Properties

Label 105.2.x
Level $105$
Weight $2$
Character orbit 105.x
Rep. character $\chi_{105}(2,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $48$
Newform subspaces $1$
Sturm bound $32$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 105.x (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 105 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(32\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(105, [\chi])\).

Total New Old
Modular forms 80 80 0
Cusp forms 48 48 0
Eisenstein series 32 32 0

Trace form

\( 48 q - 2 q^{3} - 24 q^{6} - 12 q^{7} - 8 q^{10} - 10 q^{12} - 16 q^{13} + 4 q^{15} - 8 q^{16} + 14 q^{18} - 28 q^{21} - 8 q^{22} + 4 q^{25} + 40 q^{27} - 60 q^{28} + 40 q^{30} - 24 q^{31} - 4 q^{33} + 8 q^{36}+ \cdots - 120 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(105, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
105.2.x.a 105.x 105.x $48$ $0.838$ None 105.2.x.a \(0\) \(-2\) \(0\) \(-12\) $\mathrm{SU}(2)[C_{12}]$