Properties

Label 105.3.h.a
Level 105
Weight 3
Character orbit 105.h
Analytic conductor 2.861
Analytic rank 0
Dimension 12
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 3 \)
Character orbit: \([\chi]\) = 105.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{4} q^{2} -\beta_{3} q^{3} + ( 4 - \beta_{1} ) q^{4} + \beta_{8} q^{5} -\beta_{11} q^{6} + ( -1 + \beta_{3} - \beta_{8} + \beta_{9} ) q^{7} + ( 1 + \beta_{1} + 3 \beta_{4} - 2 \beta_{5} ) q^{8} -3 q^{9} +O(q^{10})\) \( q + \beta_{4} q^{2} -\beta_{3} q^{3} + ( 4 - \beta_{1} ) q^{4} + \beta_{8} q^{5} -\beta_{11} q^{6} + ( -1 + \beta_{3} - \beta_{8} + \beta_{9} ) q^{7} + ( 1 + \beta_{1} + 3 \beta_{4} - 2 \beta_{5} ) q^{8} -3 q^{9} -\beta_{7} q^{10} + ( -1 - \beta_{1} + 2 \beta_{2} - \beta_{3} - 2 \beta_{4} + \beta_{7} - \beta_{8} - \beta_{11} ) q^{11} + ( -4 \beta_{3} - \beta_{6} + \beta_{7} ) q^{12} + ( 4 \beta_{8} + \beta_{9} + \beta_{10} + 2 \beta_{11} ) q^{13} + ( -4 + 2 \beta_{1} + \beta_{2} - 2 \beta_{3} + \beta_{4} + \beta_{5} + 2 \beta_{7} - 2 \beta_{10} ) q^{14} -\beta_{5} q^{15} + ( 9 - 4 \beta_{1} - 4 \beta_{4} + 4 \beta_{5} - 2 \beta_{9} + 2 \beta_{10} ) q^{16} + ( \beta_{3} - \beta_{6} + \beta_{7} - 2 \beta_{8} + \beta_{9} + \beta_{10} + 2 \beta_{11} ) q^{17} -3 \beta_{4} q^{18} + ( -6 \beta_{3} + \beta_{6} + 2 \beta_{7} - \beta_{8} + 2 \beta_{9} + 2 \beta_{10} + \beta_{11} ) q^{19} + ( -\beta_{6} + 4 \beta_{8} - \beta_{9} - \beta_{10} + \beta_{11} ) q^{20} + ( 3 + \beta_{2} - \beta_{4} + \beta_{5} - \beta_{6} + \beta_{8} ) q^{21} + ( -9 + 3 \beta_{1} - 4 \beta_{2} + 2 \beta_{3} + 4 \beta_{4} - 4 \beta_{5} - 2 \beta_{7} + 2 \beta_{8} + \beta_{9} - \beta_{10} + 2 \beta_{11} ) q^{22} + ( -3 - 3 \beta_{1} + 2 \beta_{5} - 2 \beta_{9} + 2 \beta_{10} ) q^{23} + ( -\beta_{3} + \beta_{6} - \beta_{7} - 6 \beta_{8} - 3 \beta_{11} ) q^{24} -5 q^{25} + ( 13 \beta_{3} + 2 \beta_{6} - 5 \beta_{7} + \beta_{8} - 2 \beta_{9} - 2 \beta_{10} - \beta_{11} ) q^{26} + 3 \beta_{3} q^{27} + ( 4 + 3 \beta_{1} + 3 \beta_{3} - 4 \beta_{4} + 4 \beta_{5} + 2 \beta_{6} - 2 \beta_{7} - 9 \beta_{8} + 3 \beta_{9} - 2 \beta_{11} ) q^{28} + ( 5 + 5 \beta_{1} - 2 \beta_{4} - 2 \beta_{5} + 2 \beta_{9} - 2 \beta_{10} ) q^{29} + ( 1 - 2 \beta_{1} - \beta_{4} + \beta_{5} - \beta_{9} + \beta_{10} ) q^{30} + ( 2 \beta_{3} + 10 \beta_{8} - 2 \beta_{9} - 2 \beta_{10} + 2 \beta_{11} ) q^{31} + ( -20 + 4 \beta_{1} - 4 \beta_{2} + 2 \beta_{3} + 5 \beta_{4} - 8 \beta_{5} - 2 \beta_{7} + 2 \beta_{8} + 2 \beta_{11} ) q^{32} + ( \beta_{3} - \beta_{6} + \beta_{7} - 3 \beta_{9} - 3 \beta_{10} ) q^{33} + ( 12 \beta_{3} + 3 \beta_{6} - 5 \beta_{8} - 2 \beta_{9} - 2 \beta_{10} - 3 \beta_{11} ) q^{34} + ( 5 - \beta_{1} - \beta_{2} - 2 \beta_{3} + \beta_{5} - \beta_{6} - \beta_{9} - \beta_{10} - \beta_{11} ) q^{35} + ( -12 + 3 \beta_{1} ) q^{36} + ( 5 - 5 \beta_{1} - 4 \beta_{2} + 2 \beta_{3} + 2 \beta_{4} + 4 \beta_{5} - 2 \beta_{7} + 2 \beta_{8} - 2 \beta_{9} + 2 \beta_{10} + 2 \beta_{11} ) q^{37} + ( 3 \beta_{3} + 3 \beta_{6} + 3 \beta_{7} - 16 \beta_{8} - \beta_{9} - \beta_{10} - 8 \beta_{11} ) q^{38} + ( 2 \beta_{2} - \beta_{3} + 4 \beta_{4} - 4 \beta_{5} + \beta_{7} - \beta_{8} - \beta_{11} ) q^{39} + ( 10 \beta_{3} + \beta_{6} - 3 \beta_{7} + \beta_{8} + \beta_{9} + \beta_{10} - \beta_{11} ) q^{40} + ( -21 \beta_{3} - 3 \beta_{7} - 3 \beta_{8} - 5 \beta_{11} ) q^{41} + ( -6 + 3 \beta_{1} - 2 \beta_{2} + 4 \beta_{3} + 5 \beta_{4} - 2 \beta_{5} - 4 \beta_{7} + 7 \beta_{8} - 3 \beta_{10} ) q^{42} + ( 13 + 3 \beta_{1} + 4 \beta_{2} - 2 \beta_{3} + 6 \beta_{4} + 2 \beta_{7} - 2 \beta_{8} + 3 \beta_{9} - 3 \beta_{10} - 2 \beta_{11} ) q^{43} + ( 17 - 7 \beta_{1} + 2 \beta_{2} - \beta_{3} - 14 \beta_{4} + 16 \beta_{5} + \beta_{7} - \beta_{8} - 4 \beta_{9} + 4 \beta_{10} - \beta_{11} ) q^{44} -3 \beta_{8} q^{45} + ( 17 - \beta_{1} - 4 \beta_{2} + 2 \beta_{3} - 12 \beta_{5} - 2 \beta_{7} + 2 \beta_{8} - 2 \beta_{9} + 2 \beta_{10} + 2 \beta_{11} ) q^{46} + ( -11 \beta_{3} - 7 \beta_{6} + \beta_{7} - 2 \beta_{8} + \beta_{9} + \beta_{10} - 4 \beta_{11} ) q^{47} + ( -7 \beta_{3} + 6 \beta_{7} + 6 \beta_{8} + 2 \beta_{11} ) q^{48} + ( 8 + \beta_{1} - 2 \beta_{2} + 2 \beta_{3} + 10 \beta_{4} + 2 \beta_{5} + 3 \beta_{6} - 4 \beta_{7} - 7 \beta_{8} + 2 \beta_{10} + 5 \beta_{11} ) q^{49} -5 \beta_{4} q^{50} + ( 3 + 3 \beta_{1} + 2 \beta_{2} - \beta_{3} + 4 \beta_{4} + 2 \beta_{5} + \beta_{7} - \beta_{8} - \beta_{11} ) q^{51} + ( -6 \beta_{6} + 18 \beta_{8} - 3 \beta_{9} - 3 \beta_{10} + 16 \beta_{11} ) q^{52} + ( 15 - 9 \beta_{1} - 12 \beta_{4} - 6 \beta_{5} - 2 \beta_{9} + 2 \beta_{10} ) q^{53} + 3 \beta_{11} q^{54} + ( -3 \beta_{6} + 2 \beta_{7} - \beta_{8} + 2 \beta_{9} + 2 \beta_{10} + 3 \beta_{11} ) q^{55} + ( -35 + 7 \beta_{1} - \beta_{2} - 12 \beta_{3} + \beta_{4} + \beta_{5} - 4 \beta_{6} + 8 \beta_{7} + 12 \beta_{8} + 4 \beta_{9} - 2 \beta_{10} + 6 \beta_{11} ) q^{56} + ( -21 + 3 \beta_{1} + 4 \beta_{2} - 2 \beta_{3} + 2 \beta_{4} - 2 \beta_{5} + 2 \beta_{7} - 2 \beta_{8} + 3 \beta_{9} - 3 \beta_{10} - 2 \beta_{11} ) q^{57} + ( -35 + \beta_{1} + 4 \beta_{2} - 2 \beta_{3} - 4 \beta_{4} + 16 \beta_{5} + 2 \beta_{7} - 2 \beta_{8} + 2 \beta_{9} - 2 \beta_{10} - 2 \beta_{11} ) q^{58} + ( -11 \beta_{3} + 2 \beta_{6} + 7 \beta_{7} + 7 \beta_{8} + 4 \beta_{9} + 4 \beta_{10} - 5 \beta_{11} ) q^{59} + ( 1 + \beta_{1} - 2 \beta_{2} + \beta_{3} + 4 \beta_{4} - 3 \beta_{5} - \beta_{7} + \beta_{8} - \beta_{9} + \beta_{10} + \beta_{11} ) q^{60} + ( 22 \beta_{3} + 9 \beta_{6} - \beta_{8} + 2 \beta_{9} + 2 \beta_{10} + \beta_{11} ) q^{61} + ( 22 \beta_{3} + 2 \beta_{6} - 14 \beta_{7} - 2 \beta_{8} + 4 \beta_{9} + 4 \beta_{10} + 4 \beta_{11} ) q^{62} + ( 3 - 3 \beta_{3} + 3 \beta_{8} - 3 \beta_{9} ) q^{63} + ( -4 - 9 \beta_{1} + 8 \beta_{2} - 4 \beta_{3} - 28 \beta_{4} + 4 \beta_{5} + 4 \beta_{7} - 4 \beta_{8} - 2 \beta_{9} + 2 \beta_{10} - 4 \beta_{11} ) q^{64} + ( -22 + 2 \beta_{1} - 2 \beta_{2} + \beta_{3} + 2 \beta_{4} - 2 \beta_{5} - \beta_{7} + \beta_{8} + 2 \beta_{9} - 2 \beta_{10} + \beta_{11} ) q^{65} + ( 8 \beta_{3} + \beta_{6} - 4 \beta_{7} - 9 \beta_{8} + 6 \beta_{9} + 6 \beta_{10} + \beta_{11} ) q^{66} + ( 17 - 9 \beta_{1} + 4 \beta_{2} - 2 \beta_{3} - 6 \beta_{4} - 12 \beta_{5} + 2 \beta_{7} - 2 \beta_{8} - \beta_{9} + \beta_{10} - 2 \beta_{11} ) q^{67} + ( -19 \beta_{3} + \beta_{6} + 5 \beta_{7} + 3 \beta_{9} + 3 \beta_{10} + 12 \beta_{11} ) q^{68} + ( 5 \beta_{3} + \beta_{6} + 5 \beta_{7} - 2 \beta_{11} ) q^{69} + ( -3 + 3 \beta_{1} + 2 \beta_{2} - 11 \beta_{3} + 8 \beta_{4} - 2 \beta_{5} - \beta_{6} + \beta_{7} - 4 \beta_{8} + 2 \beta_{9} + \beta_{10} - 5 \beta_{11} ) q^{70} + ( 2 - 4 \beta_{1} + 2 \beta_{2} - \beta_{3} + 4 \beta_{4} - 2 \beta_{5} + \beta_{7} - \beta_{8} + 6 \beta_{9} - 6 \beta_{10} - \beta_{11} ) q^{71} + ( -3 - 3 \beta_{1} - 9 \beta_{4} + 6 \beta_{5} ) q^{72} + ( 16 \beta_{3} - 2 \beta_{6} - 10 \beta_{7} + 14 \beta_{8} + 2 \beta_{9} + 2 \beta_{10} - 6 \beta_{11} ) q^{73} + ( 21 + 3 \beta_{1} + 4 \beta_{2} - 2 \beta_{3} + 12 \beta_{4} - 14 \beta_{5} + 2 \beta_{7} - 2 \beta_{8} - 2 \beta_{9} + 2 \beta_{10} - 2 \beta_{11} ) q^{74} + 5 \beta_{3} q^{75} + ( -34 \beta_{3} - 9 \beta_{6} + 18 \beta_{7} - 27 \beta_{8} + 3 \beta_{11} ) q^{76} + ( 4 - 2 \beta_{1} - 2 \beta_{2} + 25 \beta_{3} + 14 \beta_{5} + 3 \beta_{6} - \beta_{7} + 12 \beta_{8} - 3 \beta_{9} + 7 \beta_{10} - 8 \beta_{11} ) q^{77} + ( 42 - 12 \beta_{1} - 4 \beta_{2} + 2 \beta_{3} - 2 \beta_{4} + 2 \beta_{5} - 2 \beta_{7} + 2 \beta_{8} - 3 \beta_{9} + 3 \beta_{10} + 2 \beta_{11} ) q^{78} + ( 12 + 10 \beta_{1} + 4 \beta_{2} - 2 \beta_{3} + 20 \beta_{4} - 8 \beta_{5} + 2 \beta_{7} - 2 \beta_{8} + 4 \beta_{9} - 4 \beta_{10} - 2 \beta_{11} ) q^{79} + ( -10 \beta_{3} + 2 \beta_{7} + 7 \beta_{8} + 10 \beta_{11} ) q^{80} + 9 q^{81} + ( -40 \beta_{3} - 8 \beta_{6} + 8 \beta_{7} + 24 \beta_{8} - 3 \beta_{9} - 3 \beta_{10} - 18 \beta_{11} ) q^{82} + ( -12 \beta_{3} - 12 \beta_{7} + 8 \beta_{8} - 4 \beta_{9} - 4 \beta_{10} ) q^{83} + ( 9 - 6 \beta_{1} + 3 \beta_{2} - 7 \beta_{3} - 9 \beta_{4} + 9 \beta_{5} - 3 \beta_{7} + 15 \beta_{8} + 4 \beta_{11} ) q^{84} + ( 9 + 3 \beta_{1} - 4 \beta_{2} + 2 \beta_{3} + 6 \beta_{4} - 2 \beta_{7} + 2 \beta_{8} + \beta_{9} - \beta_{10} + 2 \beta_{11} ) q^{85} + ( 33 + 3 \beta_{1} - 2 \beta_{2} + \beta_{3} + 20 \beta_{4} + 8 \beta_{5} - \beta_{7} + \beta_{8} + 8 \beta_{9} - 8 \beta_{10} + \beta_{11} ) q^{86} + ( -7 \beta_{3} + \beta_{6} - 7 \beta_{7} + 4 \beta_{11} ) q^{87} + ( -47 + 25 \beta_{1} + 4 \beta_{2} - 2 \beta_{3} + 24 \beta_{4} - 24 \beta_{5} + 2 \beta_{7} - 2 \beta_{8} + 5 \beta_{9} - 5 \beta_{10} - 2 \beta_{11} ) q^{88} + ( -5 \beta_{3} - 4 \beta_{6} + \beta_{7} - 31 \beta_{8} - 4 \beta_{9} - 4 \beta_{10} + 7 \beta_{11} ) q^{89} + 3 \beta_{7} q^{90} + ( 7 - 11 \beta_{1} - 2 \beta_{2} - 18 \beta_{3} - 2 \beta_{4} + 14 \beta_{5} - 5 \beta_{6} + 4 \beta_{7} - 19 \beta_{8} - 6 \beta_{9} + 2 \beta_{10} - \beta_{11} ) q^{91} + ( 29 - 19 \beta_{1} + 4 \beta_{2} - 2 \beta_{3} - 4 \beta_{4} + 2 \beta_{5} + 2 \beta_{7} - 2 \beta_{8} - 10 \beta_{9} + 10 \beta_{10} - 2 \beta_{11} ) q^{92} + ( 6 - 4 \beta_{2} + 2 \beta_{3} + 10 \beta_{4} - 10 \beta_{5} - 2 \beta_{7} + 2 \beta_{8} + 2 \beta_{11} ) q^{93} + ( -42 \beta_{3} - 3 \beta_{6} + 7 \beta_{8} - 8 \beta_{9} - 8 \beta_{10} - 27 \beta_{11} ) q^{94} + ( 3 - 3 \beta_{1} - 2 \beta_{2} + \beta_{3} + 12 \beta_{4} - 8 \beta_{5} - \beta_{7} + \beta_{8} + 2 \beta_{9} - 2 \beta_{10} + \beta_{11} ) q^{95} + ( 20 \beta_{3} + 4 \beta_{6} - 4 \beta_{7} - 24 \beta_{8} + 6 \beta_{9} + 6 \beta_{10} - \beta_{11} ) q^{96} + ( 14 \beta_{3} + 6 \beta_{6} - 4 \beta_{8} - 10 \beta_{9} - 10 \beta_{10} + 4 \beta_{11} ) q^{97} + ( 79 - 11 \beta_{1} + 2 \beta_{2} + 31 \beta_{3} + \beta_{4} + \beta_{6} + 9 \beta_{7} + 18 \beta_{8} - 3 \beta_{9} - \beta_{10} + 8 \beta_{11} ) q^{98} + ( 3 + 3 \beta_{1} - 6 \beta_{2} + 3 \beta_{3} + 6 \beta_{4} - 3 \beta_{7} + 3 \beta_{8} + 3 \beta_{11} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q - 4q^{2} + 44q^{4} - 8q^{7} + 4q^{8} - 36q^{9} + O(q^{10}) \) \( 12q - 4q^{2} + 44q^{4} - 8q^{7} + 4q^{8} - 36q^{9} - 16q^{11} - 40q^{14} + 92q^{16} + 12q^{18} + 36q^{21} - 88q^{22} - 64q^{23} - 60q^{25} + 88q^{28} + 104q^{29} - 228q^{32} + 60q^{35} - 132q^{36} + 32q^{37} - 24q^{39} - 60q^{42} + 152q^{43} + 192q^{44} + 200q^{46} + 60q^{49} + 20q^{50} + 24q^{51} + 176q^{53} - 368q^{56} - 240q^{57} - 400q^{58} + 24q^{63} - 20q^{64} - 240q^{65} + 168q^{67} - 60q^{70} + 32q^{71} - 12q^{72} + 184q^{74} + 8q^{77} + 456q^{78} + 120q^{79} + 108q^{81} + 108q^{84} + 120q^{85} + 400q^{86} - 536q^{88} + 24q^{91} + 192q^{92} + 48q^{93} + 884q^{98} + 48q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{12} - 2 x^{11} + 21 x^{10} - 26 x^{9} + 295 x^{8} - 372 x^{7} + 1704 x^{6} - 1074 x^{5} + 5613 x^{4} - 5472 x^{3} + 4950 x^{2} - 1638 x + 441\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\(1163071964 \nu^{11} + 179172244 \nu^{10} + 20630949354 \nu^{9} + 16671982336 \nu^{8} + 315532034086 \nu^{7} + 213549867516 \nu^{6} + 1552126862414 \nu^{5} + 1781364901824 \nu^{4} + 8663666606754 \nu^{3} + 2969181679896 \nu^{2} - 1028895680526 \nu + 2151653525805\)\()/ 5604734688861 \)
\(\beta_{2}\)\(=\)\((\)\(-19075972200 \nu^{11} - 93424675980 \nu^{10} - 170812742885 \nu^{9} - 2190651066536 \nu^{8} - 2869803299632 \nu^{7} - 30803759234464 \nu^{6} + 6962573059314 \nu^{5} - 189561780832470 \nu^{4} - 20039696712579 \nu^{3} - 600344866337340 \nu^{2} + 400451804827326 \nu - 326284936204626\)\()/ 16814204066583 \)
\(\beta_{3}\)\(=\)\((\)\(-7830116016 \nu^{11} + 14497160068 \nu^{10} - 164611608580 \nu^{9} + 182952067062 \nu^{8} - 2326556207056 \nu^{7} + 2597271123866 \nu^{6} - 13556067558780 \nu^{5} + 6857417738770 \nu^{4} - 45731806099632 \nu^{3} + 34182728232798 \nu^{2} - 41728255959096 \nu + 8249891025873\)\()/ 5604734688861 \)
\(\beta_{4}\)\(=\)\((\)\(-5593516534 \nu^{11} + 2605315656 \nu^{10} - 102990651177 \nu^{9} - 27516350446 \nu^{8} - 1489720495401 \nu^{7} - 348399189483 \nu^{6} - 7205061506889 \nu^{5} - 7155359090394 \nu^{4} - 27659028800376 \nu^{3} - 12643415740656 \nu^{2} + 4393836770841 \nu - 10342332760284\)\()/ 2402029152369 \)
\(\beta_{5}\)\(=\)\((\)\(-420436 \nu^{11} + 161001 \nu^{10} - 7746906 \nu^{9} - 2597287 \nu^{8} - 112253475 \nu^{7} - 32874720 \nu^{6} - 544174569 \nu^{5} - 552012621 \nu^{4} - 2082413232 \nu^{3} - 966776562 \nu^{2} + 335831265 \nu - 794649726\)\()/ 133884909 \)
\(\beta_{6}\)\(=\)\((\)\(-233300876 \nu^{11} + 404122997 \nu^{10} - 4898355887 \nu^{9} + 4884356215 \nu^{8} - 69652827574 \nu^{7} + 69330420871 \nu^{6} - 408590656806 \nu^{5} + 157533404673 \nu^{4} - 1426181986128 \nu^{3} + 927729741900 \nu^{2} - 1506759017400 \nu + 286407973908\)\()/ 66459304611 \)
\(\beta_{7}\)\(=\)\((\)\(-79026253784 \nu^{11} + 146272115177 \nu^{10} - 1671226017089 \nu^{9} + 1834614270589 \nu^{8} - 23655237895132 \nu^{7} + 25973059454509 \nu^{6} - 139385258261016 \nu^{5} + 65772299304051 \nu^{4} - 472028460969018 \nu^{3} + 346171354438782 \nu^{2} - 442224670054734 \nu + 86851646987175\)\()/ 16814204066583 \)
\(\beta_{8}\)\(=\)\((\)\(-5888 \nu^{11} + 11357 \nu^{10} - 121362 \nu^{9} + 142983 \nu^{8} - 1697439 \nu^{7} + 2055140 \nu^{6} - 9463719 \nu^{5} + 5419563 \nu^{4} - 30382920 \nu^{3} + 29629158 \nu^{2} - 18996579 \nu + 4306806\)\()/1130283\)
\(\beta_{9}\)\(=\)\((\)\(10465136770 \nu^{11} - 21796565040 \nu^{10} + 217694819151 \nu^{9} - 281471772670 \nu^{8} + 3036253477328 \nu^{7} - 4036087599626 \nu^{6} + 17185537551444 \nu^{5} - 11089514438346 \nu^{4} + 55017188023641 \nu^{3} - 57941854444554 \nu^{2} + 45520828453800 \nu - 2470563074763\)\()/ 1528564006053 \)
\(\beta_{10}\)\(=\)\((\)\(4771832146 \nu^{11} - 7993408932 \nu^{10} + 97232846541 \nu^{9} - 92976169234 \nu^{8} + 1370545304570 \nu^{7} - 1347840842486 \nu^{6} + 7600600799214 \nu^{5} - 2916220839078 \nu^{4} + 25482799710645 \nu^{3} - 19858677257310 \nu^{2} + 16532688498102 \nu - 6309118974753\)\()/ 579800140227 \)
\(\beta_{11}\)\(=\)\((\)\(63482984056 \nu^{11} - 122784179216 \nu^{10} + 1310387571065 \nu^{9} - 1539020770436 \nu^{8} + 18330600604705 \nu^{7} - 22137707421633 \nu^{6} + 102461242347749 \nu^{5} - 57601814034902 \nu^{4} + 328824523408572 \nu^{3} - 321597481405422 \nu^{2} + 205290382805907 \nu - 46611711121164\)\()/ 5604734688861 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{7} - \beta_{6} - \beta_{3} - \beta_{1} + 1\)\()/4\)
\(\nu^{2}\)\(=\)\((\)\(\beta_{11} - \beta_{10} + \beta_{9} + 3 \beta_{8} + 2 \beta_{7} + \beta_{6} - 2 \beta_{5} + 2 \beta_{4} - 12 \beta_{3} + \beta_{1} - 13\)\()/4\)
\(\nu^{3}\)\(=\)\((\)\(\beta_{11} + \beta_{8} - \beta_{7} + 6 \beta_{4} + \beta_{3} - 2 \beta_{2} + 11 \beta_{1} - 9\)\()/2\)
\(\nu^{4}\)\(=\)\((\)\(-23 \beta_{11} - 15 \beta_{10} + 9 \beta_{9} - 61 \beta_{8} - 25 \beta_{7} - 10 \beta_{6} - 32 \beta_{5} + 32 \beta_{4} + 125 \beta_{3} + 2 \beta_{2} + 14 \beta_{1} - 138\)\()/4\)
\(\nu^{5}\)\(=\)\((\)\(-96 \beta_{11} + 48 \beta_{10} + 54 \beta_{9} - 50 \beta_{8} - 111 \beta_{7} + 137 \beta_{6} + 8 \beta_{5} - 110 \beta_{4} + 103 \beta_{3} + 34 \beta_{2} - 131 \beta_{1} + 117\)\()/4\)
\(\nu^{6}\)\(=\)\((\)\(13 \beta_{11} + 144 \beta_{10} - 144 \beta_{9} + 13 \beta_{8} - 13 \beta_{7} + 452 \beta_{5} - 476 \beta_{4} + 13 \beta_{3} - 26 \beta_{2} - 194 \beta_{1} + 1644\)\()/2\)
\(\nu^{7}\)\(=\)\((\)\(511 \beta_{11} - 381 \beta_{10} - 336 \beta_{9} + 302 \beta_{8} + 926 \beta_{7} - 874 \beta_{6} + 118 \beta_{5} - 847 \beta_{4} - 964 \beta_{3} + 239 \beta_{2} - 829 \beta_{1} + 822\)\()/2\)
\(\nu^{8}\)\(=\)\((\)\(5220 \beta_{11} - 1416 \beta_{10} + 2142 \beta_{9} + 12980 \beta_{8} + 4665 \beta_{7} + 793 \beta_{6} - 6146 \beta_{5} + 6878 \beta_{4} - 19045 \beta_{3} + 242 \beta_{2} + 2765 \beta_{1} - 20703\)\()/4\)
\(\nu^{9}\)\(=\)\((\)\(3194 \beta_{11} + 429 \beta_{10} - 429 \beta_{9} + 3194 \beta_{8} - 3194 \beta_{7} - 4808 \beta_{5} + 24704 \beta_{4} + 3194 \beta_{3} - 6388 \beta_{2} + 21683 \beta_{1} - 24291\)\()/2\)
\(\nu^{10}\)\(=\)\((\)\(-77615 \beta_{11} - 24843 \beta_{10} + 20103 \beta_{9} - 181057 \beta_{8} - 61762 \beta_{7} - 4867 \beta_{6} - 82562 \beta_{5} + 97718 \beta_{4} + 245402 \beta_{3} + 1580 \beta_{2} + 40079 \beta_{1} - 268665\)\()/4\)
\(\nu^{11}\)\(=\)\((\)\(-312327 \beta_{11} + 124221 \beta_{10} + 128205 \beta_{9} - 302519 \beta_{8} - 244605 \beta_{7} + 292652 \beta_{6} + 84824 \beta_{5} - 352406 \beta_{4} + 326107 \beta_{3} + 84142 \beta_{2} - 288668 \beta_{1} + 366186\)\()/4\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
76.1
1.86875 3.23677i
1.86875 + 3.23677i
0.198184 0.343264i
0.198184 + 0.343264i
−1.01714 + 1.76174i
−1.01714 1.76174i
−1.74681 + 3.02556i
−1.74681 3.02556i
0.378061 0.654821i
0.378061 + 0.654821i
1.31896 2.28450i
1.31896 + 2.28450i
−3.80460 1.73205i 10.4750 2.23607i 6.58976i 2.44621 + 6.55866i −24.6348 −3.00000 8.50735i
76.2 −3.80460 1.73205i 10.4750 2.23607i 6.58976i 2.44621 6.55866i −24.6348 −3.00000 8.50735i
76.3 −2.79155 1.73205i 3.79273 2.23607i 4.83510i 4.15782 5.63139i 0.578591 −3.00000 6.24209i
76.4 −2.79155 1.73205i 3.79273 2.23607i 4.83510i 4.15782 + 5.63139i 0.578591 −3.00000 6.24209i
76.5 −1.71214 1.73205i −1.06857 2.23607i 2.96552i −3.33344 + 6.15534i 8.67811 −3.00000 3.82847i
76.6 −1.71214 1.73205i −1.06857 2.23607i 2.96552i −3.33344 6.15534i 8.67811 −3.00000 3.82847i
76.7 −0.112974 1.73205i −3.98724 2.23607i 0.195676i −6.71303 + 1.98374i 0.902349 −3.00000 0.252617i
76.8 −0.112974 1.73205i −3.98724 2.23607i 0.195676i −6.71303 1.98374i 0.902349 −3.00000 0.252617i
76.9 2.91758 1.73205i 4.51225 2.23607i 5.05339i 6.13981 + 3.36195i 1.49451 −3.00000 6.52390i
76.10 2.91758 1.73205i 4.51225 2.23607i 5.05339i 6.13981 3.36195i 1.49451 −3.00000 6.52390i
76.11 3.50369 1.73205i 8.27584 2.23607i 6.06857i −6.69736 2.03600i 14.9812 −3.00000 7.83449i
76.12 3.50369 1.73205i 8.27584 2.23607i 6.06857i −6.69736 + 2.03600i 14.9812 −3.00000 7.83449i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 76.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 105.3.h.a 12
3.b odd 2 1 315.3.h.d 12
4.b odd 2 1 1680.3.s.c 12
5.b even 2 1 525.3.h.d 12
5.c odd 4 2 525.3.e.c 24
7.b odd 2 1 inner 105.3.h.a 12
21.c even 2 1 315.3.h.d 12
28.d even 2 1 1680.3.s.c 12
35.c odd 2 1 525.3.h.d 12
35.f even 4 2 525.3.e.c 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.3.h.a 12 1.a even 1 1 trivial
105.3.h.a 12 7.b odd 2 1 inner
315.3.h.d 12 3.b odd 2 1
315.3.h.d 12 21.c even 2 1
525.3.e.c 24 5.c odd 4 2
525.3.e.c 24 35.f even 4 2
525.3.h.d 12 5.b even 2 1
525.3.h.d 12 35.c odd 2 1
1680.3.s.c 12 4.b odd 2 1
1680.3.s.c 12 28.d even 2 1

Hecke kernels

This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(105, [\chi])\).

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( ( 1 + 2 T + 3 T^{2} + 7 T^{4} + 38 T^{5} + 109 T^{6} + 152 T^{7} + 112 T^{8} + 768 T^{10} + 2048 T^{11} + 4096 T^{12} )^{2} \)
$3$ \( ( 1 + 3 T^{2} )^{6} \)
$5$ \( ( 1 + 5 T^{2} )^{6} \)
$7$ \( 1 + 8 T + 2 T^{2} + 312 T^{3} + 4255 T^{4} + 13888 T^{5} + 43708 T^{6} + 680512 T^{7} + 10216255 T^{8} + 36706488 T^{9} + 11529602 T^{10} + 2259801992 T^{11} + 13841287201 T^{12} \)
$11$ \( ( 1 + 8 T + 198 T^{2} + 1416 T^{3} + 30895 T^{4} + 264944 T^{5} + 5610292 T^{6} + 32058224 T^{7} + 452333695 T^{8} + 2508530376 T^{9} + 42443058438 T^{10} + 207499396808 T^{11} + 3138428376721 T^{12} )^{2} \)
$13$ \( 1 - 852 T^{2} + 436674 T^{4} - 159409348 T^{6} + 45042421839 T^{8} - 10253858128680 T^{10} + 1907667001388316 T^{12} - 292860442013229480 T^{14} + 36742487242313615919 T^{16} - \)\(37\!\cdots\!88\)\( T^{18} + \)\(29\!\cdots\!34\)\( T^{20} - \)\(16\!\cdots\!52\)\( T^{22} + \)\(54\!\cdots\!61\)\( T^{24} \)
$17$ \( 1 - 2172 T^{2} + 2401794 T^{4} - 1757595148 T^{6} + 941667483759 T^{8} - 387997181982840 T^{10} + 125896935467491356 T^{12} - 32405912636388779640 T^{14} + \)\(65\!\cdots\!19\)\( T^{16} - \)\(10\!\cdots\!28\)\( T^{18} + \)\(11\!\cdots\!14\)\( T^{20} - \)\(88\!\cdots\!72\)\( T^{22} + \)\(33\!\cdots\!21\)\( T^{24} \)
$19$ \( 1 - 1404 T^{2} + 1342050 T^{4} - 896154316 T^{6} + 500154418383 T^{8} - 227690692547448 T^{10} + 90028611036772572 T^{12} - 29672878743475970808 T^{14} + \)\(84\!\cdots\!03\)\( T^{16} - \)\(19\!\cdots\!76\)\( T^{18} + \)\(38\!\cdots\!50\)\( T^{20} - \)\(52\!\cdots\!04\)\( T^{22} + \)\(48\!\cdots\!21\)\( T^{24} \)
$23$ \( ( 1 + 32 T + 2418 T^{2} + 60144 T^{3} + 2694751 T^{4} + 53735792 T^{5} + 1782680284 T^{6} + 28426233968 T^{7} + 754101814591 T^{8} + 8903470508016 T^{9} + 189355962409458 T^{10} + 1325648358836768 T^{11} + 21914624432020321 T^{12} )^{2} \)
$29$ \( ( 1 - 52 T + 3990 T^{2} - 132324 T^{3} + 6311983 T^{4} - 164304136 T^{5} + 6334525012 T^{6} - 138179778376 T^{7} + 4464345648223 T^{8} - 78709401128004 T^{9} + 1995983187714390 T^{10} - 21876776131610452 T^{11} + 353814783205469041 T^{12} )^{2} \)
$31$ \( 1 - 6228 T^{2} + 19622274 T^{4} - 42341564932 T^{6} + 69647410996719 T^{8} - 91080823295899560 T^{10} + 96735996796679061276 T^{12} - \)\(84\!\cdots\!60\)\( T^{14} + \)\(59\!\cdots\!79\)\( T^{16} - \)\(33\!\cdots\!52\)\( T^{18} + \)\(14\!\cdots\!94\)\( T^{20} - \)\(41\!\cdots\!28\)\( T^{22} + \)\(62\!\cdots\!21\)\( T^{24} \)
$37$ \( ( 1 - 16 T + 4622 T^{2} + 32784 T^{3} + 7136719 T^{4} + 278279680 T^{5} + 7429424740 T^{6} + 380964881920 T^{7} + 13375360417759 T^{8} + 84114774592656 T^{9} + 16234680036022862 T^{10} - 76937349958685584 T^{11} + 6582952005840035281 T^{12} )^{2} \)
$41$ \( 1 - 7524 T^{2} + 32464386 T^{4} - 93240551380 T^{6} + 206850565610415 T^{8} - 379921653079011144 T^{10} + \)\(65\!\cdots\!56\)\( T^{12} - \)\(10\!\cdots\!84\)\( T^{14} + \)\(16\!\cdots\!15\)\( T^{16} - \)\(21\!\cdots\!80\)\( T^{18} + \)\(20\!\cdots\!26\)\( T^{20} - \)\(13\!\cdots\!24\)\( T^{22} + \)\(50\!\cdots\!61\)\( T^{24} \)
$43$ \( ( 1 - 76 T + 9590 T^{2} - 631788 T^{3} + 42146383 T^{4} - 2188827368 T^{5} + 102971644948 T^{6} - 4047141803432 T^{7} + 144090096346783 T^{8} - 3993761318001612 T^{9} + 112089840662193590 T^{10} - 1642472655809602924 T^{11} + 39959630797262576401 T^{12} )^{2} \)
$47$ \( 1 - 6132 T^{2} + 27456354 T^{4} - 92403901348 T^{6} + 277727516070639 T^{8} - 754801362269230440 T^{10} + \)\(17\!\cdots\!96\)\( T^{12} - \)\(36\!\cdots\!40\)\( T^{14} + \)\(66\!\cdots\!79\)\( T^{16} - \)\(10\!\cdots\!68\)\( T^{18} + \)\(15\!\cdots\!34\)\( T^{20} - \)\(16\!\cdots\!32\)\( T^{22} + \)\(13\!\cdots\!81\)\( T^{24} \)
$53$ \( ( 1 - 88 T + 10434 T^{2} - 574440 T^{3} + 50272015 T^{4} - 2575931008 T^{5} + 181692199804 T^{6} - 7235790201472 T^{7} + 396670379189215 T^{8} - 12732095606942760 T^{9} + 649617609752140674 T^{10} - 15390097392165148312 T^{11} + \)\(49\!\cdots\!41\)\( T^{12} )^{2} \)
$59$ \( 1 - 15948 T^{2} + 137050242 T^{4} - 864152710108 T^{6} + 4419517662043791 T^{8} - 18954945757384385304 T^{10} + \)\(70\!\cdots\!16\)\( T^{12} - \)\(22\!\cdots\!44\)\( T^{14} + \)\(64\!\cdots\!11\)\( T^{16} - \)\(15\!\cdots\!48\)\( T^{18} + \)\(29\!\cdots\!22\)\( T^{20} - \)\(41\!\cdots\!48\)\( T^{22} + \)\(31\!\cdots\!61\)\( T^{24} \)
$61$ \( 1 - 13716 T^{2} + 109224834 T^{4} - 648593370628 T^{6} + 3203041286245839 T^{8} - 13994290873734287016 T^{10} + \)\(55\!\cdots\!56\)\( T^{12} - \)\(19\!\cdots\!56\)\( T^{14} + \)\(61\!\cdots\!59\)\( T^{16} - \)\(17\!\cdots\!88\)\( T^{18} + \)\(40\!\cdots\!74\)\( T^{20} - \)\(69\!\cdots\!16\)\( T^{22} + \)\(70\!\cdots\!41\)\( T^{24} \)
$67$ \( ( 1 - 84 T + 15366 T^{2} - 763540 T^{3} + 102124911 T^{4} - 4033313976 T^{5} + 514098700788 T^{6} - 18105546438264 T^{7} + 2057931438675231 T^{8} - 69068593121318260 T^{9} + 6239635933335345606 T^{10} - \)\(15\!\cdots\!16\)\( T^{11} + \)\(81\!\cdots\!61\)\( T^{12} )^{2} \)
$71$ \( ( 1 - 16 T + 16698 T^{2} - 42336 T^{3} + 131112895 T^{4} + 1041328304 T^{5} + 716701578892 T^{6} + 5249335980464 T^{7} + 3331799062726495 T^{8} - 5423253620079456 T^{9} + 10782792464741717178 T^{10} - 52083896816158099216 T^{11} + \)\(16\!\cdots\!41\)\( T^{12} )^{2} \)
$73$ \( 1 - 19284 T^{2} + 216036930 T^{4} - 1973102936452 T^{6} + 14880325491672495 T^{8} - 96746229105564519336 T^{10} + \)\(55\!\cdots\!08\)\( T^{12} - \)\(27\!\cdots\!76\)\( T^{14} + \)\(12\!\cdots\!95\)\( T^{16} - \)\(45\!\cdots\!92\)\( T^{18} + \)\(14\!\cdots\!30\)\( T^{20} - \)\(35\!\cdots\!84\)\( T^{22} + \)\(52\!\cdots\!41\)\( T^{24} \)
$79$ \( ( 1 - 60 T + 22242 T^{2} - 662476 T^{3} + 201003183 T^{4} - 1192106616 T^{5} + 1261845815388 T^{6} - 7439937390456 T^{7} + 7829090259107823 T^{8} - 161039605183729996 T^{9} + 33743534149941729762 T^{10} - \)\(56\!\cdots\!60\)\( T^{11} + \)\(59\!\cdots\!41\)\( T^{12} )^{2} \)
$83$ \( 1 - 45420 T^{2} + 1066844514 T^{4} - 17098817034364 T^{6} + 206563644037003983 T^{8} - \)\(19\!\cdots\!08\)\( T^{10} + \)\(15\!\cdots\!04\)\( T^{12} - \)\(93\!\cdots\!68\)\( T^{14} + \)\(46\!\cdots\!03\)\( T^{16} - \)\(18\!\cdots\!04\)\( T^{18} + \)\(54\!\cdots\!34\)\( T^{20} - \)\(10\!\cdots\!20\)\( T^{22} + \)\(11\!\cdots\!21\)\( T^{24} \)
$89$ \( 1 - 46020 T^{2} + 1126013634 T^{4} - 19221077499316 T^{6} + 252845241317038383 T^{8} - \)\(26\!\cdots\!72\)\( T^{10} + \)\(23\!\cdots\!84\)\( T^{12} - \)\(16\!\cdots\!52\)\( T^{14} + \)\(99\!\cdots\!23\)\( T^{16} - \)\(47\!\cdots\!36\)\( T^{18} + \)\(17\!\cdots\!74\)\( T^{20} - \)\(44\!\cdots\!20\)\( T^{22} + \)\(61\!\cdots\!41\)\( T^{24} \)
$97$ \( 1 - 51924 T^{2} + 1396974978 T^{4} - 26352399780484 T^{6} + 389015604150559215 T^{8} - \)\(47\!\cdots\!84\)\( T^{10} + \)\(48\!\cdots\!52\)\( T^{12} - \)\(41\!\cdots\!04\)\( T^{14} + \)\(30\!\cdots\!15\)\( T^{16} - \)\(18\!\cdots\!44\)\( T^{18} + \)\(85\!\cdots\!38\)\( T^{20} - \)\(28\!\cdots\!24\)\( T^{22} + \)\(48\!\cdots\!81\)\( T^{24} \)
show more
show less