + 0.559203i
$$301$$ −252.000 + 252.000i −0.837209 + 0.837209i
$$302$$ 55.1543 + 55.1543i 0.182630 + 0.182630i
$$303$$ 248.848 118.848i 0.821280 0.392237i
$$304$$ 50.0000 0.164474
$$305$$ 69.2965 9.89949i 0.227202 0.0324574i
$$306$$ −147.078 + 182.000i −0.480648 + 0.594771i
$$307$$ −90.0000 90.0000i −0.293160 0.293160i 0.545168 0.838327i $$-0.316466\pi$$
−0.838327 + 0.545168i $$0.816466\pi$$
$$308$$ 207.889i 0.674966i
$$309$$ −7.07107 + 20.0000i −0.0228837 + 0.0647249i
$$310$$ −56.0000 42.0000i −0.180645 0.135484i
$$311$$ 299.813 0.964030 0.482015 0.876163i $$-0.339905\pi$$
0.482015 + 0.876163i $$0.339905\pi$$
$$312$$ −102.392 214.392i −0.328179 0.687154i
$$313$$ 177.000 177.000i 0.565495 0.565495i −0.365368 0.930863i $$-0.619057\pi$$
0.930863 + 0.365368i $$0.119057\pi$$
$$314$$ 65.0538i 0.207178i
$$315$$ −161.352 + 270.538i −0.512228 + 0.858850i
$$316$$ 168.000 0.531646
$$317$$ 213.546 + 213.546i 0.673647 + 0.673647i 0.958555 0.284908i $$-0.0919629\pi$$
−0.284908 + 0.958555i $$0.591963\pi$$
$$318$$ 270.711 129.289i 0.851291 0.406570i
$$319$$ 42.0000i 0.131661i
$$320$$ 64.3467 9.19239i 0.201083 0.0287262i
$$321$$ −16.9706 6.00000i −0.0528678 0.0186916i
$$322$$ 238.000i 0.739130i
$$323$$ 183.848 183.848i 0.569188 0.569188i
$$324$$ −237.588 + 51.0000i −0.733296 + 0.157407i
$$325$$ −136.000 + 248.000i −0.418462 + 0.763077i
$$326$$ 195.161i 0.598655i
$$327$$ 90.5025 + 189.497i 0.276766 + 0.579503i
$$328$$ −168.000 + 168.000i −0.512195 + 0.512195i
$$329$$ −29.6985 29.6985i −0.0902690 0.0902690i
$$330$$ 145.593 + 29.2010i 0.441191 + 0.0884879i
$$331$$ 102.000 0.308157 0.154079 0.988059i $$-0.450759\pi$$
0.154079 + 0.988059i $$0.450759\pi$$
$$332$$ −110.309 + 110.309i −0.332255 + 0.332255i
$$333$$ −40.2944 379.706i −0.121004 1.14026i
$$334$$ 130.000 0.389222
$$335$$ 181.019 + 135.765i 0.540356 + 0.405267i
$$336$$ −45.2513 94.7487i −0.134676 0.281990i
$$337$$ 253.000 253.000i 0.750742 0.750742i −0.223876 0.974618i $$-0.571871\pi$$
0.974618 + 0.223876i $$0.0718710\pi$$
$$338$$ −28.9914 + 28.9914i −0.0857733 + 0.0857733i
$$339$$ 18.0000 50.9117i 0.0530973 0.150182i
$$340$$ −234.000 + 312.000i −0.688235 + 0.917647i
$$341$$ 138.593 0.406431
$$342$$ −89.4975 + 9.49747i −0.261689 + 0.0277704i
$$343$$ 343.000i 1.00000i
$$344$$ 356.382 1.03599
$$345$$ −500.042 100.291i −1.44940 0.290700i
$$346$$ 316.000i 0.913295i
$$347$$ 169.706 + 169.706i 0.489065 + 0.489065i 0.908011 0.418946i $$-0.137600\pi$$
−0.418946 + 0.908011i $$0.637600\pi$$
$$348$$ 16.4558 + 34.4558i 0.0472869 + 0.0990110i
$$349$$ −446.000 −1.27794 −0.638968 0.769233i $$-0.720639\pi$$
−0.638968 + 0.769233i $$0.720639\pi$$
$$350$$ 84.1457 153.442i 0.240416 0.438406i
$$351$$ −160.000 260.215i −0.455840 0.741354i
$$352$$ −231.000 + 231.000i −0.656250 + 0.656250i
$$353$$ −97.5807 97.5807i −0.276433 0.276433i 0.555250 0.831683i $$-0.312622\pi$$
−0.831683 + 0.555250i $$0.812622\pi$$
$$354$$ −29.6985 + 84.0000i −0.0838940 + 0.237288i
$$355$$ 294.000 42.0000i 0.828169 0.118310i
$$356$$ 59.3970 0.166845
$$357$$ −514.774 182.000i −1.44194 0.509804i
$$358$$ 9.00000 + 9.00000i 0.0251397 + 0.0251397i
$$359$$ 248.902 0.693319 0.346660 0.937991i $$-0.387316\pi$$
0.346660 + 0.937991i $$0.387316\pi$$
$$360$$ 305.392 77.2061i 0.848311 0.214461i
$$361$$ −261.000 −0.722992
$$362$$ 247.487 247.487i 0.683667 0.683667i
$$363$$ 62.2635 29.7365i 0.171525 0.0819189i
$$364$$ 168.000 168.000i 0.461538 0.461538i
$$365$$ 220.617 + 165.463i 0.604431 + 0.453323i
$$366$$ 14.0000 39.5980i 0.0382514 0.108191i
$$367$$ −185.000 185.000i −0.504087 0.504087i 0.408618 0.912705i $$-0.366011\pi$$
−0.912705 + 0.408618i $$0.866011\pi$$
$$368$$ 120.208 120.208i 0.326653 0.326653i
$$369$$ −192.000 + 237.588i −0.520325 + 0.643870i
$$370$$ 30.0000 + 210.000i 0.0810811 + 0.567568i
$$371$$ 494.975 + 494.975i 1.33416 + 1.33416i
$$372$$ 113.698 54.3015i 0.305641 0.145972i
$$373$$ 492.000 + 492.000i 1.31903 + 1.31903i 0.914540 + 0.404494i $$0.132552\pi$$
0.404494 + 0.914540i $$0.367448\pi$$
$$374$$ 257.387i 0.688200i
$$375$$ −286.926 241.451i −0.765136 0.643869i
$$376$$ 42.0000i 0.111702i
$$377$$ −33.9411 + 33.9411i −0.0900295 + 0.0900295i
$$378$$ 98.9949 + 161.000i 0.261891 + 0.425926i
$$379$$ 266.000i 0.701847i −0.936404 0.350923i $$-0.885868\pi$$
0.936404 0.350923i $$-0.114132\pi$$
$$380$$ −148.492 + 21.2132i −0.390770 + 0.0558242i
$$381$$ −156.978 + 444.000i −0.412015 + 1.16535i
$$382$$ 84.0000 84.0000i 0.219895 0.219895i
$$383$$ 134.350 + 134.350i 0.350784 + 0.350784i 0.860401 0.509617i $$-0.170213\pi$$
−0.509617 + 0.860401i $$0.670213\pi$$
$$384$$ −119.000 + 336.583i −0.309896 + 0.876518i
$$385$$ 49.0000 + 343.000i 0.127273 + 0.890909i
$$386$$ 94.7523i 0.245472i
$$387$$ 455.647 48.3532i 1.17738 0.124944i
$$388$$ 339.000 339.000i 0.873711 0.873711i
$$389$$ 329.512 0.847074 0.423537 0.905879i $$-0.360788\pi$$
0.423537 + 0.905879i $$0.360788\pi$$
$$390$$ 94.0589 + 141.255i 0.241177 + 0.362192i
$$391$$ 884.000i 2.26087i
$$392$$ −242.538 + 242.538i −0.618718 + 0.618718i
$$393$$ −103.368 + 49.3675i −0.263022 + 0.125617i
$$394$$ 80.0000i 0.203046i
$$395$$ −277.186 + 39.5980i −0.701736 + 0.100248i
$$396$$ −168.000 + 207.889i −0.424242 + 0.524973i
$$397$$ 30.0000 + 30.0000i 0.0755668 + 0.0755668i 0.743880 0.668313i $$-0.232983\pi$$
−0.668313 + 0.743880i $$0.732983\pi$$
$$398$$ 84.8528 + 84.8528i 0.213198 + 0.213198i
$$399$$ −90.5025 189.497i −0.226823 0.474931i
$$400$$ 120.000 35.0000i 0.300000 0.0875000i
$$401$$ 79.1960i 0.197496i 0.995112 + 0.0987481i $$0.0314838\pi$$
−0.995112 + 0.0987481i $$0.968516\pi$$
$$402$$ 122.510 58.5097i 0.304750 0.145546i
$$403$$ 112.000 + 112.000i 0.277916 + 0.277916i
$$404$$ 275.772i 0.682603i
$$405$$ 379.979 140.146i 0.938220 0.346039i
$$406$$ 21.0000 21.0000i 0.0517241 0.0517241i
$$407$$ −296.985 296.985i −0.729693 0.729693i
$$408$$ 235.307 + 492.693i 0.576732 + 1.20758i
$$409$$ 302.000 0.738386 0.369193 0.929353i $$-0.379634\pi$$
0.369193 + 0.929353i $$0.379634\pi$$
$$410$$ 101.823 135.765i 0.248350 0.331133i
$$411$$ −73.5391 26.0000i −0.178927 0.0632603i
$$412$$ 15.0000 + 15.0000i 0.0364078 + 0.0364078i
$$413$$ −207.889 −0.503364
$$414$$ −192.333 + 238.000i −0.464573 + 0.574879i
$$415$$ 156.000 208.000i 0.375904 0.501205i
$$416$$ −373.352 −0.897482
$$417$$ −373.581 + 178.419i −0.895877 + 0.427864i
$$418$$ −70.0000 + 70.0000i −0.167464 + 0.167464i
$$419$$ 366.281i 0.874180i −0.899418 0.437090i $$-0.856009\pi$$
0.899418 0.437090i $$-0.143991\pi$$
$$420$$ 174.588 + 262.191i 0.415685 + 0.624264i
$$421$$ −614.000 −1.45843 −0.729216 0.684283i $$-0.760115\pi$$
−0.729216 + 0.684283i $$0.760115\pi$$
$$422$$ 60.8112 + 60.8112i 0.144102 + 0.144102i
$$423$$ 5.69848 + 53.6985i 0.0134716 + 0.126947i
$$424$$ 700.000i 1.65094i
$$425$$ 312.541 569.928i 0.735391 1.34101i
$$426$$ 59.3970 168.000i 0.139430 0.394366i
$$427$$ 98.0000 0.229508
$$428$$ −12.7279 + 12.7279i −0.0297381 + 0.0297381i
$$429$$ −316.784 112.000i −0.738424 0.261072i
$$430$$ −252.000 + 36.0000i −0.586047 + 0.0837209i
$$431$$ 554.372i 1.28625i −0.765763 0.643123i $$-0.777639\pi$$
0.765763 0.643123i $$-0.222361\pi$$
$$432$$ −31.3173 + 131.317i −0.0724937 + 0.303975i
$$433$$ −153.000 + 153.000i −0.353349 + 0.353349i −0.861354 0.508005i $$-0.830383\pi$$
0.508005 + 0.861354i $$0.330383\pi$$
$$434$$ −69.2965 69.2965i −0.159669 0.159669i
$$435$$ −35.2721 52.9706i −0.0810852 0.121771i
$$436$$ 210.000 0.481651
$$437$$ 240.416 240.416i 0.550152 0.550152i
$$438$$ 149.309 71.3087i 0.340887 0.162805i
$$439$$ −248.000 −0.564920 −0.282460 0.959279i $$-0.591150\pi$$
−0.282460 + 0.959279i $$0.591150\pi$$
$$440$$ 207.889 277.186i 0.472476 0.629968i
$$441$$ −277.186 + 343.000i −0.628539 + 0.777778i
$$442$$ −208.000 + 208.000i −0.470588 + 0.470588i
$$443$$ −14.1421 + 14.1421i −0.0319236 + 0.0319236i −0.722888 0.690965i $$-0.757186\pi$$
0.690965 + 0.722888i $$0.257186\pi$$
$$444$$ −360.000 127.279i −0.810811 0.286665i
$$445$$ −98.0000 + 14.0000i −0.220225 + 0.0314607i
$$446$$ −335.169 −0.751499
$$447$$ 539.808 257.808i 1.20762 0.576752i
$$448$$ 91.0000 0.203125
$$449$$ −647.710 −1.44256 −0.721280 0.692643i $$-0.756446\pi$$
−0.721280 + 0.692643i $$0.756446\pi$$
$$450$$ −208.146 + 85.4422i −0.462546 + 0.189871i
$$451$$ 336.000i 0.745011i
$$452$$ −38.1838 38.1838i −0.0844774 0.0844774i
$$453$$ 211.154 100.846i 0.466124 0.222617i
$$454$$ −166.000 −0.365639
$$455$$ −237.588 + 316.784i −0.522171 + 0.696228i
$$456$$ −70.0000 + 197.990i −0.153509 + 0.434188i
$$457$$ −313.000 + 313.000i −0.684902 + 0.684902i −0.961100 0.276199i $$-0.910925\pi$$
0.276199 + 0.961100i $$0.410925\pi$$
$$458$$ −264.458 264.458i −0.577419 0.577419i
$$459$$ 367.696 + 598.000i 0.801080 + 1.30283i
$$460$$ −306.000 + 408.000i −0.665217 + 0.886957i
$$461$$ −142.836 −0.309839 −0.154919 0.987927i $$-0.549512\pi$$
−0.154919 + 0.987927i $$0.549512\pi$$
$$462$$ 196.000 + 69.2965i 0.424242 + 0.149992i
$$463$$ 29.0000 + 29.0000i 0.0626350 + 0.0626350i 0.737730 0.675095i $$-0.235898\pi$$
−0.675095 + 0.737730i $$0.735898\pi$$
$$464$$ 21.2132 0.0457181
$$465$$ −174.794 + 116.392i −0.375901 + 0.250305i
$$466$$ 246.000 0.527897
$$467$$ −350.725 + 350.725i −0.751017 + 0.751017i −0.974669 0.223652i $$-0.928202\pi$$
0.223652 + 0.974669i $$0.428202\pi$$
$$468$$ −303.765 + 32.2355i −0.649069 + 0.0688793i
$$469$$ 224.000 + 224.000i 0.477612 + 0.477612i
$$470$$ −4.24264 29.6985i −0.00902690 0.0631883i
$$471$$ 184.000 + 65.0538i 0.390658 + 0.138119i
$$472$$ 147.000 + 147.000i 0.311441 + 0.311441i
$$473$$ 356.382 356.382i 0.753450 0.753450i
$$474$$ −56.0000 + 158.392i −0.118143 + 0.334160i
$$475$$ 240.000 70.0000i 0.505263 0.147368i
$$476$$ −386.080 + 386.080i −0.811093 + 0.811093i
$$477$$ −94.9747 894.975i −0.199108 1.87626i
$$478$$ −206.000 206.000i −0.430962 0.430962i
$$479$$ 79.1960i 0.165336i 0.996577 + 0.0826680i $$0.0263441\pi$$
−0.996577 + 0.0826680i $$0.973656\pi$$
$$480$$ 97.3417 485.335i 0.202795 1.01111i
$$481$$ 480.000i 0.997921i
$$482$$ 9.89949 9.89949i 0.0205384 0.0205384i
$$483$$ −673.166 238.000i −1.39372 0.492754i
$$484$$ 69.0000i 0.142562i
$$485$$ −479.418 + 639.225i −0.988492 + 1.31799i
$$486$$ 31.1127 241.000i 0.0640179 0.495885i
$$487$$ −101.000 + 101.000i −0.207392 + 0.207392i −0.803158 0.595766i $$-0.796849\pi$$
0.595766 + 0.803158i $$0.296849\pi$$
$$488$$ −69.2965 69.2965i −0.142001 0.142001i
$$489$$ −552.000 195.161i −1.12883 0.399103i
$$490$$ 147.000 196.000i 0.300000 0.400000i
$$491$$ 346.482i 0.705667i −0.935686 0.352833i $$-0.885218\pi$$
0.935686 0.352833i $$-0.114782\pi$$
$$492$$ 131.647 + 275.647i 0.267575 + 0.560258i
$$493$$ 78.0000 78.0000i 0.158215 0.158215i
$$494$$ −113.137 −0.229022
$$495$$ 228.186 382.598i 0.460982 0.772925i
$$496$$ 70.0000i 0.141129i
$$497$$ 415.779 0.836577
$$498$$ −67.2304 140.770i −0.135001 0.282670i
$$499$$ 602.000i 1.20641i 0.797585 + 0.603206i $$0.206110\pi$$
−0.797585 + 0.603206i $$0.793890\pi$$
$$500$$ −341.533 + 154.856i −0.683065 + 0.309713i
$$501$$ 130.000 367.696i 0.259481 0.733923i
$$502$$ −311.000 311.000i −0.619522 0.619522i
$$503$$ 626.497 + 626.497i 1.24552 + 1.24552i 0.957678 + 0.287842i $$0.0929379\pi$$
0.287842 + 0.957678i $$0.407062\pi$$
$$504$$ 438.538 46.5376i 0.870114 0.0923366i
$$505$$ 65.0000 + 455.000i 0.128713 + 0.900990i
$$506$$ 336.583i 0.665183i
$$507$$ 53.0086 + 110.991i 0.104553 + 0.218918i
$$508$$ 333.000 + 333.000i 0.655512 + 0.655512i
$$509$$ 386.080i 0.758507i −0.925293 0.379254i $$-0.876181\pi$$
0.925293 0.379254i $$-0.123819\pi$$
$$510$$ −216.156 324.617i −0.423836 0.636505i
$$511$$ 273.000 + 273.000i 0.534247 + 0.534247i
$$512$$ 215.668 + 215.668i 0.421226 + 0.421226i
$$513$$ −62.6346 + 262.635i −0.122095 + 0.511958i
$$514$$ 50.0000 0.0972763
$$515$$ −28.2843 21.2132i −0.0549209 0.0411907i
$$516$$ 152.735 432.000i 0.295998 0.837209i
$$517$$ 42.0000 + 42.0000i 0.0812379 + 0.0812379i
$$518$$ 296.985i 0.573330i
$$519$$ 893.783 + 316.000i 1.72213 + 0.608863i
$$520$$ 392.000 56.0000i 0.753846 0.107692i
$$521$$ 379.009 0.727465 0.363732 0.931503i $$-0.381502\pi$$
0.363732 + 0.931503i $$0.381502\pi$$
$$522$$ −37.9706 + 4.02944i −0.0727405 + 0.00771923i
$$523$$ −642.000 + 642.000i −1.22753 + 1.22753i −0.262639 + 0.964894i $$0.584593\pi$$
−0.964894 + 0.262639i $$0.915407\pi$$
$$524$$ 114.551i 0.218609i
$$525$$ −349.854 391.442i −0.666389 0.745604i
$$526$$ −446.000 −0.847909
$$527$$ −257.387 257.387i −0.488400 0.488400i
$$528$$ 63.9949 + 133.995i 0.121203 + 0.253778i
$$529$$ 627.000i 1.18526i
$$530$$ 70.7107 + 494.975i 0.133416 + 0.933915i
$$531$$ 207.889 + 168.000i 0.391505 + 0.316384i
$$532$$ −210.000 −0.394737
$$533$$ −271.529 + 271.529i −0.509435 + 0.509435i
$$534$$ −19.7990 + 56.0000i −0.0370768 + 0.104869i
$$535$$ 18.0000 24.0000i 0.0336449 0.0448598i
$$536$$ 316.784i 0.591015i
$$537$$ 34.4558 16.4558i 0.0641636 0.0306440i
$$538$$ 189.000 189.000i 0.351301 0.351301i
$$539$$ 485.075i 0.899954i
$$540$$ 37.2944 403.279i 0.0690637 0.746813i
$$541$$ 270.000 0.499076 0.249538 0.968365i $$-0.419721\pi$$
0.249538 + 0.968365i $$0.419721\pi$$
$$542$$ −79.1960 + 79.1960i −0.146118 + 0.146118i
$$543$$ −452.513 947.487i −0.833357 1.74491i
$$544$$ 858.000 1.57721
$$545$$ −346.482 + 49.4975i −0.635747 + 0.0908211i
$$546$$ 102.392 + 214.392i 0.187531 + 0.392659i
$$547$$ 176.000 176.000i 0.321755 0.321755i −0.527685 0.849440i $$-0.676940\pi$$
0.849440 + 0.527685i $$0.176940\pi$$
$$548$$ −55.1543 + 55.1543i −0.100647 + 0.100647i
$$549$$ −98.0000 79.1960i −0.178506 0.144255i
$$550$$ −119.000 + 217.000i −0.216364 + 0.394545i
$$551$$ 42.4264 0.0769989
$$552$$ 307.709 + 644.291i 0.557443 + 1.16719i
$$553$$ −392.000 −0.708861
$$554$$ 144.250 0.260379
$$555$$ 623.970 + 125.147i 1.12427 + 0.225490i
$$556$$ 414.000i 0.744604i
$$557$$ −364.867 364.867i −0.655058 0.655058i 0.299149 0.954206i $$-0.403297\pi$$
−0.954206 + 0.299149i $$0.903297\pi$$
$$558$$ 13.2965 + 125.296i 0.0238288 + 0.224546i
$$559$$ 576.000 1.03041
$$560$$ 173.241 24.7487i 0.309359 0.0441942i
$$561$$ 728.000 + 257.387i 1.29768 + 0.458800i
$$562$$ −210.000 + 210.000i −0.373665 + 0.373665i
$$563$$ 615.183 + 615.183i 1.09269 + 1.09269i 0.995241 + 0.0974464i $$0.0310675\pi$$
0.0974464 + 0.995241i $$0.468933\pi$$
$$564$$ 50.9117 + 18.0000i 0.0902690 + 0.0319149i
$$565$$ 72.0000 + 54.0000i 0.127434 + 0.0955752i
$$566$$ 144.250 0.254858
$$567$$ 554.372 119.000i 0.977728 0.209877i
$$568$$ −294.000 294.000i −0.517606 0.517606i
$$569$$ −28.2843 −0.0497087 −0.0248544 0.999691i $$-0.507912\pi$$
−0.0248544 + 0.999691i $$0.507912\pi$$
$$570$$ 29.4975 147.071i 0.0517500 0.258019i
$$571$$ −734.000 −1.28546 −0.642732 0.766091i $$-0.722199\pi$$
−0.642732 + 0.766091i $$0.722199\pi$$
$$572$$ −237.588 + 237.588i −0.415363 + 0.415363i
$$573$$ −153.588 321.588i −0.268042 0.561235i
$$574$$ 168.000 168.000i 0.292683 0.292683i
$$575$$ 408.708 745.291i 0.710796 1.29616i
$$576$$ −91.0000 73.5391i −0.157986 0.127672i
$$577$$ −647.000 647.000i −1.12132 1.12132i −0.991544 0.129773i $$-0.958575\pi$$
−0.129773 0.991544i $$-0.541425\pi$$
$$578$$ 273.650 273.650i 0.473443 0.473443i
$$579$$ 268.000 + 94.7523i 0.462867 + 0.163648i
$$580$$ −63.0000 + 9.00000i −0.108621 + 0.0155172i
$$581$$ 257.387 257.387i 0.443007 0.443007i
$$582$$ 206.612 + 432.612i 0.355004 + 0.743320i
$$583$$ −700.000 700.000i −1.20069 1.20069i
$$584$$ 386.080i 0.661096i
$$585$$ 493.588 124.784i 0.843740 0.213306i
$$586$$ 262.000i 0.447099i
$$587$$ −630.739 + 630.739i −1.07451 + 1.07451i −0.0775226 + 0.996991i $$0.524701\pi$$
−0.996991 + 0.0775226i $$0.975299\pi$$
$$588$$ 190.055 + 397.945i 0.323223 + 0.676777i
$$589$$ 140.000i 0.237691i
$$590$$ −118.794 89.0955i −0.201346 0.151009i
$$591$$ −226.274 80.0000i −0.382867 0.135364i
$$592$$ −150.000 + 150.000i −0.253378 + 0.253378i
$$593$$ −618.011 618.011i −1.04218 1.04218i −0.999070 0.0431072i $$-0.986274\pi$$
−0.0431072 0.999070i $$-0.513726\pi$$
$$594$$ −140.000 227.688i −0.235690 0.383314i
$$595$$ 546.000 728.000i 0.917647 1.22353i
$$596$$ 598.212i 1.00371i
$$597$$ 324.853 155.147i 0.544142 0.259878i
$$598$$ −272.000 + 272.000i −0.454849 + 0.454849i
$$599$$ −96.1665 −0.160545 −0.0802726 0.996773i $$-0.525579\pi$$
−0.0802726 + 0.996773i $$0.525579\pi$$
$$600$$ −29.4071 + 524.176i −0.0490118 + 0.873626i
$$601$$ 476.000i 0.792013i 0.918248 + 0.396007i $$0.129604\pi$$
−0.918248 + 0.396007i $$0.870396\pi$$
$$602$$ −356.382 −0.591996
$$603$$ −42.9807 405.019i −0.0712780 0.671674i
$$604$$ 234.000i 0.387417i
$$605$$ 16.2635 + 113.844i 0.0268817 + 0.188172i
$$606$$ 260.000 + 91.9239i 0.429043 + 0.151690i
$$607$$ 345.000 + 345.000i 0.568369 + 0.568369i 0.931671 0.363302i $$-0.118351\pi$$
−0.363302 + 0.931671i $$0.618351\pi$$
$$608$$ 233.345 + 233.345i 0.383792 + 0.383792i
$$609$$ −38.3970 80.3970i −0.0630492 0.132015i
$$610$$ 56.0000 + 42.0000i 0.0918033 + 0.0688525i
$$611$$ 67.8823i 0.111100i
$$612$$ 698.080 74.0803i 1.14065 0.121046i
$$613$$ 116.000 + 116.000i 0.189233 + 0.189233i 0.795365 0.606131i $$-0.207279\pi$$
−0.606131 + 0.795365i $$0.707279\pi$$
$$614$$ 127.279i 0.207295i
$$615$$ −282.177 423.765i −0.458824 0.689048i
$$616$$ 343.000 343.000i 0.556818 0.556818i
$$617$$ 468.105 + 468.105i 0.758679 + 0.758679i 0.976082 0.217403i $$-0.0697587\pi$$
−0.217403 + 0.976082i $$0.569759\pi$$
$$618$$ −19.1421 + 9.14214i −0.0309743 + 0.0147931i
$$619$$ 1058.00 1.70921 0.854604 0.519280i $$-0.173800\pi$$
0.854604 + 0.519280i $$0.173800\pi$$
$$620$$ 29.6985 + 207.889i 0.0479008 + 0.335305i
$$621$$ 480.833 + 782.000i 0.774288 + 1.25926i
$$622$$ 212.000 + 212.000i 0.340836 + 0.340836i
$$623$$ −138.593 −0.222461
$$624$$ −56.5685 + 160.000i −0.0906547 + 0.256410i
$$625$$ 527.000 336.000i 0.843200 0.537600i
$$626$$ 250.316 0.399865
$$627$$ 127.990 + 267.990i 0.204131 + 0.427416i
$$628$$ 138.000 138.000i 0.219745 0.219745i
$$629$$ 1103.09i 1.75371i
$$630$$ −305.392 + 77.2061i −0.484749 + 0.122549i
$$631$$ 128.000 0.202853 0.101426 0.994843i $$-0.467659\pi$$
0.101426 + 0.994843i $$0.467659\pi$$
$$632$$ 277.186 + 277.186i 0.438585 + 0.438585i
$$633$$ 232.811 111.189i 0.367790 0.175654i
$$634$$ 302.000i 0.476341i
$$635$$ −627.911 470.933i −0.988836 0.741627i
$$636$$ −848.528 300.000i −1.33416 0.471698i
$$637$$ −392.000 + 392.000i −0.615385 + 0.615385i
$$638$$ −29.6985 + 29.6985i −0.0465493 + 0.0465493i
$$639$$ −415.779 336.000i −0.650671 0.525822i
$$640$$ −476.000 357.000i −0.743750 0.557813i
$$641$$ 277.186i 0.432427i −0.976346 0.216214i $$-0.930629\pi$$
0.976346 0.216214i $$-0.0693708\pi$$
$$642$$ −7.75736 16.2426i −0.0120831 0.0253001i
$$643$$ −636.000 + 636.000i −0.989114 + 0.989114i −0.999941 0.0108278i $$-0.996553\pi$$
0.0108278 + 0.999941i $$0.496553\pi$$
$$644$$ −504.874 + 504.874i −0.783966 + 0.783966i
$$645$$ −150.177 + 748.764i −0.232832 + 1.16087i
$$646$$ 260.000 0.402477
$$647$$ 535.987 535.987i 0.828419 0.828419i −0.158879 0.987298i $$-0.550788\pi$$
0.987298 + 0.158879i $$0.0507881\pi$$
$$648$$ −476.146 307.854i −0.734793 0.475084i
$$649$$ 294.000 0.453005
$$650$$ −271.529 + 79.1960i −0.417737 + 0.121840i
$$651$$ −265.296 + 126.704i −0.407521 + 0.194629i
$$652$$ −414.000 + 414.000i −0.634969 + 0.634969i
$$653$$ −380.423 + 380.423i −0.582578 + 0.582578i −0.935611 0.353033i $$-0.885150\pi$$
0.353033 + 0.935611i $$0.385150\pi$$
$$654$$ −70.0000 + 197.990i −0.107034 + 0.302737i
$$655$$ −27.0000 189.000i −0.0412214 0.288550i
$$656$$ 169.706 0.258698
$$657$$ −52.3827 493.617i −0.0797301 0.751320i
$$658$$ 42.0000i 0.0638298i
$$659$$ 253.144 0.384134 0.192067 0.981382i $$-0.438481\pi$$
0.192067 + 0.981382i $$0.438481\pi$$
$$660$$ −246.905 370.794i −0.374098 0.561809i
$$661$$ 1106.00i 1.67322i −0.547797 0.836611i $$-0.684533\pi$$
0.547797 0.836611i $$-0.315467\pi$$
$$662$$ 72.1249 + 72.1249i 0.108950 + 0.108950i
$$663$$ 380.313 + 796.313i 0.573624 + 1.20108i
$$664$$ −364.000 −0.548193
$$665$$ 346.482 49.4975i 0.521026 0.0744323i
$$666$$ 240.000 296.985i 0.360360 0.445923i
$$667$$ 102.000 102.000i 0.152924 0.152924i
$$668$$ −275.772 275.772i −0.412832 0.412832i
$$669$$ −335.169 + 948.000i −0.500999 + 1.41704i
$$670$$ 32.0000 + 224.000i 0.0477612 + 0.334328i
$$671$$ −138.593 −0.206547
$$672$$ 231.000 653.367i 0.343750 0.972272i
$$673$$ 393.000 + 393.000i 0.583952 + 0.583952i 0.935987 0.352035i $$-0.114510\pi$$
−0.352035 + 0.935987i $$0.614510\pi$$
$$674$$ 357.796 0.530855
$$675$$ 33.5212 + 674.167i 0.0496611 + 0.998766i
$$676$$ 123.000 0.181953
$$677$$ 144.250 144.250i 0.213072 0.213072i −0.592499 0.805571i $$-0.701859\pi$$
0.805571 + 0.592499i $$0.201859\pi$$
$$678$$ 48.7279 23.2721i 0.0718701 0.0343246i
$$679$$ −791.000 + 791.000i −1.16495 + 1.16495i
$$680$$ −900.854 + 128.693i −1.32479 + 0.189255i
$$681$$ −166.000 + 469.519i −0.243759 + 0.689455i
$$682$$ 98.0000 + 98.0000i 0.143695 + 0.143695i
$$683$$ −592.555 + 592.555i −0.867578 + 0.867578i −0.992204 0.124626i $$-0.960227\pi$$
0.124626 + 0.992204i $$0.460227\pi$$
$$684$$ 210.000 + 169.706i 0.307018 + 0.248108i
$$685$$ 78.0000 104.000i 0.113869 0.151825i
$$686$$ 242.538 242.538i 0.353553 0.353553i
$$687$$ −1012.46 + 483.542i −1.47374 + 0.703846i
$$688$$ −180.000 180.000i −0.261628 0.261628i
$$689$$ 1131.37i 1.64205i
$$690$$ −282.666 424.500i −0.409661 0.615217i
$$691$$ 574.000i 0.830680i −0.909666 0.415340i $$-0.863663\pi$$
0.909666 0.415340i $$-0.136337\pi$$
$$692$$ 670.337 670.337i 0.968695 0.968695i
$$693$$ 392.000 485.075i 0.565657 0.699964i
$$694$$ 240.000i 0.345821i
$$695$$ −97.5807 683.065i −0.140404 0.982828i
$$696$$ −29.6985 + 84.0000i −0.0426702 + 0.120690i
$$697$$ 624.000 624.000i 0.895265 0.895265i
$$698$$ −315.370 315.370i −0.451819 0.451819i
$$699$$ 246.000 695.793i 0.351931 0.995412i
$$700$$ −504.000 + 147.000i −0.720000 + 0.210000i
$$701$$ 1118.64i 1.59578i 0.602802 + 0.797891i $$0.294051\pi$$
−0.602802 + 0.797891i $$0.705949\pi$$
$$702$$ 70.8629 297.137i 0.100944 0.423272i
$$703$$ −300.000 + 300.000i −0.426743 + 0.426743i
$$704$$ −128.693 −0.182803
$$705$$ −88.2426 17.6985i −0.125167 0.0251042i
$$706$$ 138.000i 0.195467i
$$707$$ 643.467i 0.910137i
$$708$$ 241.191 115.191i 0.340665 0.162699i
$$709$$ 546.000i 0.770099i 0.922896 + 0.385049i $$0.125816\pi$$
−0.922896 + 0.385049i $$0.874184\pi$$
$$710$$ 237.588 + 178.191i 0.334631 + 0.250973i
$$711$$ 392.000 + 316.784i 0.551336 + 0.445547i
$$712$$ 98.0000 + 98.0000i 0.137640 + 0.137640i
$$713$$ −336.583 336.583i −0.472066 0.472066i
$$714$$ −235.307 492.693i −0.329561 0.690047i
$$715$$ 336.000 448.000i 0.469930 0.626573i
$$716$$ 38.1838i 0.0533293i
$$717$$ −788.656 + 376.656i −1.09994 + 0.525322i
$$718$$ 176.000 + 176.000i 0.245125 + 0.245125i
$$719$$ 277.186i 0.385516i −0.981246 0.192758i $$-0.938257\pi$$
0.981246 0.192758i $$-0.0617432\pi$$
$$720$$ −193.241 115.251i −0.268391 0.160071i
$$721$$ −35.0000 35.0000i −0.0485437 0.0485437i
$$722$$ −184.555 184.555i −0.255616 0.255616i
$$723$$ −18.1005 37.8995i −0.0250353 0.0524198i
$$724$$ −1050.00 −1.45028
$$725$$ 101.823 29.6985i 0.140446 0.0409634i
$$726$$ 65.0538 + 23.0000i 0.0896058 + 0.0316804i
$$727$$ 225.000 + 225.000i 0.309491 + 0.309491i 0.844712 0.535221i $$-0.179772\pi$$
−0.535221 + 0.844712i $$0.679772\pi$$
$$728$$ 554.372 0.761500
$$729$$ −650.538 329.000i −0.892371 0.451303i
$$730$$ 39.0000 + 273.000i 0.0534247 + 0.373973i
$$731$$ −1323.70 −1.81081
$$732$$ −113.698 + 54.3015i −0.155326 + 0.0741824i
$$733$$ −124.000 + 124.000i −0.169168 + 0.169168i −0.786614 0.617446i $$-0.788168\pi$$
0.617446 + 0.786614i $$0.288168\pi$$
$$734$$ 261.630i 0.356443i
$$735$$ −407.372 611.779i −0.554247 0.832352i
$$736$$ 1122.00 1.52446
$$737$$ −316.784 316.784i −0.429829 0.429829i
$$738$$ −303.765 + 32.2355i −0.411605 + 0.0436795i
$$739$$ 350.000i 0.473613i −0.971557 0.236806i $$-0.923899\pi$$
0.971557 0.236806i $$-0.0761007\pi$$
$$740$$ 381.838 509.117i 0.515997 0.687996i
$$741$$ −113.137 + 320.000i −0.152682 + 0.431849i
$$742$$ 700.000i 0.943396i
$$743$$ 666.095 666.095i 0.896493 0.896493i −0.0986307 0.995124i $$-0.531446\pi$$
0.995124 + 0.0986307i $$0.0314463\pi$$
$$744$$ 277.186 + 98.0000i 0.372562 + 0.131720i
$$745$$ 141.000 + 987.000i 0.189262 + 1.32483i
$$746$$ 695.793i 0.932698i
$$747$$ −465.387 + 49.3869i −0.623008 + 0.0661136i
$$748$$ 546.000 546.000i 0.729947 0.729947i
$$749$$ 29.6985 29.6985i 0.0396508 0.0396508i
$$750$$ −32.1558 373.619i −0.0428744 0.498158i
$$751$$ −1172.00 −1.56059 −0.780293 0.625414i $$-0.784930\pi$$
−0.780293 + 0.625414i $$0.784930\pi$$
$$752$$ 21.2132 21.2132i 0.0282090 0.0282090i
$$753$$ −1190.64 + 568.641i −1.58120 + 0.755167i
$$754$$ −48.0000 −0.0636605
$$755$$ 55.1543 + 386.080i 0.0730521 + 0.511365i
$$756$$ 131.533 551.533i 0.173985 0.729540i
$$757$$ 302.000 302.000i 0.398943 0.398943i −0.478917 0.877860i $$-0.658971\pi$$
0.877860 + 0.478917i $$0.158971\pi$$
$$758$$ 188.090 188.090i 0.248140 0.248140i
$$759$$ 952.000 + 336.583i 1.25428 + 0.443456i
$$760$$ −280.000 210.000i −0.368421 0.276316i
$$761$$ −701.450 −0.921748 −0.460874 0.887466i $$-0.652464\pi$$
−0.460874 + 0.887466i $$0.652464\pi$$
$$762$$ −424.955 + 202.955i −0.557684 + 0.266346i
$$763$$ −490.000 −0.642202
$$764$$ −356.382 −0.466468
$$765$$ −1134.31 + 286.765i −1.48276 + 0.374857i
$$766$$ 190.000i 0.248042i
$$767$$ 237.588 + 237.588i 0.309763 + 0.309763i
$$768$$ −462.915 + 221.085i −0.602754 + 0.287871i
$$769$$ 436.000 0.566970 0.283485 0.958977i $$-0.408509\pi$$
0.283485 + 0.958977i $$0.408509\pi$$
$$770$$ −207.889 + 277.186i −0.269986 + 0.359982i
$$771$$ 50.0000 141.421i 0.0648508 0.183426i
$$772$$ 201.000 201.000i 0.260363 0.260363i
$$773$$ 684.479 + 684.479i 0.885484 + 0.885484i 0.994085 0.108601i $$-0.0346371\pi$$
−0.108601 + 0.994085i $$0.534637\pi$$
$$774$$ 356.382 + 288.000i 0.460442 + 0.372093i
$$775$$ −98.0000 336.000i −0.126452 0.433548i
$$776$$ 1118.64 1.44155
$$777$$ 840.000 + 296.985i 1.08108 + 0.382220i
$$778$$ 233.000 + 233.000i 0.299486 + 0.299486i
$$779$$ 339.411 0.435701
$$780$$ 100.118 499.176i 0.128356 0.639969i
$$781$$ −588.000 −0.752881