Properties

Label 105.2.x
Level 105
Weight 2
Character orbit x
Rep. character \(\chi_{105}(2,\cdot)\)
Character field \(\Q(\zeta_{12})\)
Dimension 48
Newform subspaces 1
Sturm bound 32
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 105.x (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 105 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(32\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(105, [\chi])\).

Total New Old
Modular forms 80 80 0
Cusp forms 48 48 0
Eisenstein series 32 32 0

Trace form

\( 48q - 2q^{3} - 24q^{6} - 12q^{7} + O(q^{10}) \) \( 48q - 2q^{3} - 24q^{6} - 12q^{7} - 8q^{10} - 10q^{12} - 16q^{13} + 4q^{15} - 8q^{16} + 14q^{18} - 28q^{21} - 8q^{22} + 4q^{25} + 40q^{27} - 60q^{28} + 40q^{30} - 24q^{31} - 4q^{33} + 8q^{36} + 4q^{37} - 16q^{40} + 14q^{42} + 16q^{43} + 40q^{45} - 32q^{46} + 44q^{48} + 8q^{51} + 36q^{52} - 40q^{55} - 88q^{57} + 56q^{58} - 50q^{60} - 8q^{61} + 44q^{63} + 76q^{66} + 12q^{67} + 140q^{70} - 34q^{72} + 52q^{73} + 6q^{75} + 64q^{76} - 120q^{78} + 20q^{81} + 104q^{82} - 24q^{85} - 46q^{87} - 84q^{90} + 72q^{91} - 44q^{93} + 12q^{96} - 120q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(105, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
105.2.x.a \(48\) \(0.838\) None \(0\) \(-2\) \(0\) \(-12\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database