Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [105,3,Mod(29,105)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(105, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 0]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("105.29");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 105 = 3 \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 105.f (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.86104277578\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
29.1 | −3.57140 | 2.50375 | − | 1.65264i | 8.75491 | −0.280149 | + | 4.99215i | −8.94190 | + | 5.90225i | 2.64575i | −16.9817 | 3.53755 | − | 8.27561i | 1.00052 | − | 17.8290i | ||||||||
29.2 | −3.57140 | 2.50375 | + | 1.65264i | 8.75491 | −0.280149 | − | 4.99215i | −8.94190 | − | 5.90225i | − | 2.64575i | −16.9817 | 3.53755 | + | 8.27561i | 1.00052 | + | 17.8290i | |||||||
29.3 | −3.21327 | −1.93400 | − | 2.29339i | 6.32511 | 4.77035 | − | 1.49792i | 6.21446 | + | 7.36929i | 2.64575i | −7.47120 | −1.51929 | + | 8.87084i | −15.3284 | + | 4.81322i | ||||||||
29.4 | −3.21327 | −1.93400 | + | 2.29339i | 6.32511 | 4.77035 | + | 1.49792i | 6.21446 | − | 7.36929i | − | 2.64575i | −7.47120 | −1.51929 | − | 8.87084i | −15.3284 | − | 4.81322i | |||||||
29.5 | −2.80814 | 0.0756962 | − | 2.99904i | 3.88565 | −4.04610 | − | 2.93753i | −0.212566 | + | 8.42174i | − | 2.64575i | 0.321110 | −8.98854 | − | 0.454033i | 11.3620 | + | 8.24901i | |||||||
29.6 | −2.80814 | 0.0756962 | + | 2.99904i | 3.88565 | −4.04610 | + | 2.93753i | −0.212566 | − | 8.42174i | 2.64575i | 0.321110 | −8.98854 | + | 0.454033i | 11.3620 | − | 8.24901i | ||||||||
29.7 | −1.87229 | −2.98471 | − | 0.302541i | −0.494516 | −2.18081 | + | 4.49934i | 5.58825 | + | 0.566446i | − | 2.64575i | 8.41505 | 8.81694 | + | 1.80599i | 4.08312 | − | 8.42408i | |||||||
29.8 | −1.87229 | −2.98471 | + | 0.302541i | −0.494516 | −2.18081 | − | 4.49934i | 5.58825 | − | 0.566446i | 2.64575i | 8.41505 | 8.81694 | − | 1.80599i | 4.08312 | + | 8.42408i | ||||||||
29.9 | −1.50770 | 2.08699 | − | 2.15510i | −1.72685 | 4.79474 | + | 1.41790i | −3.14656 | + | 3.24924i | − | 2.64575i | 8.63435 | −0.288904 | − | 8.99536i | −7.22902 | − | 2.13777i | |||||||
29.10 | −1.50770 | 2.08699 | + | 2.15510i | −1.72685 | 4.79474 | − | 1.41790i | −3.14656 | − | 3.24924i | 2.64575i | 8.63435 | −0.288904 | + | 8.99536i | −7.22902 | + | 2.13777i | ||||||||
29.11 | −0.505667 | −0.985457 | − | 2.83353i | −3.74430 | −0.221081 | + | 4.99511i | 0.498313 | + | 1.43282i | 2.64575i | 3.91604 | −7.05775 | + | 5.58464i | 0.111793 | − | 2.52586i | ||||||||
29.12 | −0.505667 | −0.985457 | + | 2.83353i | −3.74430 | −0.221081 | − | 4.99511i | 0.498313 | − | 1.43282i | − | 2.64575i | 3.91604 | −7.05775 | − | 5.58464i | 0.111793 | + | 2.52586i | |||||||
29.13 | 0.505667 | 0.985457 | − | 2.83353i | −3.74430 | 0.221081 | − | 4.99511i | 0.498313 | − | 1.43282i | 2.64575i | −3.91604 | −7.05775 | − | 5.58464i | 0.111793 | − | 2.52586i | ||||||||
29.14 | 0.505667 | 0.985457 | + | 2.83353i | −3.74430 | 0.221081 | + | 4.99511i | 0.498313 | + | 1.43282i | − | 2.64575i | −3.91604 | −7.05775 | + | 5.58464i | 0.111793 | + | 2.52586i | |||||||
29.15 | 1.50770 | −2.08699 | − | 2.15510i | −1.72685 | −4.79474 | − | 1.41790i | −3.14656 | − | 3.24924i | − | 2.64575i | −8.63435 | −0.288904 | + | 8.99536i | −7.22902 | − | 2.13777i | |||||||
29.16 | 1.50770 | −2.08699 | + | 2.15510i | −1.72685 | −4.79474 | + | 1.41790i | −3.14656 | + | 3.24924i | 2.64575i | −8.63435 | −0.288904 | − | 8.99536i | −7.22902 | + | 2.13777i | ||||||||
29.17 | 1.87229 | 2.98471 | − | 0.302541i | −0.494516 | 2.18081 | − | 4.49934i | 5.58825 | − | 0.566446i | − | 2.64575i | −8.41505 | 8.81694 | − | 1.80599i | 4.08312 | − | 8.42408i | |||||||
29.18 | 1.87229 | 2.98471 | + | 0.302541i | −0.494516 | 2.18081 | + | 4.49934i | 5.58825 | + | 0.566446i | 2.64575i | −8.41505 | 8.81694 | + | 1.80599i | 4.08312 | + | 8.42408i | ||||||||
29.19 | 2.80814 | −0.0756962 | − | 2.99904i | 3.88565 | 4.04610 | + | 2.93753i | −0.212566 | − | 8.42174i | − | 2.64575i | −0.321110 | −8.98854 | + | 0.454033i | 11.3620 | + | 8.24901i | |||||||
29.20 | 2.80814 | −0.0756962 | + | 2.99904i | 3.88565 | 4.04610 | − | 2.93753i | −0.212566 | + | 8.42174i | 2.64575i | −0.321110 | −8.98854 | − | 0.454033i | 11.3620 | − | 8.24901i | ||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
15.d | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 105.3.f.a | ✓ | 24 |
3.b | odd | 2 | 1 | inner | 105.3.f.a | ✓ | 24 |
5.b | even | 2 | 1 | inner | 105.3.f.a | ✓ | 24 |
5.c | odd | 4 | 2 | 525.3.c.e | 24 | ||
15.d | odd | 2 | 1 | inner | 105.3.f.a | ✓ | 24 |
15.e | even | 4 | 2 | 525.3.c.e | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
105.3.f.a | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
105.3.f.a | ✓ | 24 | 3.b | odd | 2 | 1 | inner |
105.3.f.a | ✓ | 24 | 5.b | even | 2 | 1 | inner |
105.3.f.a | ✓ | 24 | 15.d | odd | 2 | 1 | inner |
525.3.c.e | 24 | 5.c | odd | 4 | 2 | ||
525.3.c.e | 24 | 15.e | even | 4 | 2 |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(105, [\chi])\).