Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [105,2,Mod(52,105)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(105, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([0, 3, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("105.52");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 105 = 3 \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 105.u (of order \(12\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(0.838429221223\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
52.1 | −0.582519 | + | 2.17399i | −0.965926 | + | 0.258819i | −2.65485 | − | 1.53278i | −0.0591736 | + | 2.23528i | − | 2.25068i | −2.56205 | − | 0.660211i | 1.69581 | − | 1.69581i | 0.866025 | − | 0.500000i | −4.82502 | − | 1.43074i | |
52.2 | −0.461174 | + | 1.72112i | 0.965926 | − | 0.258819i | −1.01754 | − | 0.587476i | −1.92237 | + | 1.14215i | 1.78184i | 2.04329 | + | 1.68076i | −1.03952 | + | 1.03952i | 0.866025 | − | 0.500000i | −1.07923 | − | 3.83536i | ||
52.3 | −0.401003 | + | 1.49657i | 0.965926 | − | 0.258819i | −0.346853 | − | 0.200256i | 2.14688 | − | 0.625221i | 1.54936i | −1.01885 | − | 2.44171i | −1.75234 | + | 1.75234i | 0.866025 | − | 0.500000i | 0.0747765 | + | 3.46366i | ||
52.4 | −0.173702 | + | 0.648264i | −0.965926 | + | 0.258819i | 1.34198 | + | 0.774791i | 1.64858 | − | 1.51070i | − | 0.671132i | −0.588837 | + | 2.57939i | −1.68450 | + | 1.68450i | 0.866025 | − | 0.500000i | 0.692969 | + | 1.33112i | |
52.5 | 0.105703 | − | 0.394487i | −0.965926 | + | 0.258819i | 1.58760 | + | 0.916603i | −0.699113 | + | 2.12397i | 0.408404i | 2.57548 | − | 0.605712i | 1.10697 | − | 1.10697i | 0.866025 | − | 0.500000i | 0.763981 | + | 0.500300i | ||
52.6 | 0.259789 | − | 0.969545i | 0.965926 | − | 0.258819i | 0.859523 | + | 0.496246i | −1.40510 | − | 1.73945i | − | 1.00375i | −1.06195 | + | 2.42328i | 2.12394 | − | 2.12394i | 0.866025 | − | 0.500000i | −2.05151 | + | 0.910421i | |
52.7 | 0.602389 | − | 2.24814i | 0.965926 | − | 0.258819i | −2.95923 | − | 1.70851i | −1.28534 | + | 1.82973i | − | 2.32745i | 0.519864 | − | 2.59417i | −2.33208 | + | 2.33208i | 0.866025 | − | 0.500000i | 3.33923 | + | 3.99183i | |
52.8 | 0.650518 | − | 2.42777i | −0.965926 | + | 0.258819i | −3.73883 | − | 2.15861i | −1.42436 | − | 1.72371i | 2.51341i | 2.09305 | + | 1.61838i | −4.11829 | + | 4.11829i | 0.866025 | − | 0.500000i | −5.11135 | + | 2.33671i | ||
73.1 | −2.42777 | − | 0.650518i | −0.258819 | − | 0.965926i | 3.73883 | + | 2.15861i | 0.780598 | + | 2.09539i | 2.51341i | 1.61838 | − | 2.09305i | −4.11829 | − | 4.11829i | −0.866025 | + | 0.500000i | −0.532020 | − | 5.59492i | ||
73.2 | −2.24814 | − | 0.602389i | 0.258819 | + | 0.965926i | 2.95923 | + | 1.70851i | −2.22726 | + | 0.198269i | − | 2.32745i | −2.59417 | − | 0.519864i | −2.33208 | − | 2.33208i | −0.866025 | + | 0.500000i | 5.12664 | + | 0.895939i | |
73.3 | −0.969545 | − | 0.259789i | 0.258819 | + | 0.965926i | −0.859523 | − | 0.496246i | 0.803857 | + | 2.08658i | − | 1.00375i | 2.42328 | + | 1.06195i | 2.12394 | + | 2.12394i | −0.866025 | + | 0.500000i | −0.237305 | − | 2.23187i | |
73.4 | −0.394487 | − | 0.105703i | −0.258819 | − | 0.965926i | −1.58760 | − | 0.916603i | −2.18897 | − | 0.456535i | 0.408404i | −0.605712 | − | 2.57548i | 1.10697 | + | 1.10697i | −0.866025 | + | 0.500000i | 0.815263 | + | 0.411477i | ||
73.5 | 0.648264 | + | 0.173702i | −0.258819 | − | 0.965926i | −1.34198 | − | 0.774791i | 2.13259 | − | 0.672361i | − | 0.671132i | 2.57939 | + | 0.588837i | −1.68450 | − | 1.68450i | −0.866025 | + | 0.500000i | 1.49927 | − | 0.0654328i | |
73.6 | 1.49657 | + | 0.401003i | 0.258819 | + | 0.965926i | 0.346853 | + | 0.200256i | 1.61490 | − | 1.54664i | 1.54936i | −2.44171 | + | 1.01885i | −1.75234 | − | 1.75234i | −0.866025 | + | 0.500000i | 3.03701 | − | 1.66707i | ||
73.7 | 1.72112 | + | 0.461174i | 0.258819 | + | 0.965926i | 1.01754 | + | 0.587476i | −1.95031 | + | 1.09375i | 1.78184i | 1.68076 | − | 2.04329i | −1.03952 | − | 1.03952i | −0.866025 | + | 0.500000i | −3.86114 | + | 0.983040i | ||
73.8 | 2.17399 | + | 0.582519i | −0.258819 | − | 0.965926i | 2.65485 | + | 1.53278i | −1.96540 | − | 1.06640i | − | 2.25068i | −0.660211 | + | 2.56205i | 1.69581 | + | 1.69581i | −0.866025 | + | 0.500000i | −3.65156 | − | 3.46322i | |
82.1 | −2.42777 | + | 0.650518i | −0.258819 | + | 0.965926i | 3.73883 | − | 2.15861i | 0.780598 | − | 2.09539i | − | 2.51341i | 1.61838 | + | 2.09305i | −4.11829 | + | 4.11829i | −0.866025 | − | 0.500000i | −0.532020 | + | 5.59492i | |
82.2 | −2.24814 | + | 0.602389i | 0.258819 | − | 0.965926i | 2.95923 | − | 1.70851i | −2.22726 | − | 0.198269i | 2.32745i | −2.59417 | + | 0.519864i | −2.33208 | + | 2.33208i | −0.866025 | − | 0.500000i | 5.12664 | − | 0.895939i | ||
82.3 | −0.969545 | + | 0.259789i | 0.258819 | − | 0.965926i | −0.859523 | + | 0.496246i | 0.803857 | − | 2.08658i | 1.00375i | 2.42328 | − | 1.06195i | 2.12394 | − | 2.12394i | −0.866025 | − | 0.500000i | −0.237305 | + | 2.23187i | ||
82.4 | −0.394487 | + | 0.105703i | −0.258819 | + | 0.965926i | −1.58760 | + | 0.916603i | −2.18897 | + | 0.456535i | − | 0.408404i | −0.605712 | + | 2.57548i | 1.10697 | − | 1.10697i | −0.866025 | − | 0.500000i | 0.815263 | − | 0.411477i | |
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
7.d | odd | 6 | 1 | inner |
35.k | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 105.2.u.a | ✓ | 32 |
3.b | odd | 2 | 1 | 315.2.bz.d | 32 | ||
5.b | even | 2 | 1 | 525.2.bc.e | 32 | ||
5.c | odd | 4 | 1 | inner | 105.2.u.a | ✓ | 32 |
5.c | odd | 4 | 1 | 525.2.bc.e | 32 | ||
7.b | odd | 2 | 1 | 735.2.v.b | 32 | ||
7.c | even | 3 | 1 | 735.2.m.c | 32 | ||
7.c | even | 3 | 1 | 735.2.v.b | 32 | ||
7.d | odd | 6 | 1 | inner | 105.2.u.a | ✓ | 32 |
7.d | odd | 6 | 1 | 735.2.m.c | 32 | ||
15.e | even | 4 | 1 | 315.2.bz.d | 32 | ||
21.g | even | 6 | 1 | 315.2.bz.d | 32 | ||
35.f | even | 4 | 1 | 735.2.v.b | 32 | ||
35.i | odd | 6 | 1 | 525.2.bc.e | 32 | ||
35.k | even | 12 | 1 | inner | 105.2.u.a | ✓ | 32 |
35.k | even | 12 | 1 | 525.2.bc.e | 32 | ||
35.k | even | 12 | 1 | 735.2.m.c | 32 | ||
35.l | odd | 12 | 1 | 735.2.m.c | 32 | ||
35.l | odd | 12 | 1 | 735.2.v.b | 32 | ||
105.w | odd | 12 | 1 | 315.2.bz.d | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
105.2.u.a | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
105.2.u.a | ✓ | 32 | 5.c | odd | 4 | 1 | inner |
105.2.u.a | ✓ | 32 | 7.d | odd | 6 | 1 | inner |
105.2.u.a | ✓ | 32 | 35.k | even | 12 | 1 | inner |
315.2.bz.d | 32 | 3.b | odd | 2 | 1 | ||
315.2.bz.d | 32 | 15.e | even | 4 | 1 | ||
315.2.bz.d | 32 | 21.g | even | 6 | 1 | ||
315.2.bz.d | 32 | 105.w | odd | 12 | 1 | ||
525.2.bc.e | 32 | 5.b | even | 2 | 1 | ||
525.2.bc.e | 32 | 5.c | odd | 4 | 1 | ||
525.2.bc.e | 32 | 35.i | odd | 6 | 1 | ||
525.2.bc.e | 32 | 35.k | even | 12 | 1 | ||
735.2.m.c | 32 | 7.c | even | 3 | 1 | ||
735.2.m.c | 32 | 7.d | odd | 6 | 1 | ||
735.2.m.c | 32 | 35.k | even | 12 | 1 | ||
735.2.m.c | 32 | 35.l | odd | 12 | 1 | ||
735.2.v.b | 32 | 7.b | odd | 2 | 1 | ||
735.2.v.b | 32 | 7.c | even | 3 | 1 | ||
735.2.v.b | 32 | 35.f | even | 4 | 1 | ||
735.2.v.b | 32 | 35.l | odd | 12 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(105, [\chi])\).