# Properties

 Label 105.3.k.b.62.1 Level 105 Weight 3 Character 105.62 Analytic conductor 2.861 Analytic rank 0 Dimension 4 CM no Inner twists 4

# Learn more about

## Newspace parameters

 Level: $$N$$ $$=$$ $$105 = 3 \cdot 5 \cdot 7$$ Weight: $$k$$ $$=$$ $$3$$ Character orbit: $$[\chi]$$ $$=$$ 105.k (of order $$4$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.86104277578$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(i)$$ Coefficient field: $$\Q(\zeta_{8})$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

## Embedding invariants

 Embedding label 62.1 Root $$-0.707107 + 0.707107i$$ of $$x^{4} + 1$$ Character $$\chi$$ $$=$$ 105.62 Dual form 105.3.k.b.83.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.707107 + 0.707107i) q^{2} +(1.29289 + 2.70711i) q^{3} +3.00000i q^{4} +(-0.707107 + 4.94975i) q^{5} +(-2.82843 - 1.00000i) q^{6} -7.00000i q^{7} +(-4.94975 - 4.94975i) q^{8} +(-5.65685 + 7.00000i) q^{9} +O(q^{10})$$ $$q+(-0.707107 + 0.707107i) q^{2} +(1.29289 + 2.70711i) q^{3} +3.00000i q^{4} +(-0.707107 + 4.94975i) q^{5} +(-2.82843 - 1.00000i) q^{6} -7.00000i q^{7} +(-4.94975 - 4.94975i) q^{8} +(-5.65685 + 7.00000i) q^{9} +(-3.00000 - 4.00000i) q^{10} -9.89949i q^{11} +(-8.12132 + 3.87868i) q^{12} +(8.00000 + 8.00000i) q^{13} +(4.94975 + 4.94975i) q^{14} +(-14.3137 + 4.48528i) q^{15} -5.00000 q^{16} +(18.3848 + 18.3848i) q^{17} +(-0.949747 - 8.94975i) q^{18} -10.0000 q^{19} +(-14.8492 - 2.12132i) q^{20} +(18.9497 - 9.05025i) q^{21} +(7.00000 + 7.00000i) q^{22} +(24.0416 + 24.0416i) q^{23} +(7.00000 - 19.7990i) q^{24} +(-24.0000 - 7.00000i) q^{25} -11.3137 q^{26} +(-26.2635 - 6.26346i) q^{27} +21.0000 q^{28} +4.24264 q^{29} +(6.94975 - 13.2929i) q^{30} -14.0000i q^{31} +(23.3345 - 23.3345i) q^{32} +(26.7990 - 12.7990i) q^{33} -26.0000 q^{34} +(34.6482 + 4.94975i) q^{35} +(-21.0000 - 16.9706i) q^{36} +(30.0000 + 30.0000i) q^{37} +(7.07107 - 7.07107i) q^{38} +(-11.3137 + 32.0000i) q^{39} +(28.0000 - 21.0000i) q^{40} +33.9411 q^{41} +(-7.00000 + 19.7990i) q^{42} +(36.0000 - 36.0000i) q^{43} +29.6985 q^{44} +(-30.6482 - 32.9497i) q^{45} -34.0000 q^{46} +(4.24264 + 4.24264i) q^{47} +(-6.46447 - 13.5355i) q^{48} -49.0000 q^{49} +(21.9203 - 12.0208i) q^{50} +(-26.0000 + 73.5391i) q^{51} +(-24.0000 + 24.0000i) q^{52} +(-70.7107 - 70.7107i) q^{53} +(23.0000 - 14.1421i) q^{54} +(49.0000 + 7.00000i) q^{55} +(-34.6482 + 34.6482i) q^{56} +(-12.9289 - 27.0711i) q^{57} +(-3.00000 + 3.00000i) q^{58} +29.6985i q^{59} +(-13.4558 - 42.9411i) q^{60} +14.0000i q^{61} +(9.89949 + 9.89949i) q^{62} +(49.0000 + 39.5980i) q^{63} +13.0000i q^{64} +(-45.2548 + 33.9411i) q^{65} +(-9.89949 + 28.0000i) q^{66} +(32.0000 + 32.0000i) q^{67} +(-55.1543 + 55.1543i) q^{68} +(-34.0000 + 96.1665i) q^{69} +(-28.0000 + 21.0000i) q^{70} -59.3970i q^{71} +(62.6482 - 6.64823i) q^{72} +(39.0000 + 39.0000i) q^{73} -42.4264 q^{74} +(-12.0797 - 74.0208i) q^{75} -30.0000i q^{76} -69.2965 q^{77} +(-14.6274 - 30.6274i) q^{78} -56.0000i q^{79} +(3.53553 - 24.7487i) q^{80} +(-17.0000 - 79.1960i) q^{81} +(-24.0000 + 24.0000i) q^{82} +(36.7696 - 36.7696i) q^{83} +(27.1508 + 56.8492i) q^{84} +(-104.000 + 78.0000i) q^{85} +50.9117i q^{86} +(5.48528 + 11.4853i) q^{87} +(-49.0000 + 49.0000i) q^{88} +19.7990i q^{89} +(44.9706 + 1.62742i) q^{90} +(56.0000 - 56.0000i) q^{91} +(-72.1249 + 72.1249i) q^{92} +(37.8995 - 18.1005i) q^{93} -6.00000 q^{94} +(7.07107 - 49.4975i) q^{95} +(93.3381 + 33.0000i) q^{96} +(113.000 - 113.000i) q^{97} +(34.6482 - 34.6482i) q^{98} +(69.2965 + 56.0000i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q + 8q^{3} + O(q^{10})$$ $$4q + 8q^{3} - 12q^{10} - 24q^{12} + 32q^{13} - 12q^{15} - 20q^{16} + 16q^{18} - 40q^{19} + 56q^{21} + 28q^{22} + 28q^{24} - 96q^{25} - 40q^{27} + 84q^{28} + 8q^{30} + 28q^{33} - 104q^{34} - 84q^{36} + 120q^{37} + 112q^{40} - 28q^{42} + 144q^{43} + 16q^{45} - 136q^{46} - 40q^{48} - 196q^{49} - 104q^{51} - 96q^{52} + 92q^{54} + 196q^{55} - 80q^{57} - 12q^{58} + 48q^{60} + 196q^{63} + 128q^{67} - 136q^{69} - 112q^{70} + 112q^{72} + 156q^{73} - 136q^{75} + 32q^{78} - 68q^{81} - 96q^{82} + 168q^{84} - 416q^{85} - 12q^{87} - 196q^{88} + 112q^{90} + 224q^{91} + 112q^{93} - 24q^{94} + 452q^{97} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/105\mathbb{Z}\right)^\times$$.

 $$n$$ $$22$$ $$31$$ $$71$$ $$\chi(n)$$ $$e\left(\frac{1}{4}\right)$$ $$-1$$ $$-1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.707107 + 0.707107i −0.353553 + 0.353553i −0.861430 0.507877i $$-0.830431\pi$$
0.507877 + 0.861430i $$0.330431\pi$$
$$3$$ 1.29289 + 2.70711i 0.430964 + 0.902369i
$$4$$ 3.00000i 0.750000i
$$5$$ −0.707107 + 4.94975i −0.141421 + 0.989949i
$$6$$ −2.82843 1.00000i −0.471405 0.166667i
$$7$$ 7.00000i 1.00000i
$$8$$ −4.94975 4.94975i −0.618718 0.618718i
$$9$$ −5.65685 + 7.00000i −0.628539 + 0.777778i
$$10$$ −3.00000 4.00000i −0.300000 0.400000i
$$11$$ 9.89949i 0.899954i −0.893040 0.449977i $$-0.851432\pi$$
0.893040 0.449977i $$-0.148568\pi$$
$$12$$ −8.12132 + 3.87868i −0.676777 + 0.323223i
$$13$$ 8.00000 + 8.00000i 0.615385 + 0.615385i 0.944344 0.328959i $$-0.106698\pi$$
−0.328959 + 0.944344i $$0.606698\pi$$
$$14$$ 4.94975 + 4.94975i 0.353553 + 0.353553i
$$15$$ −14.3137 + 4.48528i −0.954247 + 0.299019i
$$16$$ −5.00000 −0.312500
$$17$$ 18.3848 + 18.3848i 1.08146 + 1.08146i 0.996374 + 0.0850836i $$0.0271157\pi$$
0.0850836 + 0.996374i $$0.472884\pi$$
$$18$$ −0.949747 8.94975i −0.0527637 0.497208i
$$19$$ −10.0000 −0.526316 −0.263158 0.964753i $$-0.584764\pi$$
−0.263158 + 0.964753i $$0.584764\pi$$
$$20$$ −14.8492 2.12132i −0.742462 0.106066i
$$21$$ 18.9497 9.05025i 0.902369 0.430964i
$$22$$ 7.00000 + 7.00000i 0.318182 + 0.318182i
$$23$$ 24.0416 + 24.0416i 1.04529 + 1.04529i 0.998925 + 0.0463637i $$0.0147633\pi$$
0.0463637 + 0.998925i $$0.485237\pi$$
$$24$$ 7.00000 19.7990i 0.291667 0.824958i
$$25$$ −24.0000 7.00000i −0.960000 0.280000i
$$26$$ −11.3137 −0.435143
$$27$$ −26.2635 6.26346i −0.972721 0.231980i
$$28$$ 21.0000 0.750000
$$29$$ 4.24264 0.146298 0.0731490 0.997321i $$-0.476695\pi$$
0.0731490 + 0.997321i $$0.476695\pi$$
$$30$$ 6.94975 13.2929i 0.231658 0.443096i
$$31$$ 14.0000i 0.451613i −0.974172 0.225806i $$-0.927498\pi$$
0.974172 0.225806i $$-0.0725017\pi$$
$$32$$ 23.3345 23.3345i 0.729204 0.729204i
$$33$$ 26.7990 12.7990i 0.812091 0.387848i
$$34$$ −26.0000 −0.764706
$$35$$ 34.6482 + 4.94975i 0.989949 + 0.141421i
$$36$$ −21.0000 16.9706i −0.583333 0.471405i
$$37$$ 30.0000 + 30.0000i 0.810811 + 0.810811i 0.984755 0.173945i $$-0.0556514\pi$$
−0.173945 + 0.984755i $$0.555651\pi$$
$$38$$ 7.07107 7.07107i 0.186081 0.186081i
$$39$$ −11.3137 + 32.0000i −0.290095 + 0.820513i
$$40$$ 28.0000 21.0000i 0.700000 0.525000i
$$41$$ 33.9411 0.827832 0.413916 0.910315i $$-0.364161\pi$$
0.413916 + 0.910315i $$0.364161\pi$$
$$42$$ −7.00000 + 19.7990i −0.166667 + 0.471405i
$$43$$ 36.0000 36.0000i 0.837209 0.837209i −0.151281 0.988491i $$-0.548340\pi$$
0.988491 + 0.151281i $$0.0483400\pi$$
$$44$$ 29.6985 0.674966
$$45$$ −30.6482 32.9497i −0.681072 0.732217i
$$46$$ −34.0000 −0.739130
$$47$$ 4.24264 + 4.24264i 0.0902690 + 0.0902690i 0.750799 0.660530i $$-0.229669\pi$$
−0.660530 + 0.750799i $$0.729669\pi$$
$$48$$ −6.46447 13.5355i −0.134676 0.281990i
$$49$$ −49.0000 −1.00000
$$50$$ 21.9203 12.0208i 0.438406 0.240416i
$$51$$ −26.0000 + 73.5391i −0.509804 + 1.44194i
$$52$$ −24.0000 + 24.0000i −0.461538 + 0.461538i
$$53$$ −70.7107 70.7107i −1.33416 1.33416i −0.901606 0.432557i $$-0.857611\pi$$
−0.432557 0.901606i $$-0.642389\pi$$
$$54$$ 23.0000 14.1421i 0.425926 0.261891i
$$55$$ 49.0000 + 7.00000i 0.890909 + 0.127273i
$$56$$ −34.6482 + 34.6482i −0.618718 + 0.618718i
$$57$$ −12.9289 27.0711i −0.226823 0.474931i
$$58$$ −3.00000 + 3.00000i −0.0517241 + 0.0517241i
$$59$$ 29.6985i 0.503364i 0.967810 + 0.251682i $$0.0809837\pi$$
−0.967810 + 0.251682i $$0.919016\pi$$
$$60$$ −13.4558 42.9411i −0.224264 0.715685i
$$61$$ 14.0000i 0.229508i 0.993394 + 0.114754i $$0.0366080\pi$$
−0.993394 + 0.114754i $$0.963392\pi$$
$$62$$ 9.89949 + 9.89949i 0.159669 + 0.159669i
$$63$$ 49.0000 + 39.5980i 0.777778 + 0.628539i
$$64$$ 13.0000i 0.203125i
$$65$$ −45.2548 + 33.9411i −0.696228 + 0.522171i
$$66$$ −9.89949 + 28.0000i −0.149992 + 0.424242i
$$67$$ 32.0000 + 32.0000i 0.477612 + 0.477612i 0.904367 0.426755i $$-0.140343\pi$$
−0.426755 + 0.904367i $$0.640343\pi$$
$$68$$ −55.1543 + 55.1543i −0.811093 + 0.811093i
$$69$$ −34.0000 + 96.1665i −0.492754 + 1.39372i
$$70$$ −28.0000 + 21.0000i −0.400000 + 0.300000i
$$71$$ 59.3970i 0.836577i −0.908314 0.418289i $$-0.862630\pi$$
0.908314 0.418289i $$-0.137370\pi$$
$$72$$ 62.6482 6.64823i 0.870114 0.0923366i
$$73$$ 39.0000 + 39.0000i 0.534247 + 0.534247i 0.921833 0.387587i $$-0.126691\pi$$
−0.387587 + 0.921833i $$0.626691\pi$$
$$74$$ −42.4264 −0.573330
$$75$$ −12.0797 74.0208i −0.161063 0.986944i
$$76$$ 30.0000i 0.394737i
$$77$$ −69.2965 −0.899954
$$78$$ −14.6274 30.6274i −0.187531 0.392659i
$$79$$ 56.0000i 0.708861i −0.935082 0.354430i $$-0.884675\pi$$
0.935082 0.354430i $$-0.115325\pi$$
$$80$$ 3.53553 24.7487i 0.0441942 0.309359i
$$81$$ −17.0000 79.1960i −0.209877 0.977728i
$$82$$ −24.0000 + 24.0000i −0.292683 + 0.292683i
$$83$$ 36.7696 36.7696i 0.443007 0.443007i −0.450015 0.893021i $$-0.648581\pi$$
0.893021 + 0.450015i $$0.148581\pi$$
$$84$$ 27.1508 + 56.8492i 0.323223 + 0.676777i
$$85$$ −104.000 + 78.0000i −1.22353 + 0.917647i
$$86$$ 50.9117i 0.591996i
$$87$$ 5.48528 + 11.4853i 0.0630492 + 0.132015i
$$88$$ −49.0000 + 49.0000i −0.556818 + 0.556818i
$$89$$ 19.7990i 0.222461i 0.993795 + 0.111230i $$0.0354791\pi$$
−0.993795 + 0.111230i $$0.964521\pi$$
$$90$$ 44.9706 + 1.62742i 0.499673 + 0.0180824i
$$91$$ 56.0000 56.0000i 0.615385 0.615385i
$$92$$ −72.1249 + 72.1249i −0.783966 + 0.783966i
$$93$$ 37.8995 18.1005i 0.407521 0.194629i
$$94$$ −6.00000 −0.0638298
$$95$$ 7.07107 49.4975i 0.0744323 0.521026i
$$96$$ 93.3381 + 33.0000i 0.972272 + 0.343750i
$$97$$ 113.000 113.000i 1.16495 1.16495i 0.181571 0.983378i $$-0.441882\pi$$
0.983378 0.181571i $$-0.0581181\pi$$
$$98$$ 34.6482 34.6482i 0.353553 0.353553i
$$99$$ 69.2965 + 56.0000i 0.699964 + 0.565657i
$$100$$ 21.0000 72.0000i 0.210000 0.720000i
$$101$$ −91.9239 −0.910137 −0.455069 0.890456i $$-0.650385\pi$$
−0.455069 + 0.890456i $$0.650385\pi$$
$$102$$ −33.6152 70.3848i −0.329561 0.690047i
$$103$$ −5.00000 5.00000i −0.0485437 0.0485437i 0.682418 0.730962i $$-0.260928\pi$$
−0.730962 + 0.682418i $$0.760928\pi$$
$$104$$ 79.1960i 0.761500i
$$105$$ 31.3970 + 100.196i 0.299019 + 0.954247i
$$106$$ 100.000 0.943396
$$107$$ 4.24264 4.24264i 0.0396508 0.0396508i −0.687003 0.726654i $$-0.741074\pi$$
0.726654 + 0.687003i $$0.241074\pi$$
$$108$$ 18.7904 78.7904i 0.173985 0.729540i
$$109$$ 70.0000i 0.642202i −0.947045 0.321101i $$-0.895947\pi$$
0.947045 0.321101i $$-0.104053\pi$$
$$110$$ −39.5980 + 29.6985i −0.359982 + 0.269986i
$$111$$ −42.4264 + 120.000i −0.382220 + 1.08108i
$$112$$ 35.0000i 0.312500i
$$113$$ −12.7279 12.7279i −0.112636 0.112636i 0.648542 0.761179i $$-0.275379\pi$$
−0.761179 + 0.648542i $$0.775379\pi$$
$$114$$ 28.2843 + 10.0000i 0.248108 + 0.0877193i
$$115$$ −136.000 + 102.000i −1.18261 + 0.886957i
$$116$$ 12.7279i 0.109723i
$$117$$ −101.255 + 10.7452i −0.865426 + 0.0918390i
$$118$$ −21.0000 21.0000i −0.177966 0.177966i
$$119$$ 128.693 128.693i 1.08146 1.08146i
$$120$$ 93.0503 + 48.6482i 0.775419 + 0.405402i
$$121$$ 23.0000 0.190083
$$122$$ −9.89949 9.89949i −0.0811434 0.0811434i
$$123$$ 43.8823 + 91.8823i 0.356766 + 0.747010i
$$124$$ 42.0000 0.338710
$$125$$ 51.6188 113.844i 0.412950 0.910754i
$$126$$ −62.6482 + 6.64823i −0.497208 + 0.0527637i
$$127$$ −111.000 111.000i −0.874016 0.874016i 0.118892 0.992907i $$-0.462066\pi$$
−0.992907 + 0.118892i $$0.962066\pi$$
$$128$$ 84.1457 + 84.1457i 0.657388 + 0.657388i
$$129$$ 144.000 + 50.9117i 1.11628 + 0.394664i
$$130$$ 8.00000 56.0000i 0.0615385 0.430769i
$$131$$ 38.1838 0.291479 0.145740 0.989323i $$-0.453444\pi$$
0.145740 + 0.989323i $$0.453444\pi$$
$$132$$ 38.3970 + 80.3970i 0.290886 + 0.609068i
$$133$$ 70.0000i 0.526316i
$$134$$ −45.2548 −0.337723
$$135$$ 49.5736 125.569i 0.367212 0.930137i
$$136$$ 182.000i 1.33824i
$$137$$ 18.3848 18.3848i 0.134195 0.134195i −0.636818 0.771014i $$-0.719750\pi$$
0.771014 + 0.636818i $$0.219750\pi$$
$$138$$ −43.9584 92.0416i −0.318539 0.666968i
$$139$$ −138.000 −0.992806 −0.496403 0.868092i $$-0.665346\pi$$
−0.496403 + 0.868092i $$0.665346\pi$$
$$140$$ −14.8492 + 103.945i −0.106066 + 0.742462i
$$141$$ −6.00000 + 16.9706i −0.0425532 + 0.120359i
$$142$$ 42.0000 + 42.0000i 0.295775 + 0.295775i
$$143$$ 79.1960 79.1960i 0.553818 0.553818i
$$144$$ 28.2843 35.0000i 0.196419 0.243056i
$$145$$ −3.00000 + 21.0000i −0.0206897 + 0.144828i
$$146$$ −55.1543 −0.377769
$$147$$ −63.3518 132.648i −0.430964 0.902369i
$$148$$ −90.0000 + 90.0000i −0.608108 + 0.608108i
$$149$$ −199.404 −1.33828 −0.669141 0.743135i $$-0.733338\pi$$
−0.669141 + 0.743135i $$0.733338\pi$$
$$150$$ 60.8823 + 43.7990i 0.405882 + 0.291993i
$$151$$ 78.0000 0.516556 0.258278 0.966071i $$-0.416845\pi$$
0.258278 + 0.966071i $$0.416845\pi$$
$$152$$ 49.4975 + 49.4975i 0.325641 + 0.325641i
$$153$$ −232.693 + 24.6934i −1.52087 + 0.161395i
$$154$$ 49.0000 49.0000i 0.318182 0.318182i
$$155$$ 69.2965 + 9.89949i 0.447074 + 0.0638677i
$$156$$ −96.0000 33.9411i −0.615385 0.217571i
$$157$$ 46.0000 46.0000i 0.292994 0.292994i −0.545268 0.838262i $$-0.683572\pi$$
0.838262 + 0.545268i $$0.183572\pi$$
$$158$$ 39.5980 + 39.5980i 0.250620 + 0.250620i
$$159$$ 100.000 282.843i 0.628931 1.77888i
$$160$$ 99.0000 + 132.000i 0.618750 + 0.825000i
$$161$$ 168.291 168.291i 1.04529 1.04529i
$$162$$ 68.0208 + 43.9792i 0.419882 + 0.271476i
$$163$$ −138.000 + 138.000i −0.846626 + 0.846626i −0.989710 0.143085i $$-0.954298\pi$$
0.143085 + 0.989710i $$0.454298\pi$$
$$164$$ 101.823i 0.620874i
$$165$$ 44.4020 + 141.698i 0.269103 + 0.858779i
$$166$$ 52.0000i 0.313253i
$$167$$ −91.9239 91.9239i −0.550442 0.550442i 0.376126 0.926568i $$-0.377256\pi$$
−0.926568 + 0.376126i $$0.877256\pi$$
$$168$$ −138.593 49.0000i −0.824958 0.291667i
$$169$$ 41.0000i 0.242604i
$$170$$ 18.3848 128.693i 0.108146 0.757020i
$$171$$ 56.5685 70.0000i 0.330810 0.409357i
$$172$$ 108.000 + 108.000i 0.627907 + 0.627907i
$$173$$ −223.446 + 223.446i −1.29159 + 1.29159i −0.357793 + 0.933801i $$0.616471\pi$$
−0.933801 + 0.357793i $$0.883529\pi$$
$$174$$ −12.0000 4.24264i −0.0689655 0.0243830i
$$175$$ −49.0000 + 168.000i −0.280000 + 0.960000i
$$176$$ 49.4975i 0.281236i
$$177$$ −80.3970 + 38.3970i −0.454220 + 0.216932i
$$178$$ −14.0000 14.0000i −0.0786517 0.0786517i
$$179$$ −12.7279 −0.0711057 −0.0355529 0.999368i $$-0.511319\pi$$
−0.0355529 + 0.999368i $$0.511319\pi$$
$$180$$ 98.8492 91.9447i 0.549162 0.510804i
$$181$$ 350.000i 1.93370i 0.255342 + 0.966851i $$0.417812\pi$$
−0.255342 + 0.966851i $$0.582188\pi$$
$$182$$ 79.1960i 0.435143i
$$183$$ −37.8995 + 18.1005i −0.207101 + 0.0989099i
$$184$$ 238.000i 1.29348i
$$185$$ −169.706 + 127.279i −0.917328 + 0.687996i
$$186$$ −14.0000 + 39.5980i −0.0752688 + 0.212892i
$$187$$ 182.000 182.000i 0.973262 0.973262i
$$188$$ −12.7279 + 12.7279i −0.0677017 + 0.0677017i
$$189$$ −43.8442 + 183.844i −0.231980 + 0.972721i
$$190$$ 30.0000 + 40.0000i 0.157895 + 0.210526i
$$191$$ 118.794i 0.621958i −0.950417 0.310979i $$-0.899343\pi$$
0.950417 0.310979i $$-0.100657\pi$$
$$192$$ −35.1924 + 16.8076i −0.183294 + 0.0875396i
$$193$$ 67.0000 67.0000i 0.347150 0.347150i −0.511897 0.859047i $$-0.671057\pi$$
0.859047 + 0.511897i $$0.171057\pi$$
$$194$$ 159.806i 0.823743i
$$195$$ −150.392 78.6274i −0.771241 0.403218i
$$196$$ 147.000i 0.750000i
$$197$$ 56.5685 56.5685i 0.287150 0.287150i −0.548802 0.835952i $$-0.684916\pi$$
0.835952 + 0.548802i $$0.184916\pi$$
$$198$$ −88.5980 + 9.40202i −0.447465 + 0.0474850i
$$199$$ 120.000 0.603015 0.301508 0.953464i $$-0.402510\pi$$
0.301508 + 0.953464i $$0.402510\pi$$
$$200$$ 84.1457 + 153.442i 0.420729 + 0.767211i
$$201$$ −45.2548 + 128.000i −0.225148 + 0.636816i
$$202$$ 65.0000 65.0000i 0.321782 0.321782i
$$203$$ 29.6985i 0.146298i
$$204$$ −220.617 78.0000i −1.08146 0.382353i
$$205$$ −24.0000 + 168.000i −0.117073 + 0.819512i
$$206$$ 7.07107 0.0343256
$$207$$ −304.291 + 32.2914i −1.47001 + 0.155997i
$$208$$ −40.0000 40.0000i −0.192308 0.192308i
$$209$$ 98.9949i 0.473660i
$$210$$ −93.0503 48.6482i −0.443096 0.231658i
$$211$$ 86.0000 0.407583 0.203791 0.979014i $$-0.434674\pi$$
0.203791 + 0.979014i $$0.434674\pi$$
$$212$$ 212.132 212.132i 1.00062 1.00062i
$$213$$ 160.794 76.7939i 0.754901 0.360535i
$$214$$ 6.00000i 0.0280374i
$$215$$ 152.735 + 203.647i 0.710396 + 0.947194i
$$216$$ 98.9949 + 161.000i 0.458310 + 0.745370i
$$217$$ −98.0000 −0.451613
$$218$$ 49.4975 + 49.4975i 0.227053 + 0.227053i
$$219$$ −55.1543 + 156.000i −0.251846 + 0.712329i
$$220$$ −21.0000 + 147.000i −0.0954545 + 0.668182i
$$221$$ 294.156i 1.33102i
$$222$$ −54.8528 114.853i −0.247085 0.517355i
$$223$$ −237.000 237.000i −1.06278 1.06278i −0.997893 0.0648877i $$-0.979331\pi$$
−0.0648877 0.997893i $$-0.520669\pi$$
$$224$$ −163.342 163.342i −0.729204 0.729204i
$$225$$ 184.765 128.402i 0.821176 0.570676i
$$226$$ 18.0000 0.0796460
$$227$$ 117.380 + 117.380i 0.517091 + 0.517091i 0.916690 0.399599i $$-0.130851\pi$$
−0.399599 + 0.916690i $$0.630851\pi$$
$$228$$ 81.2132 38.7868i 0.356198 0.170118i
$$229$$ −374.000 −1.63319 −0.816594 0.577213i $$-0.804140\pi$$
−0.816594 + 0.577213i $$0.804140\pi$$
$$230$$ 24.0416 168.291i 0.104529 0.731702i
$$231$$ −89.5929 187.593i −0.387848 0.812091i
$$232$$ −21.0000 21.0000i −0.0905172 0.0905172i
$$233$$ −173.948 173.948i −0.746559 0.746559i 0.227272 0.973831i $$-0.427019\pi$$
−0.973831 + 0.227272i $$0.927019\pi$$
$$234$$ 64.0000 79.1960i 0.273504 0.338444i
$$235$$ −24.0000 + 18.0000i −0.102128 + 0.0765957i
$$236$$ −89.0955 −0.377523
$$237$$ 151.598 72.4020i 0.639654 0.305494i
$$238$$ 182.000i 0.764706i
$$239$$ 291.328 1.21895 0.609473 0.792807i $$-0.291381\pi$$
0.609473 + 0.792807i $$0.291381\pi$$
$$240$$ 71.5685 22.4264i 0.298202 0.0934434i
$$241$$ 14.0000i 0.0580913i 0.999578 + 0.0290456i $$0.00924682\pi$$
−0.999578 + 0.0290456i $$0.990753\pi$$
$$242$$ −16.2635 + 16.2635i −0.0672044 + 0.0672044i
$$243$$ 192.413 148.413i 0.791822 0.610752i
$$244$$ −42.0000 −0.172131
$$245$$ 34.6482 242.538i 0.141421 0.989949i
$$246$$ −96.0000 33.9411i −0.390244 0.137972i
$$247$$ −80.0000 80.0000i −0.323887 0.323887i
$$248$$ −69.2965 + 69.2965i −0.279421 + 0.279421i
$$249$$ 147.078 + 52.0000i 0.590676 + 0.208835i
$$250$$ 44.0000 + 117.000i 0.176000 + 0.468000i
$$251$$ 439.820 1.75227 0.876136 0.482063i $$-0.160113\pi$$
0.876136 + 0.482063i $$0.160113\pi$$
$$252$$ −118.794 + 147.000i −0.471405 + 0.583333i
$$253$$ 238.000 238.000i 0.940711 0.940711i
$$254$$ 156.978 0.618022
$$255$$ −345.615 180.693i −1.35535 0.708602i
$$256$$ −171.000 −0.667969
$$257$$ −35.3553 35.3553i −0.137569 0.137569i 0.634969 0.772538i $$-0.281013\pi$$
−0.772538 + 0.634969i $$0.781013\pi$$
$$258$$ −137.823 + 65.8234i −0.534199 + 0.255129i
$$259$$ 210.000 210.000i 0.810811 0.810811i
$$260$$ −101.823 135.765i −0.391628 0.522171i
$$261$$ −24.0000 + 29.6985i −0.0919540 + 0.113787i
$$262$$ −27.0000 + 27.0000i −0.103053 + 0.103053i
$$263$$ 315.370 + 315.370i 1.19912 + 1.19912i 0.974429 + 0.224695i $$0.0721385\pi$$
0.224695 + 0.974429i $$0.427861\pi$$
$$264$$ −196.000 69.2965i −0.742424 0.262487i
$$265$$ 400.000 300.000i 1.50943 1.13208i
$$266$$ −49.4975 49.4975i −0.186081 0.186081i
$$267$$ −53.5980 + 25.5980i −0.200741 + 0.0958726i
$$268$$ −96.0000 + 96.0000i −0.358209 + 0.358209i
$$269$$ 267.286i 0.993630i −0.867857 0.496815i $$-0.834503\pi$$
0.867857 0.496815i $$-0.165497\pi$$
$$270$$ 53.7365 + 123.844i 0.199024 + 0.458682i
$$271$$ 112.000i 0.413284i −0.978417 0.206642i $$-0.933746\pi$$
0.978417 0.206642i $$-0.0662536\pi$$
$$272$$ −91.9239 91.9239i −0.337955 0.337955i
$$273$$ 224.000 + 79.1960i 0.820513 + 0.290095i
$$274$$ 26.0000i 0.0948905i
$$275$$ −69.2965 + 237.588i −0.251987 + 0.863956i
$$276$$ −288.500 102.000i −1.04529 0.369565i
$$277$$ 102.000 + 102.000i 0.368231 + 0.368231i 0.866832 0.498601i $$-0.166153\pi$$
−0.498601 + 0.866832i $$0.666153\pi$$
$$278$$ 97.5807 97.5807i 0.351010 0.351010i
$$279$$ 98.0000 + 79.1960i 0.351254 + 0.283856i
$$280$$ −147.000 196.000i −0.525000 0.700000i
$$281$$ 296.985i 1.05689i 0.848969 + 0.528443i $$0.177224\pi$$
−0.848969 + 0.528443i $$0.822776\pi$$
$$282$$ −7.75736 16.2426i −0.0275084 0.0575980i
$$283$$ 102.000 + 102.000i 0.360424 + 0.360424i 0.863969 0.503545i $$-0.167971\pi$$
−0.503545 + 0.863969i $$0.667971\pi$$
$$284$$ 178.191 0.627433
$$285$$ 143.137 44.8528i 0.502235 0.157378i
$$286$$ 112.000i 0.391608i
$$287$$ 237.588i 0.827832i
$$288$$ 31.3417 + 295.342i 0.108825 + 1.02549i
$$289$$ 387.000i 1.33910i
$$290$$ −12.7279 16.9706i −0.0438894 0.0585192i
$$291$$ 452.000 + 159.806i 1.55326 + 0.549162i
$$292$$ −117.000 + 117.000i −0.400685 + 0.400685i
$$293$$ 185.262 185.262i 0.632293 0.632293i −0.316349 0.948643i $$-0.602457\pi$$
0.948643 + 0.316349i $$0.102457\pi$$
$$294$$ 138.593 + 49.0000i 0.471405 + 0.166667i
$$295$$ −147.000 21.0000i −0.498305 0.0711864i
$$296$$ 296.985i 1.00333i
$$297$$ −62.0051 + 259.995i −0.208771 + 0.875404i
$$298$$ 141.000 141.000i 0.473154 0.473154i
$$299$$ 384.666i 1.28651i
$$300$$ 222.062 36.2391i 0.740208 0.120797i
$$301$$ −252.000 252.000i −0.837209 0.837209i
$$302$$ −55.1543 + 55.1543i −0.182630 + 0.182630i
$$303$$ −118.848 248.848i −0.392237 0.821280i
$$304$$ 50.0000 0.164474
$$305$$ −69.2965 9.89949i −0.227202 0.0324574i
$$306$$ 147.078 182.000i 0.480648 0.594771i
$$307$$ −90.0000 + 90.0000i −0.293160 + 0.293160i −0.838327 0.545168i $$-0.816466\pi$$
0.545168 + 0.838327i $$0.316466\pi$$
$$308$$ 207.889i 0.674966i
$$309$$ 7.07107 20.0000i 0.0228837 0.0647249i
$$310$$ −56.0000 + 42.0000i −0.180645 + 0.135484i
$$311$$ −299.813 −0.964030 −0.482015 0.876163i $$-0.660095\pi$$
−0.482015 + 0.876163i $$0.660095\pi$$
$$312$$ 214.392 102.392i 0.687154 0.328179i
$$313$$ 177.000 + 177.000i 0.565495 + 0.565495i 0.930863 0.365368i $$-0.119057\pi$$
−0.365368 + 0.930863i $$0.619057\pi$$
$$314$$ 65.0538i 0.207178i
$$315$$ −230.648 + 214.538i −0.732217 + 0.681072i
$$316$$ 168.000 0.531646
$$317$$ −213.546 + 213.546i −0.673647 + 0.673647i −0.958555 0.284908i $$-0.908037\pi$$
0.284908 + 0.958555i $$0.408037\pi$$
$$318$$ 129.289 + 270.711i 0.406570 + 0.851291i
$$319$$ 42.0000i 0.131661i
$$320$$ −64.3467 9.19239i −0.201083 0.0287262i
$$321$$ 16.9706 + 6.00000i 0.0528678 + 0.0186916i
$$322$$ 238.000i 0.739130i
$$323$$ −183.848 183.848i −0.569188 0.569188i
$$324$$ 237.588 51.0000i 0.733296 0.157407i
$$325$$ −136.000 248.000i −0.418462 0.763077i
$$326$$ 195.161i 0.598655i
$$327$$ 189.497 90.5025i 0.579503 0.276766i
$$328$$ −168.000 168.000i −0.512195 0.512195i
$$329$$ 29.6985 29.6985i 0.0902690 0.0902690i
$$330$$ −131.593 68.7990i −0.398766 0.208482i
$$331$$ 102.000 0.308157 0.154079 0.988059i $$-0.450759\pi$$
0.154079 + 0.988059i $$0.450759\pi$$
$$332$$ 110.309 + 110.309i 0.332255 + 0.332255i
$$333$$ −379.706 + 40.2944i −1.14026 + 0.121004i
$$334$$ 130.000 0.389222
$$335$$ −181.019 + 135.765i −0.540356 + 0.405267i
$$336$$ −94.7487 + 45.2513i −0.281990 + 0.134676i
$$337$$ 253.000 + 253.000i 0.750742 + 0.750742i 0.974618 0.223876i $$-0.0718710\pi$$
−0.223876 + 0.974618i $$0.571871\pi$$
$$338$$ 28.9914 + 28.9914i 0.0857733 + 0.0857733i
$$339$$ 18.0000 50.9117i 0.0530973 0.150182i
$$340$$ −234.000 312.000i −0.688235 0.917647i
$$341$$ −138.593 −0.406431
$$342$$ 9.49747 + 89.4975i 0.0277704 + 0.261689i
$$343$$ 343.000i 1.00000i
$$344$$ −356.382 −1.03599
$$345$$ −451.958 236.291i −1.31002 0.684903i
$$346$$ 316.000i 0.913295i
$$347$$ −169.706 + 169.706i −0.489065 + 0.489065i −0.908011 0.418946i $$-0.862400\pi$$
0.418946 + 0.908011i $$0.362400\pi$$
$$348$$ −34.4558 + 16.4558i −0.0990110 + 0.0472869i
$$349$$ −446.000 −1.27794 −0.638968 0.769233i $$-0.720639\pi$$
−0.638968 + 0.769233i $$0.720639\pi$$
$$350$$ −84.1457 153.442i −0.240416 0.438406i
$$351$$ −160.000 260.215i −0.455840 0.741354i
$$352$$ −231.000 231.000i −0.656250 0.656250i
$$353$$ 97.5807 97.5807i 0.276433 0.276433i −0.555250 0.831683i $$-0.687378\pi$$
0.831683 + 0.555250i $$0.187378\pi$$
$$354$$ 29.6985 84.0000i 0.0838940 0.237288i
$$355$$ 294.000 + 42.0000i 0.828169 + 0.118310i
$$356$$ −59.3970 −0.166845
$$357$$ 514.774 + 182.000i 1.44194 + 0.509804i
$$358$$ 9.00000 9.00000i 0.0251397 0.0251397i
$$359$$ −248.902 −0.693319 −0.346660 0.937991i $$-0.612684\pi$$
−0.346660 + 0.937991i $$0.612684\pi$$
$$360$$ −11.3919 + 314.794i −0.0316442 + 0.874428i
$$361$$ −261.000 −0.722992
$$362$$ −247.487 247.487i −0.683667 0.683667i
$$363$$ 29.7365 + 62.2635i 0.0819189 + 0.171525i
$$364$$ 168.000 + 168.000i 0.461538 + 0.461538i
$$365$$ −220.617 + 165.463i −0.604431 + 0.453323i
$$366$$ 14.0000 39.5980i 0.0382514 0.108191i
$$367$$ −185.000 + 185.000i −0.504087 + 0.504087i −0.912705 0.408618i $$-0.866011\pi$$
0.408618 + 0.912705i $$0.366011\pi$$
$$368$$ −120.208 120.208i −0.326653 0.326653i
$$369$$ −192.000 + 237.588i −0.520325 + 0.643870i
$$370$$ 30.0000 210.000i 0.0810811 0.567568i
$$371$$ −494.975 + 494.975i −1.33416 + 1.33416i
$$372$$ 54.3015 + 113.698i 0.145972 + 0.305641i
$$373$$ 492.000 492.000i 1.31903 1.31903i 0.404494 0.914540i $$-0.367448\pi$$
0.914540 0.404494i $$-0.132552\pi$$
$$374$$ 257.387i 0.688200i
$$375$$ 374.926 7.45079i 0.999803 0.0198688i
$$376$$ 42.0000i 0.111702i
$$377$$ 33.9411 + 33.9411i 0.0900295 + 0.0900295i
$$378$$ −98.9949 161.000i −0.261891 0.425926i
$$379$$ 266.000i 0.701847i 0.936404 + 0.350923i $$0.114132\pi$$
−0.936404 + 0.350923i $$0.885868\pi$$
$$380$$ 148.492 + 21.2132i 0.390770 + 0.0558242i
$$381$$ 156.978 444.000i 0.412015 1.16535i
$$382$$ 84.0000 + 84.0000i 0.219895 + 0.219895i
$$383$$ −134.350 + 134.350i −0.350784 + 0.350784i −0.860401 0.509617i $$-0.829787\pi$$
0.509617 + 0.860401i $$0.329787\pi$$
$$384$$ −119.000 + 336.583i −0.309896 + 0.876518i
$$385$$ 49.0000 343.000i 0.127273 0.890909i
$$386$$ 94.7523i 0.245472i
$$387$$ 48.3532 + 455.647i 0.124944 + 1.17738i
$$388$$ 339.000 + 339.000i 0.873711 + 0.873711i
$$389$$ −329.512 −0.847074 −0.423537 0.905879i $$-0.639212\pi$$
−0.423537 + 0.905879i $$0.639212\pi$$
$$390$$ 161.941 50.7452i 0.415234 0.130116i
$$391$$ 884.000i 2.26087i
$$392$$ 242.538 + 242.538i 0.618718 + 0.618718i
$$393$$ 49.3675 + 103.368i 0.125617 + 0.263022i
$$394$$ 80.0000i 0.203046i
$$395$$ 277.186 + 39.5980i 0.701736 + 0.100248i
$$396$$ −168.000 + 207.889i −0.424242 + 0.524973i
$$397$$ 30.0000 30.0000i 0.0755668 0.0755668i −0.668313 0.743880i $$-0.732983\pi$$
0.743880 + 0.668313i $$0.232983\pi$$
$$398$$ −84.8528 + 84.8528i −0.213198 + 0.213198i
$$399$$ −189.497 + 90.5025i −0.474931 + 0.226823i
$$400$$ 120.000 + 35.0000i 0.300000 + 0.0875000i
$$401$$ 79.1960i 0.197496i 0.995112 + 0.0987481i $$0.0314838\pi$$
−0.995112 + 0.0987481i $$0.968516\pi$$
$$402$$ −58.5097 122.510i −0.145546 0.304750i
$$403$$ 112.000 112.000i 0.277916 0.277916i
$$404$$ 275.772i 0.682603i
$$405$$ 404.021 28.1457i 0.997582 0.0694956i
$$406$$ 21.0000 + 21.0000i 0.0517241 + 0.0517241i
$$407$$ 296.985 296.985i 0.729693 0.729693i
$$408$$ 492.693 235.307i 1.20758 0.576732i
$$409$$ 302.000 0.738386 0.369193 0.929353i $$-0.379634\pi$$
0.369193 + 0.929353i $$0.379634\pi$$
$$410$$ −101.823 135.765i −0.248350 0.331133i
$$411$$ 73.5391 + 26.0000i 0.178927 + 0.0632603i
$$412$$ 15.0000 15.0000i 0.0364078 0.0364078i
$$413$$ 207.889 0.503364
$$414$$ 192.333 238.000i 0.464573 0.574879i
$$415$$ 156.000 + 208.000i 0.375904 + 0.501205i
$$416$$ 373.352 0.897482
$$417$$ −178.419 373.581i −0.427864 0.895877i
$$418$$ −70.0000 70.0000i −0.167464 0.167464i
$$419$$ 366.281i 0.874180i −0.899418 0.437090i $$-0.856009\pi$$
0.899418 0.437090i $$-0.143991\pi$$
$$420$$ −300.588 + 94.1909i −0.715685 + 0.224264i
$$421$$ −614.000 −1.45843 −0.729216 0.684283i $$-0.760115\pi$$
−0.729216 + 0.684283i $$0.760115\pi$$
$$422$$ −60.8112 + 60.8112i −0.144102 + 0.144102i
$$423$$ −53.6985 + 5.69848i −0.126947 + 0.0134716i
$$424$$ 700.000i 1.65094i
$$425$$ −312.541 569.928i −0.735391 1.34101i
$$426$$ −59.3970 + 168.000i −0.139430 + 0.394366i
$$427$$ 98.0000 0.229508
$$428$$ 12.7279 + 12.7279i 0.0297381 + 0.0297381i
$$429$$ 316.784 + 112.000i 0.738424 + 0.261072i
$$430$$ −252.000 36.0000i −0.586047 0.0837209i
$$431$$ 554.372i 1.28625i −0.765763 0.643123i $$-0.777639\pi$$
0.765763 0.643123i $$-0.222361\pi$$
$$432$$ 131.317 + 31.3173i 0.303975 + 0.0724937i
$$433$$ −153.000 153.000i −0.353349 0.353349i 0.508005 0.861354i $$-0.330383\pi$$
−0.861354 + 0.508005i $$0.830383\pi$$
$$434$$ 69.2965 69.2965i 0.159669 0.159669i
$$435$$ −60.7279 + 19.0294i −0.139604 + 0.0437458i
$$436$$ 210.000 0.481651
$$437$$ −240.416 240.416i −0.550152 0.550152i
$$438$$ −71.3087 149.309i −0.162805 0.340887i
$$439$$ −248.000 −0.564920 −0.282460 0.959279i $$-0.591150\pi$$
−0.282460 + 0.959279i $$0.591150\pi$$
$$440$$ −207.889 277.186i −0.472476 0.629968i
$$441$$ 277.186 343.000i 0.628539 0.777778i
$$442$$ −208.000 208.000i −0.470588 0.470588i
$$443$$ 14.1421 + 14.1421i 0.0319236 + 0.0319236i 0.722888 0.690965i $$-0.242814\pi$$
−0.690965 + 0.722888i $$0.742814\pi$$
$$444$$ −360.000 127.279i −0.810811 0.286665i
$$445$$ −98.0000 14.0000i −0.220225 0.0314607i
$$446$$ 335.169 0.751499
$$447$$ −257.808 539.808i −0.576752 1.20762i
$$448$$ 91.0000 0.203125
$$449$$ 647.710 1.44256 0.721280 0.692643i $$-0.243554\pi$$
0.721280 + 0.692643i $$0.243554\pi$$
$$450$$ −39.8543 + 221.442i −0.0885651 + 0.492094i
$$451$$ 336.000i 0.745011i
$$452$$ 38.1838 38.1838i 0.0844774 0.0844774i
$$453$$ 100.846 + 211.154i 0.222617 + 0.466124i
$$454$$ −166.000 −0.365639
$$455$$ 237.588 + 316.784i 0.522171 + 0.696228i
$$456$$ −70.0000 + 197.990i −0.153509 + 0.434188i
$$457$$ −313.000 313.000i −0.684902 0.684902i 0.276199 0.961100i $$-0.410925\pi$$
−0.961100 + 0.276199i $$0.910925\pi$$
$$458$$ 264.458 264.458i 0.577419 0.577419i
$$459$$ −367.696 598.000i −0.801080 1.30283i
$$460$$ −306.000 408.000i −0.665217 0.886957i
$$461$$ 142.836 0.309839 0.154919 0.987927i $$-0.450488\pi$$
0.154919 + 0.987927i $$0.450488\pi$$
$$462$$ 196.000 + 69.2965i 0.424242 + 0.149992i
$$463$$ 29.0000 29.0000i 0.0626350 0.0626350i −0.675095 0.737730i $$-0.735898\pi$$
0.737730 + 0.675095i $$0.235898\pi$$
$$464$$ −21.2132 −0.0457181
$$465$$ 62.7939 + 200.392i 0.135041 + 0.430950i
$$466$$ 246.000 0.527897
$$467$$ 350.725 + 350.725i 0.751017 + 0.751017i 0.974669 0.223652i $$-0.0717979\pi$$
−0.223652 + 0.974669i $$0.571798\pi$$
$$468$$ −32.2355 303.765i −0.0688793 0.649069i
$$469$$ 224.000 224.000i 0.477612 0.477612i
$$470$$ 4.24264 29.6985i 0.00902690 0.0631883i
$$471$$ 184.000 + 65.0538i 0.390658 + 0.138119i
$$472$$ 147.000 147.000i 0.311441 0.311441i
$$473$$ −356.382 356.382i −0.753450 0.753450i
$$474$$ −56.0000 + 158.392i −0.118143 + 0.334160i
$$475$$ 240.000 + 70.0000i 0.505263 + 0.147368i
$$476$$ 386.080 + 386.080i 0.811093 + 0.811093i
$$477$$ 894.975 94.9747i 1.87626 0.199108i
$$478$$ −206.000 + 206.000i −0.430962 + 0.430962i
$$479$$ 79.1960i 0.165336i 0.996577 + 0.0826680i $$0.0263441\pi$$
−0.996577 + 0.0826680i $$0.973656\pi$$
$$480$$ −229.342 + 438.665i −0.477795 + 0.913886i
$$481$$ 480.000i 0.997921i
$$482$$ −9.89949 9.89949i −0.0205384 0.0205384i
$$483$$ 673.166 + 238.000i 1.39372 + 0.492754i
$$484$$ 69.0000i 0.142562i
$$485$$ 479.418 + 639.225i 0.988492 + 1.31799i
$$486$$ −31.1127 + 241.000i −0.0640179 + 0.495885i
$$487$$ −101.000 101.000i −0.207392 0.207392i 0.595766 0.803158i $$-0.296849\pi$$
−0.803158 + 0.595766i $$0.796849\pi$$
$$488$$ 69.2965 69.2965i 0.142001 0.142001i
$$489$$ −552.000 195.161i −1.12883 0.399103i
$$490$$ 147.000 + 196.000i 0.300000 + 0.400000i
$$491$$ 346.482i 0.705667i −0.935686 0.352833i $$-0.885218\pi$$
0.935686 0.352833i $$-0.114782\pi$$
$$492$$ −275.647 + 131.647i −0.560258 + 0.267575i
$$493$$ 78.0000 + 78.0000i 0.158215 + 0.158215i
$$494$$ 113.137 0.229022
$$495$$ −326.186 + 303.402i −0.658961 + 0.612933i
$$496$$ 70.0000i 0.141129i
$$497$$ −415.779 −0.836577
$$498$$ −140.770 + 67.2304i −0.282670 + 0.135001i
$$499$$ 602.000i 1.20641i −0.797585 0.603206i $$-0.793890\pi$$
0.797585 0.603206i $$-0.206110\pi$$
$$500$$ 341.533 + 154.856i 0.683065 + 0.309713i
$$501$$ 130.000 367.696i 0.259481 0.733923i
$$502$$ −311.000 + 311.000i −0.619522 + 0.619522i
$$503$$ −626.497 + 626.497i −1.24552 + 1.24552i −0.287842 + 0.957678i $$0.592938\pi$$
−0.957678 + 0.287842i $$0.907062\pi$$
$$504$$ −46.5376 438.538i −0.0923366 0.870114i
$$505$$ 65.0000 455.000i 0.128713 0.900990i
$$506$$ 336.583i 0.665183i
$$507$$ 110.991 53.0086i 0.218918 0.104553i
$$508$$ 333.000 333.000i 0.655512 0.655512i
$$509$$ 386.080i 0.758507i −0.925293 0.379254i $$-0.876181\pi$$
0.925293 0.379254i $$-0.123819\pi$$
$$510$$ 372.156 116.617i 0.729718 0.228661i
$$511$$ 273.000 273.000i 0.534247 0.534247i
$$512$$ −215.668 + 215.668i −0.421226 + 0.421226i
$$513$$ 262.635 + 62.6346i 0.511958 + 0.122095i
$$514$$ 50.0000 0.0972763
$$515$$ 28.2843 21.2132i 0.0549209 0.0411907i
$$516$$ −152.735 + 432.000i −0.295998 + 0.837209i
$$517$$ 42.0000 42.0000i 0.0812379 0.0812379i
$$518$$ 296.985i 0.573330i
$$519$$ −893.783 316.000i −1.72213 0.608863i
$$520$$ 392.000 + 56.0000i 0.753846 + 0.107692i
$$521$$ −379.009 −0.727465 −0.363732 0.931503i $$-0.618498\pi$$
−0.363732 + 0.931503i $$0.618498\pi$$
$$522$$ −4.02944 37.9706i −0.00771923 0.0727405i
$$523$$ −642.000 642.000i −1.22753 1.22753i −0.964894 0.262639i $$-0.915407\pi$$
−0.262639 0.964894i $$-0.584593\pi$$
$$524$$ 114.551i 0.218609i
$$525$$ −518.146 + 84.5578i −0.986944 + 0.161063i
$$526$$ −446.000 −0.847909
$$527$$ 257.387 257.387i 0.488400 0.488400i
$$528$$ −133.995 + 63.9949i −0.253778 + 0.121203i
$$529$$ 627.000i 1.18526i
$$530$$ −70.7107 + 494.975i −0.133416 + 0.933915i
$$531$$ −207.889 168.000i −0.391505 0.316384i
$$532$$ −210.000 −0.394737
$$533$$ 271.529 + 271.529i 0.509435 + 0.509435i
$$534$$ 19.7990 56.0000i 0.0370768 0.104869i
$$535$$ 18.0000 + 24.0000i 0.0336449 + 0.0448598i
$$536$$ 316.784i 0.591015i
$$537$$ −16.4558 34.4558i −0.0306440 0.0641636i
$$538$$ 189.000 + 189.000i 0.351301 + 0.351301i
$$539$$ 485.075i 0.899954i
$$540$$ 376.706 + 148.721i 0.697603 + 0.275409i
$$541$$ 270.000 0.499076 0.249538 0.968365i $$-0.419721\pi$$
0.249538 + 0.968365i $$0.419721\pi$$
$$542$$ 79.1960 + 79.1960i 0.146118 + 0.146118i
$$543$$ −947.487 + 452.513i −1.74491 + 0.833357i
$$544$$ 858.000 1.57721
$$545$$ 346.482 + 49.4975i 0.635747 + 0.0908211i
$$546$$ −214.392 + 102.392i −0.392659 + 0.187531i
$$547$$ 176.000 + 176.000i 0.321755 + 0.321755i 0.849440 0.527685i $$-0.176940\pi$$
−0.527685 + 0.849440i $$0.676940\pi$$
$$548$$ 55.1543 + 55.1543i 0.100647 + 0.100647i
$$549$$ −98.0000 79.1960i −0.178506 0.144255i
$$550$$ −119.000 217.000i −0.216364 0.394545i
$$551$$ −42.4264 −0.0769989
$$552$$ 644.291 307.709i 1.16719 0.557443i
$$553$$ −392.000 −0.708861
$$554$$ −144.250 −0.260379
$$555$$ −563.970 294.853i −1.01616 0.531266i
$$556$$ 414.000i 0.744604i
$$557$$ 364.867 364.867i 0.655058 0.655058i −0.299149 0.954206i $$-0.596703\pi$$
0.954206 + 0.299149i $$0.0967027\pi$$
$$558$$ −125.296 + 13.2965i −0.224546 + 0.0238288i
$$559$$ 576.000 1.03041
$$560$$ −173.241 24.7487i −0.309359 0.0441942i
$$561$$ 728.000 + 257.387i 1.29768 + 0.458800i
$$562$$ −210.000 210.000i −0.373665 0.373665i
$$563$$ −615.183 + 615.183i −1.09269 + 1.09269i −0.0974464 + 0.995241i $$0.531067\pi$$
−0.995241 + 0.0974464i $$0.968933\pi$$
$$564$$ −50.9117 18.0000i −0.0902690 0.0319149i
$$565$$ 72.0000 54.0000i 0.127434 0.0955752i
$$566$$ −144.250 −0.254858
$$567$$ −554.372 + 119.000i −0.977728 + 0.209877i
$$568$$ −294.000 + 294.000i −0.517606 + 0.517606i
$$569$$ 28.2843 0.0497087 0.0248544 0.999691i $$-0.492088\pi$$
0.0248544 + 0.999691i $$0.492088\pi$$
$$570$$ −69.4975 + 132.929i −0.121925 + 0.233209i
$$571$$ −734.000 −1.28546 −0.642732 0.766091i $$-0.722199\pi$$
−0.642732 + 0.766091i $$0.722199\pi$$
$$572$$ 237.588 + 237.588i 0.415363 + 0.415363i
$$573$$ 321.588 153.588i 0.561235 0.268042i
$$574$$ 168.000 + 168.000i 0.292683 + 0.292683i
$$575$$ −408.708 745.291i −0.710796 1.29616i
$$576$$ −91.0000 73.5391i −0.157986 0.127672i
$$577$$ −647.000 + 647.000i −1.12132 + 1.12132i −0.129773 + 0.991544i $$0.541425\pi$$
−0.991544 + 0.129773i $$0.958575\pi$$
$$578$$ −273.650 273.650i −0.473443 0.473443i
$$579$$ 268.000 + 94.7523i 0.462867 + 0.163648i
$$580$$ −63.0000 9.00000i −0.108621 0.0155172i
$$581$$ −257.387 257.387i −0.443007 0.443007i
$$582$$ −432.612 + 206.612i −0.743320 + 0.355004i
$$583$$ −700.000 + 700.000i −1.20069 + 1.20069i
$$584$$ 386.080i 0.661096i
$$585$$ 18.4121 508.784i 0.0314737 0.869716i
$$586$$ 262.000i 0.447099i
$$587$$ 630.739 + 630.739i 1.07451 + 1.07451i 0.996991 + 0.0775226i $$0.0247010\pi$$
0.0775226 + 0.996991i $$0.475299\pi$$
$$588$$ 397.945 190.055i 0.676777 0.323223i
$$589$$ 140.000i 0.237691i
$$590$$ 118.794 89.0955i 0.201346 0.151009i
$$591$$ 226.274 + 80.0000i 0.382867 + 0.135364i
$$592$$ −150.000 150.000i −0.253378 0.253378i
$$593$$ 618.011 618.011i 1.04218 1.04218i 0.0431072 0.999070i $$-0.486274\pi$$
0.999070 0.0431072i $$-0.0137257\pi$$
$$594$$ −140.000 227.688i −0.235690 0.383314i
$$595$$ 546.000 + 728.000i 0.917647 + 1.22353i
$$596$$ 598.212i 1.00371i
$$597$$ 155.147 + 324.853i 0.259878 + 0.544142i
$$598$$ −272.000 272.000i −0.454849 0.454849i
$$599$$ 96.1665 0.160545 0.0802726 0.996773i $$-0.474421\pi$$
0.0802726 + 0.996773i $$0.474421\pi$$
$$600$$ −306.593 + 426.176i −0.510988 + 0.710293i
$$601$$ 476.000i 0.792013i −0.918248 0.396007i $$-0.870396\pi$$
0.918248 0.396007i $$-0.129604\pi$$
$$602$$ 356.382 0.591996
$$603$$ −405.019 + 42.9807i −0.671674 + 0.0712780i
$$604$$ 234.000i 0.387417i
$$605$$ −16.2635 + 113.844i −0.0268817 + 0.188172i
$$606$$ 260.000 + 91.9239i 0.429043 + 0.151690i
$$607$$ 345.000 345.000i 0.568369 0.568369i −0.363302 0.931671i $$-0.618351\pi$$
0.931671 + 0.363302i $$0.118351\pi$$
$$608$$ −233.345 + 233.345i −0.383792 + 0.383792i
$$609$$ 80.3970 38.3970i 0.132015 0.0630492i
$$610$$ 56.0000 42.0000i 0.0918033 0.0688525i
$$611$$ 67.8823i 0.111100i
$$612$$ −74.0803 698.080i −0.121046 1.14065i
$$613$$ 116.000 116.000i 0.189233 0.189233i −0.606131 0.795365i $$-0.707279\pi$$
0.795365 + 0.606131i $$0.207279\pi$$
$$614$$ 127.279i 0.207295i
$$615$$ −485.823 + 152.235i −0.789957 + 0.247537i
$$616$$ 343.000 + 343.000i 0.556818 + 0.556818i
$$617$$ −468.105 + 468.105i −0.758679 + 0.758679i −0.976082 0.217403i $$-0.930241\pi$$
0.217403 + 0.976082i $$0.430241\pi$$
$$618$$ 9.14214 + 19.1421i 0.0147931 + 0.0309743i
$$619$$ 1058.00 1.70921 0.854604 0.519280i $$-0.173800\pi$$
0.854604 + 0.519280i $$0.173800\pi$$
$$620$$ −29.6985 + 207.889i −0.0479008 + 0.335305i
$$621$$ −480.833 782.000i −0.774288 1.25926i
$$622$$ 212.000 212.000i 0.340836 0.340836i
$$623$$ 138.593 0.222461
$$624$$ 56.5685 160.000i 0.0906547 0.256410i
$$625$$ 527.000 + 336.000i 0.843200 + 0.537600i
$$626$$ −250.316 −0.399865
$$627$$ −267.990 + 127.990i −0.427416 + 0.204131i
$$628$$ 138.000 + 138.000i 0.219745 + 0.219745i
$$629$$ 1103.09i 1.75371i
$$630$$ 11.3919 314.794i 0.0180824 0.499673i
$$631$$ 128.000 0.202853 0.101426 0.994843i $$-0.467659\pi$$
0.101426 + 0.994843i $$0.467659\pi$$
$$632$$ −277.186 + 277.186i −0.438585 + 0.438585i
$$633$$ 111.189 + 232.811i 0.175654 + 0.367790i
$$634$$ 302.000i 0.476341i
$$635$$ 627.911 470.933i 0.988836 0.741627i
$$636$$ 848.528 + 300.000i 1.33416 + 0.471698i
$$637$$ −392.000 392.000i −0.615385 0.615385i
$$638$$ 29.6985 + 29.6985i 0.0465493 + 0.0465493i
$$639$$ 415.779 + 336.000i 0.650671 + 0.525822i
$$640$$ −476.000 + 357.000i −0.743750 + 0.557813i
$$641$$ 277.186i 0.432427i −0.976346 0.216214i $$-0.930629\pi$$
0.976346 0.216214i $$-0.0693708\pi$$
$$642$$ −16.2426 + 7.75736i −0.0253001 + 0.0120831i
$$643$$ −636.000 636.000i −0.989114 0.989114i 0.0108278 0.999941i $$-0.496553\pi$$
−0.999941 + 0.0108278i $$0.996553\pi$$
$$644$$ 504.874 + 504.874i 0.783966 + 0.783966i
$$645$$ −353.823 + 676.764i −0.548563 + 1.04925i
$$646$$ 260.000 0.402477
$$647$$ −535.987 535.987i −0.828419 0.828419i 0.158879 0.987298i $$-0.449212\pi$$
−0.987298 + 0.158879i $$0.949212\pi$$
$$648$$ −307.854 + 476.146i −0.475084 + 0.734793i
$$649$$ 294.000 0.453005
$$650$$ 271.529 + 79.1960i 0.417737 + 0.121840i
$$651$$ −126.704 265.296i −0.194629 0.407521i
$$652$$ −414.000 414.000i −0.634969 0.634969i
$$653$$ 380.423 + 380.423i 0.582578 + 0.582578i 0.935611 0.353033i $$-0.114850\pi$$
−0.353033 + 0.935611i $$0.614850\pi$$
$$654$$ −70.0000 + 197.990i −0.107034 + 0.302737i
$$655$$ −27.0000 + 189.000i −0.0412214 + 0.288550i
$$656$$ −169.706 −0.258698
$$657$$ −493.617 + 52.3827i −0.751320 + 0.0797301i
$$658$$ 42.0000i 0.0638298i
$$659$$ −253.144 −0.384134 −0.192067 0.981382i $$-0.561519\pi$$
−0.192067 + 0.981382i $$0.561519\pi$$
$$660$$ −425.095 + 133.206i −0.644084 + 0.201827i
$$661$$ 1106.00i 1.67322i 0.547797 + 0.836611i $$0.315467\pi$$
−0.547797 + 0.836611i $$0.684533\pi$$
$$662$$ −72.1249 + 72.1249i −0.108950 + 0.108950i
$$663$$ −796.313 + 380.313i −1.20108 + 0.573624i
$$664$$ −364.000 −0.548193
$$665$$ −346.482 49.4975i −0.521026 0.0744323i
$$666$$ 240.000 296.985i 0.360360 0.445923i
$$667$$ 102.000 + 102.000i 0.152924 + 0.152924i
$$668$$ 275.772 275.772i 0.412832 0.412832i
$$669$$ 335.169 948.000i 0.500999 1.41704i
$$670$$ 32.0000 224.000i 0.0477612 0.334328i
$$671$$ 138.593 0.206547
$$672$$ 231.000 653.367i 0.343750 0.972272i
$$673$$ 393.000 393.000i 0.583952 0.583952i −0.352035 0.935987i $$-0.614510\pi$$
0.935987 + 0.352035i $$0.114510\pi$$
$$674$$ −357.796 −0.530855
$$675$$ 586.479 + 334.167i 0.868857 + 0.495062i
$$676$$ 123.000 0.181953
$$677$$ −144.250 144.250i −0.213072 0.213072i 0.592499 0.805571i $$-0.298141\pi$$
−0.805571 + 0.592499i $$0.798141\pi$$
$$678$$ 23.2721 + 48.7279i 0.0343246 + 0.0718701i
$$679$$ −791.000 791.000i −1.16495 1.16495i
$$680$$ 900.854 + 128.693i 1.32479 + 0.189255i
$$681$$ −166.000 + 469.519i −0.243759 + 0.689455i
$$682$$ 98.0000 98.0000i 0.143695 0.143695i
$$683$$ 592.555 + 592.555i 0.867578 + 0.867578i 0.992204 0.124626i $$-0.0397732\pi$$
−0.124626 + 0.992204i $$0.539773\pi$$
$$684$$ 210.000 + 169.706i 0.307018 + 0.248108i
$$685$$ 78.0000 + 104.000i 0.113869 + 0.151825i
$$686$$ −242.538 242.538i −0.353553 0.353553i
$$687$$ −483.542 1012.46i −0.703846 1.47374i
$$688$$ −180.000 + 180.000i −0.261628 + 0.261628i
$$689$$ 1131.37i 1.64205i
$$690$$ 486.666 152.500i 0.705313 0.221014i
$$691$$ 574.000i 0.830680i 0.909666 + 0.415340i $$0.136337\pi$$
−0.909666 + 0.415340i $$0.863663\pi$$
$$692$$ −670.337 670.337i −0.968695 0.968695i
$$693$$ 392.000 485.075i 0.565657 0.699964i
$$694$$ 240.000i 0.345821i
$$695$$ 97.5807 683.065i 0.140404 0.982828i
$$696$$ 29.6985 84.0000i 0.0426702 0.120690i
$$697$$ 624.000 + 624.000i 0.895265 + 0.895265i
$$698$$ 315.370 315.370i 0.451819 0.451819i
$$699$$ 246.000 695.793i 0.351931 0.995412i
$$700$$ −504.000 147.000i −0.720000 0.210000i
$$701$$ 1118.64i 1.59578i 0.602802 + 0.797891i $$0.294051\pi$$
−0.602802 + 0.797891i $$0.705949\pi$$
$$702$$ 297.137 + 70.8629i 0.423272 + 0.100944i
$$703$$ −300.000 300.000i −0.426743 0.426743i
$$704$$ 128.693 0.182803
$$705$$ −79.7574 41.6985i −0.113131 0.0591468i
$$706$$ 138.000i 0.195467i
$$707$$ 643.467i 0.910137i
$$708$$ −115.191 241.191i −0.162699 0.340665i
$$709$$ 546.000i 0.770099i −0.922896 0.385049i $$-0.874184\pi$$
0.922896 0.385049i $$-0.125816\pi$$
$$710$$ −237.588 + 178.191i −0.334631 + 0.250973i
$$711$$ 392.000 + 316.784i 0.551336 + 0.445547i
$$712$$ 98.0000 98.0000i 0.137640 0.137640i
$$713$$ 336.583 336.583i 0.472066 0.472066i
$$714$$ −492.693 + 235.307i −0.690047 + 0.329561i
$$715$$ 336.000 + 448.000i 0.469930 + 0.626573i
$$716$$ 38.1838i 0.0533293i
$$717$$ 376.656 + 788.656i 0.525322 + 1.09994i
$$718$$ 176.000 176.000i 0.245125 0.245125i
$$719$$ 277.186i 0.385516i −0.981246 0.192758i $$-0.938257\pi$$
0.981246 0.192758i $$-0.0617432\pi$$
$$720$$ 153.241 + 164.749i 0.212835 + 0.228818i
$$721$$ −35.0000 + 35.0000i −0.0485437 + 0.0485437i
$$722$$ 184.555 184.555i 0.255616 0.255616i
$$723$$ −37.8995 + 18.1005i −0.0524198 + 0.0250353i
$$724$$ −1050.00 −1.45028
$$725$$ −101.823 29.6985i −0.140446 0.0409634i
$$726$$ −65.0538 23.0000i −0.0896058 0.0316804i
$$727$$ 225.000 225.000i 0.309491 0.309491i −0.535221 0.844712i $$-0.679772\pi$$
0.844712 + 0.535221i $$0.179772\pi$$
$$728$$ −554.372 −0.761500
$$729$$ 650.538 + 329.000i 0.892371 + 0.451303i
$$730$$ 39.0000 273.000i 0.0534247 0.373973i
$$731$$ 1323.70 1.81081
$$732$$ −54.3015 113.698i −0.0741824 0.155326i
$$733$$ −124.000 124.000i −0.169168 0.169168i 0.617446 0.786614i $$-0.288168\pi$$
−0.786614 + 0.617446i $$0.788168\pi$$
$$734$$ 261.630i 0.356443i
$$735$$ 701.372 219.779i 0.954247 0.299019i
$$736$$ 1122.00 1.52446
$$737$$ 316.784 316.784i 0.429829 0.429829i
$$738$$ −32.2355 303.765i −0.0436795 0.411605i
$$739$$ 350.000i 0.473613i 0.971557 + 0.236806i $$0.0761007\pi$$
−0.971557 + 0.236806i $$0.923899\pi$$
$$740$$ −381.838 509.117i −0.515997 0.687996i
$$741$$ 113.137 320.000i 0.152682 0.431849i
$$742$$ 700.000i 0.943396i
$$743$$ −666.095 666.095i −0.896493 0.896493i 0.0986307 0.995124i $$-0.468554\pi$$
−0.995124 + 0.0986307i $$0.968554\pi$$
$$744$$ −277.186 98.0000i −0.372562 0.131720i
$$745$$ 141.000 987.000i 0.189262 1.32483i
$$746$$ 695.793i 0.932698i
$$747$$ 49.3869 + 465.387i 0.0661136 + 0.623008i
$$748$$ 546.000 + 546.000i 0.729947 + 0.729947i
$$749$$ −29.6985 29.6985i −0.0396508 0.0396508i
$$750$$ −259.844 + 270.381i −0.346459 + 0.360508i
$$751$$ −1172.00 −1.56059 −0.780293 0.625414i $$-0.784930\pi$$
−0.780293 + 0.625414i $$0.784930\pi$$
$$752$$ −21.2132 21.2132i −0.0282090 0.0282090i
$$753$$ 568.641 + 1190.64i 0.755167 + 1.58120i
$$754$$ −48.0000 −0.0636605
$$755$$ −55.1543 + 386.080i −0.0730521 + 0.511365i
$$756$$ −551.533 131.533i −0.729540 0.173985i
$$757$$ 302.000 + 302.000i 0.398943 + 0.398943i 0.877860 0.478917i $$-0.158971\pi$$
−0.478917 + 0.877860i $$0.658971\pi$$
$$758$$ −188.090 188.090i −0.248140 0.248140i
$$759$$ 952.000 + 336.583i 1.25428 + 0.443456i
$$760$$ −280.000 + 210.000i −0.368421 + 0.276316i
$$761$$ 701.450 0.921748 0.460874 0.887466i $$-0.347536\pi$$
0.460874 + 0.887466i $$0.347536\pi$$
$$762$$ 202.955 + 424.955i 0.266346 + 0.557684i
$$763$$ −490.000 −0.642202
$$764$$ 356.382 0.466468
$$765$$ 42.3128 1169.23i 0.0553109 1.52841i
$$766$$ 190.000i 0.248042i
$$767$$ −237.588 + 237.588i −0.309763 + 0.309763i
$$768$$ −221.085 462.915i −0.287871 0.602754i
$$769$$ 436.000 0.566970 0.283485 0.958977i $$-0.408509\pi$$
0.283485 + 0.958977i $$0.408509\pi$$
$$770$$ 207.889 + 277.186i 0.269986 + 0.359982i
$$771$$ 50.0000 141.421i 0.0648508 0.183426i
$$772$$ 201.000 + 201.000i 0.260363 + 0.260363i
$$773$$ −684.479 + 684.479i −0.885484 + 0.885484i −0.994085 0.108601i $$-0.965363\pi$$
0.108601 + 0.994085i $$0.465363\pi$$
$$774$$ −356.382 288.000i −0.460442 0.372093i
$$775$$ −98.0000 + 336.000i −0.126452 + 0.433548i
$$776$$ −1118.64 −1.44155
$$777$$ 840.000 + 296.985i 1.08108 + 0.382220i
$$778$$ 233.000 233.000i 0.299486 0.299486i
$$779$$ −339.411 −0.435701
$$780$$ 235.882 451.176i 0.302413 0.578430i
$$781$$ −588.000 −0.752881