Properties

Label 105.2.s.c.26.3
Level 105
Weight 2
Character 105.26
Analytic conductor 0.838
Analytic rank 0
Dimension 8
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 105.s (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.838429221223\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.856615824.2
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 26.3
Root \(-0.385731i\)
Character \(\chi\) = 105.26
Dual form 105.2.s.c.101.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.334053 - 0.192865i) q^{2} +(1.42561 + 0.983691i) q^{3} +(-0.925606 - 1.60320i) q^{4} +(0.500000 - 0.866025i) q^{5} +(-0.286507 - 0.603555i) q^{6} +(2.36975 - 1.17656i) q^{7} +1.48553i q^{8} +(1.06470 + 2.80471i) q^{9} +O(q^{10})\) \(q+(-0.334053 - 0.192865i) q^{2} +(1.42561 + 0.983691i) q^{3} +(-0.925606 - 1.60320i) q^{4} +(0.500000 - 0.866025i) q^{5} +(-0.286507 - 0.603555i) q^{6} +(2.36975 - 1.17656i) q^{7} +1.48553i q^{8} +(1.06470 + 2.80471i) q^{9} +(-0.334053 + 0.192865i) q^{10} +(-2.20164 + 1.27112i) q^{11} +(0.257501 - 3.19604i) q^{12} +3.06718i q^{13} +(-1.01854 - 0.0640110i) q^{14} +(1.56470 - 0.742765i) q^{15} +(-1.56470 + 2.71015i) q^{16} +(-3.23065 - 5.59565i) q^{17} +(0.185264 - 1.14227i) q^{18} +(-1.03570 - 0.597960i) q^{19} -1.85121 q^{20} +(4.53570 + 0.653796i) q^{21} +0.980620 q^{22} +(-2.64657 - 1.52800i) q^{23} +(-1.46130 + 2.11778i) q^{24} +(-0.500000 - 0.866025i) q^{25} +(0.591553 - 1.02460i) q^{26} +(-1.24112 + 5.04575i) q^{27} +(-4.07971 - 2.71015i) q^{28} +7.77029i q^{29} +(-0.665947 - 0.0536545i) q^{30} +(-5.95299 + 3.43696i) q^{31} +(3.61840 - 2.08909i) q^{32} +(-4.38907 - 0.353622i) q^{33} +2.49232i q^{34} +(0.165947 - 2.64054i) q^{35} +(3.51101 - 4.30299i) q^{36} +(1.77604 - 3.07619i) q^{37} +(0.230652 + 0.399500i) q^{38} +(-3.01716 + 4.37259i) q^{39} +(1.28651 + 0.742765i) q^{40} +2.31252 q^{41} +(-1.38907 - 1.09318i) q^{42} +5.46130 q^{43} +(4.07571 + 2.35311i) q^{44} +(2.96130 + 0.480295i) q^{45} +(0.589395 + 1.02086i) q^{46} +(-1.61009 + 2.78876i) q^{47} +(-4.89660 + 2.32442i) q^{48} +(4.23143 - 5.57629i) q^{49} +0.385731i q^{50} +(0.898757 - 11.1552i) q^{51} +(4.91730 - 2.83900i) q^{52} +(11.4790 - 6.62740i) q^{53} +(1.38775 - 1.44618i) q^{54} +2.54224i q^{55} +(1.74781 + 3.52034i) q^{56} +(-0.888288 - 1.87126i) q^{57} +(1.49862 - 2.59569i) q^{58} +(-1.98146 - 3.43199i) q^{59} +(-2.63910 - 1.82102i) q^{60} +(-8.08933 - 4.67038i) q^{61} +2.65148 q^{62} +(5.82298 + 5.39378i) q^{63} +4.64717 q^{64} +(2.65626 + 1.53359i) q^{65} +(1.39798 + 0.964627i) q^{66} +(1.75966 + 3.04782i) q^{67} +(-5.98062 + 10.3587i) q^{68} +(-2.26989 - 4.78173i) q^{69} +(-0.564704 + 0.850075i) q^{70} +0.921861i q^{71} +(-4.16649 + 1.58165i) q^{72} +(0.256722 - 0.148218i) q^{73} +(-1.18658 + 0.685073i) q^{74} +(0.139098 - 1.72646i) q^{75} +2.21390i q^{76} +(-3.72180 + 5.60260i) q^{77} +(1.85121 - 0.878771i) q^{78} +(-4.14741 + 7.18352i) q^{79} +(1.56470 + 2.71015i) q^{80} +(-6.73281 + 5.97238i) q^{81} +(-0.772502 - 0.446004i) q^{82} +2.11171 q^{83} +(-3.15010 - 7.87677i) q^{84} -6.46130 q^{85} +(-1.82436 - 1.05330i) q^{86} +(-7.64357 + 11.0774i) q^{87} +(-1.88829 - 3.27061i) q^{88} +(9.41507 - 16.3074i) q^{89} +(-0.896599 - 0.731577i) q^{90} +(3.60871 + 7.26845i) q^{91} +5.65729i q^{92} +(-11.8675 - 0.956152i) q^{93} +(1.07571 - 0.621062i) q^{94} +(-1.03570 + 0.597960i) q^{95} +(7.21343 + 0.581177i) q^{96} -12.3692i q^{97} +(-2.48899 + 1.04668i) q^{98} +(-5.90923 - 4.82161i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q - 3q^{2} + q^{3} + 3q^{4} + 4q^{5} + 5q^{6} + 2q^{7} - 5q^{9} + O(q^{10}) \) \( 8q - 3q^{2} + q^{3} + 3q^{4} + 4q^{5} + 5q^{6} + 2q^{7} - 5q^{9} - 3q^{10} - 9q^{12} - 12q^{14} - q^{15} + q^{16} - 12q^{17} - 19q^{18} + 9q^{19} + 6q^{20} + 19q^{21} - 40q^{22} + 27q^{23} + 16q^{24} - 4q^{25} - 6q^{26} + 4q^{27} + 3q^{28} - 5q^{30} - 21q^{31} + 21q^{32} + 2q^{33} + q^{35} + 9q^{36} + 7q^{37} - 12q^{38} - 3q^{39} + 3q^{40} - 30q^{41} + 26q^{42} + 16q^{43} - 4q^{45} - 7q^{46} - 6q^{47} - 25q^{48} - 4q^{49} - 6q^{51} + 30q^{52} + 24q^{53} + 17q^{54} - 21q^{56} + 6q^{57} - 13q^{58} - 12q^{59} - 18q^{60} + 15q^{61} + 24q^{62} - 2q^{63} + 38q^{64} - 3q^{65} + 22q^{66} + 4q^{67} - 13q^{69} + 9q^{70} - 14q^{72} + 15q^{73} + 54q^{74} - 2q^{75} - 36q^{77} - 6q^{78} - 29q^{79} - q^{80} - 41q^{81} + 27q^{82} + 30q^{83} - 3q^{84} - 24q^{85} + 9q^{86} + 32q^{87} - 2q^{88} - 3q^{89} + 7q^{90} - 3q^{91} - 9q^{93} - 24q^{94} + 9q^{95} - 3q^{96} - 39q^{98} - 34q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.334053 0.192865i −0.236211 0.136376i 0.377223 0.926122i \(-0.376879\pi\)
−0.613434 + 0.789746i \(0.710212\pi\)
\(3\) 1.42561 + 0.983691i 0.823074 + 0.567934i
\(4\) −0.925606 1.60320i −0.462803 0.801598i
\(5\) 0.500000 0.866025i 0.223607 0.387298i
\(6\) −0.286507 0.603555i −0.116966 0.246400i
\(7\) 2.36975 1.17656i 0.895681 0.444696i
\(8\) 1.48553i 0.525214i
\(9\) 1.06470 + 2.80471i 0.354901 + 0.934904i
\(10\) −0.334053 + 0.192865i −0.105637 + 0.0609894i
\(11\) −2.20164 + 1.27112i −0.663821 + 0.383257i −0.793731 0.608269i \(-0.791864\pi\)
0.129910 + 0.991526i \(0.458531\pi\)
\(12\) 0.257501 3.19604i 0.0743340 0.922616i
\(13\) 3.06718i 0.850683i 0.905033 + 0.425342i \(0.139846\pi\)
−0.905033 + 0.425342i \(0.860154\pi\)
\(14\) −1.01854 0.0640110i −0.272216 0.0171077i
\(15\) 1.56470 0.742765i 0.404005 0.191781i
\(16\) −1.56470 + 2.71015i −0.391176 + 0.677537i
\(17\) −3.23065 5.59565i −0.783548 1.35715i −0.929863 0.367907i \(-0.880074\pi\)
0.146314 0.989238i \(-0.453259\pi\)
\(18\) 0.185264 1.14227i 0.0436672 0.269235i
\(19\) −1.03570 0.597960i −0.237605 0.137181i 0.376470 0.926429i \(-0.377138\pi\)
−0.614076 + 0.789247i \(0.710471\pi\)
\(20\) −1.85121 −0.413944
\(21\) 4.53570 + 0.653796i 0.989770 + 0.142670i
\(22\) 0.980620 0.209069
\(23\) −2.64657 1.52800i −0.551848 0.318609i 0.198019 0.980198i \(-0.436549\pi\)
−0.749867 + 0.661589i \(0.769882\pi\)
\(24\) −1.46130 + 2.11778i −0.298287 + 0.432290i
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0.591553 1.02460i 0.116013 0.200941i
\(27\) −1.24112 + 5.04575i −0.238854 + 0.971056i
\(28\) −4.07971 2.71015i −0.770992 0.512170i
\(29\) 7.77029i 1.44291i 0.692463 + 0.721454i \(0.256526\pi\)
−0.692463 + 0.721454i \(0.743474\pi\)
\(30\) −0.665947 0.0536545i −0.121585 0.00979593i
\(31\) −5.95299 + 3.43696i −1.06919 + 0.617297i −0.927960 0.372680i \(-0.878439\pi\)
−0.141229 + 0.989977i \(0.545105\pi\)
\(32\) 3.61840 2.08909i 0.639649 0.369302i
\(33\) −4.38907 0.353622i −0.764039 0.0615576i
\(34\) 2.49232i 0.427430i
\(35\) 0.165947 2.64054i 0.0280502 0.446333i
\(36\) 3.51101 4.30299i 0.585168 0.717165i
\(37\) 1.77604 3.07619i 0.291979 0.505722i −0.682299 0.731074i \(-0.739020\pi\)
0.974278 + 0.225351i \(0.0723529\pi\)
\(38\) 0.230652 + 0.399500i 0.0374166 + 0.0648075i
\(39\) −3.01716 + 4.37259i −0.483132 + 0.700175i
\(40\) 1.28651 + 0.742765i 0.203415 + 0.117442i
\(41\) 2.31252 0.361154 0.180577 0.983561i \(-0.442203\pi\)
0.180577 + 0.983561i \(0.442203\pi\)
\(42\) −1.38907 1.09318i −0.214338 0.168682i
\(43\) 5.46130 0.832841 0.416420 0.909172i \(-0.363284\pi\)
0.416420 + 0.909172i \(0.363284\pi\)
\(44\) 4.07571 + 2.35311i 0.614437 + 0.354745i
\(45\) 2.96130 + 0.480295i 0.441445 + 0.0715981i
\(46\) 0.589395 + 1.02086i 0.0869016 + 0.150518i
\(47\) −1.61009 + 2.78876i −0.234856 + 0.406782i −0.959231 0.282624i \(-0.908795\pi\)
0.724375 + 0.689406i \(0.242129\pi\)
\(48\) −4.89660 + 2.32442i −0.706763 + 0.335501i
\(49\) 4.23143 5.57629i 0.604490 0.796613i
\(50\) 0.385731i 0.0545506i
\(51\) 0.898757 11.1552i 0.125851 1.56203i
\(52\) 4.91730 2.83900i 0.681906 0.393699i
\(53\) 11.4790 6.62740i 1.57676 0.910344i 0.581455 0.813579i \(-0.302484\pi\)
0.995307 0.0967651i \(-0.0308496\pi\)
\(54\) 1.38775 1.44618i 0.188849 0.196800i
\(55\) 2.54224i 0.342796i
\(56\) 1.74781 + 3.52034i 0.233561 + 0.470425i
\(57\) −0.888288 1.87126i −0.117657 0.247855i
\(58\) 1.49862 2.59569i 0.196779 0.340830i
\(59\) −1.98146 3.43199i −0.257964 0.446807i 0.707732 0.706481i \(-0.249718\pi\)
−0.965696 + 0.259674i \(0.916385\pi\)
\(60\) −2.63910 1.82102i −0.340706 0.235093i
\(61\) −8.08933 4.67038i −1.03573 0.597981i −0.117111 0.993119i \(-0.537363\pi\)
−0.918622 + 0.395138i \(0.870697\pi\)
\(62\) 2.65148 0.336739
\(63\) 5.82298 + 5.39378i 0.733627 + 0.679552i
\(64\) 4.64717 0.580896
\(65\) 2.65626 + 1.53359i 0.329468 + 0.190219i
\(66\) 1.39798 + 0.964627i 0.172079 + 0.118737i
\(67\) 1.75966 + 3.04782i 0.214977 + 0.372350i 0.953265 0.302134i \(-0.0976992\pi\)
−0.738289 + 0.674485i \(0.764366\pi\)
\(68\) −5.98062 + 10.3587i −0.725257 + 1.25618i
\(69\) −2.26989 4.78173i −0.273262 0.575652i
\(70\) −0.564704 + 0.850075i −0.0674951 + 0.101603i
\(71\) 0.921861i 0.109405i 0.998503 + 0.0547024i \(0.0174210\pi\)
−0.998503 + 0.0547024i \(0.982579\pi\)
\(72\) −4.16649 + 1.58165i −0.491025 + 0.186399i
\(73\) 0.256722 0.148218i 0.0300470 0.0173477i −0.484901 0.874569i \(-0.661144\pi\)
0.514948 + 0.857221i \(0.327811\pi\)
\(74\) −1.18658 + 0.685073i −0.137937 + 0.0796381i
\(75\) 0.139098 1.72646i 0.0160617 0.199354i
\(76\) 2.21390i 0.253952i
\(77\) −3.72180 + 5.60260i −0.424139 + 0.638475i
\(78\) 1.85121 0.878771i 0.209608 0.0995012i
\(79\) −4.14741 + 7.18352i −0.466620 + 0.808210i −0.999273 0.0381242i \(-0.987862\pi\)
0.532653 + 0.846334i \(0.321195\pi\)
\(80\) 1.56470 + 2.71015i 0.174939 + 0.303004i
\(81\) −6.73281 + 5.97238i −0.748090 + 0.663597i
\(82\) −0.772502 0.446004i −0.0853085 0.0492529i
\(83\) 2.11171 0.231790 0.115895 0.993261i \(-0.463026\pi\)
0.115895 + 0.993261i \(0.463026\pi\)
\(84\) −3.15010 7.87677i −0.343705 0.859426i
\(85\) −6.46130 −0.700827
\(86\) −1.82436 1.05330i −0.196726 0.113580i
\(87\) −7.64357 + 11.0774i −0.819477 + 1.18762i
\(88\) −1.88829 3.27061i −0.201292 0.348648i
\(89\) 9.41507 16.3074i 0.997996 1.72858i 0.444197 0.895929i \(-0.353489\pi\)
0.553799 0.832651i \(-0.313178\pi\)
\(90\) −0.896599 0.731577i −0.0945098 0.0771149i
\(91\) 3.60871 + 7.26845i 0.378296 + 0.761941i
\(92\) 5.65729i 0.589813i
\(93\) −11.8675 0.956152i −1.23061 0.0991483i
\(94\) 1.07571 0.621062i 0.110951 0.0640576i
\(95\) −1.03570 + 0.597960i −0.106260 + 0.0613494i
\(96\) 7.21343 + 0.581177i 0.736218 + 0.0593161i
\(97\) 12.3692i 1.25590i −0.778252 0.627952i \(-0.783894\pi\)
0.778252 0.627952i \(-0.216106\pi\)
\(98\) −2.48899 + 1.04668i −0.251426 + 0.105730i
\(99\) −5.90923 4.82161i −0.593900 0.484590i
\(100\) −0.925606 + 1.60320i −0.0925606 + 0.160320i
\(101\) −3.48815 6.04166i −0.347084 0.601167i 0.638646 0.769501i \(-0.279495\pi\)
−0.985730 + 0.168333i \(0.946162\pi\)
\(102\) −2.45168 + 3.55307i −0.242752 + 0.351806i
\(103\) 3.26767 + 1.88659i 0.321973 + 0.185891i 0.652272 0.757985i \(-0.273816\pi\)
−0.330299 + 0.943876i \(0.607150\pi\)
\(104\) −4.55639 −0.446791
\(105\) 2.83405 3.60113i 0.276575 0.351434i
\(106\) −5.11279 −0.496598
\(107\) 11.4607 + 6.61684i 1.10795 + 0.639674i 0.938297 0.345830i \(-0.112403\pi\)
0.169651 + 0.985504i \(0.445736\pi\)
\(108\) 9.23812 2.68062i 0.888939 0.257943i
\(109\) −1.25081 2.16647i −0.119806 0.207510i 0.799885 0.600154i \(-0.204894\pi\)
−0.919691 + 0.392644i \(0.871561\pi\)
\(110\) 0.490310 0.849242i 0.0467492 0.0809721i
\(111\) 5.55795 2.63836i 0.527537 0.250422i
\(112\) −0.519317 + 8.26333i −0.0490709 + 0.780812i
\(113\) 7.18425i 0.675837i −0.941175 0.337919i \(-0.890277\pi\)
0.941175 0.337919i \(-0.109723\pi\)
\(114\) −0.0641665 + 0.796420i −0.00600975 + 0.0745916i
\(115\) −2.64657 + 1.52800i −0.246794 + 0.142486i
\(116\) 12.4573 7.19223i 1.15663 0.667782i
\(117\) −8.60256 + 3.26564i −0.795307 + 0.301909i
\(118\) 1.52862i 0.140721i
\(119\) −14.2394 9.45925i −1.30533 0.867128i
\(120\) 1.10340 + 2.32442i 0.100726 + 0.212189i
\(121\) −2.26851 + 3.92917i −0.206228 + 0.357197i
\(122\) 1.80151 + 3.12030i 0.163101 + 0.282499i
\(123\) 3.29674 + 2.27480i 0.297257 + 0.205112i
\(124\) 11.0202 + 6.36254i 0.989648 + 0.571373i
\(125\) −1.00000 −0.0894427
\(126\) −0.904910 2.92486i −0.0806158 0.260567i
\(127\) −11.1965 −0.993528 −0.496764 0.867886i \(-0.665478\pi\)
−0.496764 + 0.867886i \(0.665478\pi\)
\(128\) −8.78920 5.07445i −0.776863 0.448522i
\(129\) 7.78567 + 5.37223i 0.685490 + 0.472999i
\(130\) −0.591553 1.02460i −0.0518827 0.0898634i
\(131\) −7.83183 + 13.5651i −0.684270 + 1.18519i 0.289395 + 0.957210i \(0.406546\pi\)
−0.973666 + 0.227981i \(0.926787\pi\)
\(132\) 3.49562 + 7.36385i 0.304255 + 0.640941i
\(133\) −3.15788 0.198460i −0.273823 0.0172086i
\(134\) 1.35751i 0.117271i
\(135\) 3.74919 + 3.59772i 0.322679 + 0.309642i
\(136\) 8.31252 4.79923i 0.712792 0.411531i
\(137\) −5.04755 + 2.91420i −0.431241 + 0.248977i −0.699875 0.714265i \(-0.746761\pi\)
0.268634 + 0.963242i \(0.413428\pi\)
\(138\) −0.163968 + 2.03513i −0.0139579 + 0.173242i
\(139\) 12.0365i 1.02092i −0.859900 0.510462i \(-0.829475\pi\)
0.859900 0.510462i \(-0.170525\pi\)
\(140\) −4.38691 + 2.17805i −0.370761 + 0.184079i
\(141\) −5.03863 + 2.39184i −0.424330 + 0.201429i
\(142\) 0.177795 0.307950i 0.0149202 0.0258426i
\(143\) −3.89876 6.75285i −0.326030 0.564701i
\(144\) −9.26713 1.50304i −0.772261 0.125253i
\(145\) 6.72927 + 3.88515i 0.558836 + 0.322644i
\(146\) −0.114345 −0.00946324
\(147\) 11.5177 3.78717i 0.949964 0.312361i
\(148\) −6.57565 −0.540515
\(149\) 16.1925 + 9.34874i 1.32654 + 0.765879i 0.984763 0.173902i \(-0.0556377\pi\)
0.341778 + 0.939781i \(0.388971\pi\)
\(150\) −0.379440 + 0.549900i −0.0309811 + 0.0448992i
\(151\) 2.97531 + 5.15339i 0.242127 + 0.419377i 0.961320 0.275434i \(-0.0888215\pi\)
−0.719193 + 0.694811i \(0.755488\pi\)
\(152\) 0.888288 1.53856i 0.0720497 0.124794i
\(153\) 12.2545 15.0188i 0.990718 1.21419i
\(154\) 2.32383 1.15376i 0.187259 0.0929722i
\(155\) 6.87392i 0.552127i
\(156\) 9.80283 + 0.789801i 0.784854 + 0.0632347i
\(157\) 5.55364 3.20639i 0.443228 0.255898i −0.261738 0.965139i \(-0.584296\pi\)
0.704966 + 0.709241i \(0.250962\pi\)
\(158\) 2.77091 1.59978i 0.220441 0.127272i
\(159\) 22.8838 + 1.84372i 1.81481 + 0.146217i
\(160\) 4.17817i 0.330313i
\(161\) −8.06948 0.507134i −0.635964 0.0399678i
\(162\) 3.40098 0.696562i 0.267206 0.0547271i
\(163\) 8.22174 14.2405i 0.643976 1.11540i −0.340560 0.940223i \(-0.610617\pi\)
0.984537 0.175177i \(-0.0560499\pi\)
\(164\) −2.14048 3.70742i −0.167143 0.289501i
\(165\) −2.50078 + 3.62423i −0.194685 + 0.282146i
\(166\) −0.705423 0.407276i −0.0547514 0.0316108i
\(167\) −4.81089 −0.372278 −0.186139 0.982523i \(-0.559598\pi\)
−0.186139 + 0.982523i \(0.559598\pi\)
\(168\) −0.971234 + 6.73792i −0.0749323 + 0.519842i
\(169\) 3.59239 0.276338
\(170\) 2.15842 + 1.24616i 0.165543 + 0.0955762i
\(171\) 0.574394 3.54148i 0.0439250 0.270824i
\(172\) −5.05501 8.75554i −0.385441 0.667604i
\(173\) −3.40761 + 5.90215i −0.259075 + 0.448732i −0.965994 0.258563i \(-0.916751\pi\)
0.706919 + 0.707294i \(0.250084\pi\)
\(174\) 4.68980 2.22625i 0.355533 0.168771i
\(175\) −2.20380 1.46399i −0.166592 0.110667i
\(176\) 7.95571i 0.599684i
\(177\) 0.551236 6.84181i 0.0414335 0.514262i
\(178\) −6.29026 + 3.63168i −0.471475 + 0.272206i
\(179\) −17.2931 + 9.98420i −1.29255 + 0.746254i −0.979106 0.203353i \(-0.934816\pi\)
−0.313444 + 0.949607i \(0.601483\pi\)
\(180\) −1.97099 5.19211i −0.146909 0.386997i
\(181\) 5.18808i 0.385627i −0.981235 0.192813i \(-0.938239\pi\)
0.981235 0.192813i \(-0.0617612\pi\)
\(182\) 0.196333 3.12404i 0.0145532 0.231569i
\(183\) −6.93799 14.6155i −0.512871 1.08041i
\(184\) 2.26989 3.93156i 0.167338 0.289838i
\(185\) −1.77604 3.07619i −0.130577 0.226166i
\(186\) 3.77997 + 2.60824i 0.277161 + 0.191245i
\(187\) 14.2255 + 8.21309i 1.04027 + 0.600601i
\(188\) 5.96124 0.434768
\(189\) 2.99547 + 13.4174i 0.217888 + 0.975974i
\(190\) 0.461303 0.0334665
\(191\) −7.48332 4.32049i −0.541474 0.312620i 0.204202 0.978929i \(-0.434540\pi\)
−0.745676 + 0.666309i \(0.767873\pi\)
\(192\) 6.62503 + 4.57138i 0.478120 + 0.329911i
\(193\) 11.8861 + 20.5873i 0.855578 + 1.48190i 0.876108 + 0.482115i \(0.160131\pi\)
−0.0205300 + 0.999789i \(0.506535\pi\)
\(194\) −2.38559 + 4.13197i −0.171276 + 0.296658i
\(195\) 2.27820 + 4.79923i 0.163145 + 0.343680i
\(196\) −12.8565 1.62237i −0.918323 0.115883i
\(197\) 11.6843i 0.832475i −0.909256 0.416238i \(-0.863348\pi\)
0.909256 0.416238i \(-0.136652\pi\)
\(198\) 1.04407 + 2.75036i 0.0741989 + 0.195459i
\(199\) −12.2341 + 7.06338i −0.867254 + 0.500709i −0.866435 0.499290i \(-0.833594\pi\)
−0.000819396 1.00000i \(0.500261\pi\)
\(200\) 1.28651 0.742765i 0.0909698 0.0525214i
\(201\) −0.489531 + 6.07595i −0.0345289 + 0.428564i
\(202\) 2.69098i 0.189336i
\(203\) 9.14219 + 18.4137i 0.641656 + 1.29239i
\(204\) −18.7158 + 8.88440i −1.31037 + 0.622032i
\(205\) 1.15626 2.00270i 0.0807565 0.139874i
\(206\) −0.727715 1.26044i −0.0507023 0.0878190i
\(207\) 1.46778 9.04972i 0.102018 0.628999i
\(208\) −8.31252 4.79923i −0.576369 0.332767i
\(209\) 3.04032 0.210303
\(210\) −1.64126 + 0.656377i −0.113257 + 0.0452943i
\(211\) 4.49838 0.309681 0.154841 0.987939i \(-0.450514\pi\)
0.154841 + 0.987939i \(0.450514\pi\)
\(212\) −21.2501 12.2687i −1.45946 0.842620i
\(213\) −0.906827 + 1.31421i −0.0621347 + 0.0900482i
\(214\) −2.55232 4.42075i −0.174473 0.302196i
\(215\) 2.73065 4.72963i 0.186229 0.322558i
\(216\) −7.49562 1.84372i −0.510012 0.125449i
\(217\) −10.0633 + 15.1488i −0.683143 + 1.02837i
\(218\) 0.964952i 0.0653548i
\(219\) 0.511785 + 0.0412339i 0.0345832 + 0.00278633i
\(220\) 4.07571 2.35311i 0.274784 0.158647i
\(221\) 17.1629 9.90900i 1.15450 0.666551i
\(222\) −2.36550 0.190585i −0.158762 0.0127912i
\(223\) 7.20662i 0.482591i 0.970452 + 0.241296i \(0.0775724\pi\)
−0.970452 + 0.241296i \(0.922428\pi\)
\(224\) 6.11678 9.20786i 0.408695 0.615226i
\(225\) 1.89660 2.32442i 0.126440 0.154961i
\(226\) −1.38559 + 2.39992i −0.0921682 + 0.159640i
\(227\) 0.931518 + 1.61344i 0.0618270 + 0.107087i 0.895282 0.445500i \(-0.146974\pi\)
−0.833455 + 0.552587i \(0.813641\pi\)
\(228\) −2.17780 + 3.15615i −0.144228 + 0.209021i
\(229\) −17.4126 10.0532i −1.15066 0.664333i −0.201610 0.979466i \(-0.564617\pi\)
−0.949047 + 0.315133i \(0.897951\pi\)
\(230\) 1.17879 0.0777271
\(231\) −10.8170 + 4.32599i −0.711709 + 0.284629i
\(232\) −11.5430 −0.757836
\(233\) 1.35559 + 0.782650i 0.0888077 + 0.0512731i 0.543746 0.839250i \(-0.317005\pi\)
−0.454938 + 0.890523i \(0.650339\pi\)
\(234\) 3.50354 + 0.568240i 0.229033 + 0.0371470i
\(235\) 1.61009 + 2.78876i 0.105031 + 0.181919i
\(236\) −3.66811 + 6.35334i −0.238773 + 0.413568i
\(237\) −12.9789 + 6.16110i −0.843073 + 0.400207i
\(238\) 2.93236 + 5.90618i 0.190077 + 0.382841i
\(239\) 5.69230i 0.368205i 0.982907 + 0.184102i \(0.0589378\pi\)
−0.982907 + 0.184102i \(0.941062\pi\)
\(240\) −0.435296 + 5.40279i −0.0280982 + 0.348748i
\(241\) 11.5466 6.66646i 0.743785 0.429424i −0.0796592 0.996822i \(-0.525383\pi\)
0.823444 + 0.567398i \(0.192050\pi\)
\(242\) 1.51560 0.875033i 0.0974266 0.0562492i
\(243\) −15.4733 + 1.89125i −0.992613 + 0.121324i
\(244\) 17.2917i 1.10699i
\(245\) −2.71349 6.45267i −0.173359 0.412246i
\(246\) −0.662553 1.39573i −0.0422428 0.0889884i
\(247\) 1.83405 3.17667i 0.116698 0.202127i
\(248\) −5.10571 8.84335i −0.324213 0.561554i
\(249\) 3.01047 + 2.07727i 0.190781 + 0.131642i
\(250\) 0.334053 + 0.192865i 0.0211273 + 0.0121979i
\(251\) 5.32590 0.336168 0.168084 0.985773i \(-0.446242\pi\)
0.168084 + 0.985773i \(0.446242\pi\)
\(252\) 3.25750 14.3279i 0.205203 0.902573i
\(253\) 7.76907 0.488437
\(254\) 3.74022 + 2.15941i 0.234682 + 0.135494i
\(255\) −9.21127 6.35593i −0.576832 0.398023i
\(256\) −2.68980 4.65887i −0.168112 0.291179i
\(257\) 3.25003 5.62922i 0.202731 0.351141i −0.746676 0.665188i \(-0.768352\pi\)
0.949408 + 0.314047i \(0.101685\pi\)
\(258\) −1.56470 3.29619i −0.0974142 0.205212i
\(259\) 0.589458 9.37941i 0.0366271 0.582808i
\(260\) 5.67800i 0.352135i
\(261\) −21.7934 + 8.27307i −1.34898 + 0.512090i
\(262\) 5.23249 3.02098i 0.323264 0.186637i
\(263\) −12.8401 + 7.41326i −0.791757 + 0.457121i −0.840581 0.541686i \(-0.817786\pi\)
0.0488236 + 0.998807i \(0.484453\pi\)
\(264\) 0.525316 6.52009i 0.0323309 0.401284i
\(265\) 13.2548i 0.814236i
\(266\) 1.01662 + 0.675341i 0.0623331 + 0.0414078i
\(267\) 29.4636 13.9864i 1.80314 0.855953i
\(268\) 3.25750 5.64216i 0.198984 0.344650i
\(269\) 12.3042 + 21.3115i 0.750201 + 1.29939i 0.947725 + 0.319088i \(0.103376\pi\)
−0.197525 + 0.980298i \(0.563290\pi\)
\(270\) −0.558552 1.92492i −0.0339924 0.117147i
\(271\) 3.30121 + 1.90595i 0.200534 + 0.115778i 0.596905 0.802312i \(-0.296397\pi\)
−0.396371 + 0.918091i \(0.629730\pi\)
\(272\) 20.2201 1.22602
\(273\) −2.00531 + 13.9118i −0.121367 + 0.841981i
\(274\) 2.24819 0.135818
\(275\) 2.20164 + 1.27112i 0.132764 + 0.0766514i
\(276\) −5.56503 + 8.06507i −0.334975 + 0.485460i
\(277\) 9.38769 + 16.2600i 0.564052 + 0.976966i 0.997137 + 0.0756131i \(0.0240914\pi\)
−0.433086 + 0.901353i \(0.642575\pi\)
\(278\) −2.32143 + 4.02083i −0.139230 + 0.241153i
\(279\) −15.9779 13.0371i −0.956570 0.780509i
\(280\) 3.92261 + 0.246520i 0.234421 + 0.0147324i
\(281\) 23.6885i 1.41314i 0.707643 + 0.706570i \(0.249758\pi\)
−0.707643 + 0.706570i \(0.750242\pi\)
\(282\) 2.14447 + 0.172777i 0.127701 + 0.0102887i
\(283\) −4.36831 + 2.52204i −0.259669 + 0.149920i −0.624184 0.781278i \(-0.714568\pi\)
0.364515 + 0.931198i \(0.381235\pi\)
\(284\) 1.47792 0.853280i 0.0876987 0.0506329i
\(285\) −2.06470 0.166351i −0.122303 0.00985376i
\(286\) 3.00774i 0.177851i
\(287\) 5.48008 2.72080i 0.323479 0.160604i
\(288\) 9.71181 + 7.92431i 0.572274 + 0.466945i
\(289\) −12.3742 + 21.4328i −0.727895 + 1.26075i
\(290\) −1.49862 2.59569i −0.0880020 0.152424i
\(291\) 12.1675 17.6336i 0.713270 1.03370i
\(292\) −0.475246 0.274384i −0.0278117 0.0160571i
\(293\) 6.29421 0.367712 0.183856 0.982953i \(-0.441142\pi\)
0.183856 + 0.982953i \(0.441142\pi\)
\(294\) −4.57793 0.956251i −0.266990 0.0557697i
\(295\) −3.96292 −0.230730
\(296\) 4.56977 + 2.63836i 0.265613 + 0.153352i
\(297\) −3.68125 12.6866i −0.213608 0.736149i
\(298\) −3.60610 6.24594i −0.208896 0.361818i
\(299\) 4.68664 8.11750i 0.271036 0.469447i
\(300\) −2.89660 + 1.37502i −0.167235 + 0.0793866i
\(301\) 12.9419 6.42553i 0.745960 0.370361i
\(302\) 2.29534i 0.132082i
\(303\) 0.970393 12.0443i 0.0557476 0.691926i
\(304\) 3.24112 1.87126i 0.185891 0.107324i
\(305\) −8.08933 + 4.67038i −0.463194 + 0.267425i
\(306\) −6.99025 + 2.65359i −0.399606 + 0.151696i
\(307\) 16.0397i 0.915432i −0.889099 0.457716i \(-0.848668\pi\)
0.889099 0.457716i \(-0.151332\pi\)
\(308\) 12.4270 + 0.780986i 0.708093 + 0.0445008i
\(309\) 2.80258 + 5.90390i 0.159433 + 0.335861i
\(310\) 1.32574 2.29625i 0.0752971 0.130418i
\(311\) 9.03624 + 15.6512i 0.512398 + 0.887499i 0.999897 + 0.0143755i \(0.00457602\pi\)
−0.487499 + 0.873124i \(0.662091\pi\)
\(312\) −6.49562 4.48208i −0.367742 0.253748i
\(313\) −16.1272 9.31104i −0.911563 0.526291i −0.0306290 0.999531i \(-0.509751\pi\)
−0.880934 + 0.473240i \(0.843084\pi\)
\(314\) −2.47361 −0.139594
\(315\) 7.58264 2.34596i 0.427233 0.132180i
\(316\) 15.3555 0.863812
\(317\) −2.28327 1.31825i −0.128241 0.0740402i 0.434507 0.900669i \(-0.356923\pi\)
−0.562748 + 0.826628i \(0.690256\pi\)
\(318\) −7.28882 5.02940i −0.408737 0.282035i
\(319\) −9.87698 17.1074i −0.553005 0.957832i
\(320\) 2.32358 4.02457i 0.129892 0.224980i
\(321\) 9.82952 + 20.7068i 0.548630 + 1.15574i
\(322\) 2.59782 + 1.72573i 0.144771 + 0.0961713i
\(323\) 7.72720i 0.429953i
\(324\) 15.8068 + 5.26595i 0.878157 + 0.292553i
\(325\) 2.65626 1.53359i 0.147343 0.0850683i
\(326\) −5.49299 + 3.17138i −0.304228 + 0.175646i
\(327\) 0.347971 4.31894i 0.0192429 0.238838i
\(328\) 3.43531i 0.189683i
\(329\) −0.534381 + 8.50303i −0.0294614 + 0.468787i
\(330\) 1.53438 0.728371i 0.0844649 0.0400955i
\(331\) 15.1704 26.2759i 0.833842 1.44426i −0.0611286 0.998130i \(-0.519470\pi\)
0.894970 0.446126i \(-0.147197\pi\)
\(332\) −1.95461 3.38549i −0.107273 0.185803i
\(333\) 10.5188 + 1.70604i 0.576426 + 0.0934906i
\(334\) 1.60709 + 0.927855i 0.0879362 + 0.0507700i
\(335\) 3.51932 0.192281
\(336\) −8.86891 + 11.2694i −0.483839 + 0.614797i
\(337\) −1.84215 −0.100348 −0.0501741 0.998740i \(-0.515978\pi\)
−0.0501741 + 0.998740i \(0.515978\pi\)
\(338\) −1.20005 0.692849i −0.0652741 0.0376860i
\(339\) 7.06708 10.2419i 0.383831 0.556264i
\(340\) 5.98062 + 10.3587i 0.324345 + 0.561781i
\(341\) 8.73758 15.1339i 0.473167 0.819549i
\(342\) −0.874907 + 1.07226i −0.0473096 + 0.0579812i
\(343\) 3.46661 18.1929i 0.187180 0.982326i
\(344\) 8.11293i 0.437420i
\(345\) −5.27604 0.425084i −0.284052 0.0228857i
\(346\) 2.27664 1.31442i 0.122393 0.0706636i
\(347\) 7.09309 4.09520i 0.380777 0.219842i −0.297379 0.954759i \(-0.596113\pi\)
0.678156 + 0.734918i \(0.262779\pi\)
\(348\) 24.8341 + 2.00086i 1.33125 + 0.107257i
\(349\) 36.3291i 1.94465i 0.233627 + 0.972326i \(0.424941\pi\)
−0.233627 + 0.972326i \(0.575059\pi\)
\(350\) 0.453834 + 0.914086i 0.0242584 + 0.0488599i
\(351\) −15.4762 3.80674i −0.826061 0.203189i
\(352\) −5.31096 + 9.19885i −0.283075 + 0.490300i
\(353\) 2.85736 + 4.94910i 0.152082 + 0.263414i 0.931993 0.362477i \(-0.118069\pi\)
−0.779911 + 0.625891i \(0.784735\pi\)
\(354\) −1.50369 + 2.17921i −0.0799203 + 0.115824i
\(355\) 0.798355 + 0.460931i 0.0423723 + 0.0244637i
\(356\) −34.8586 −1.84750
\(357\) −10.9948 27.4924i −0.581909 1.45505i
\(358\) 7.70242 0.407086
\(359\) 4.16181 + 2.40282i 0.219652 + 0.126816i 0.605789 0.795625i \(-0.292858\pi\)
−0.386137 + 0.922441i \(0.626191\pi\)
\(360\) −0.713493 + 4.39911i −0.0376044 + 0.231853i
\(361\) −8.78489 15.2159i −0.462362 0.800835i
\(362\) −1.00060 + 1.73309i −0.0525904 + 0.0910892i
\(363\) −7.09909 + 3.36994i −0.372605 + 0.176876i
\(364\) 8.31252 12.5132i 0.435694 0.655870i
\(365\) 0.296437i 0.0155162i
\(366\) −0.501174 + 6.22045i −0.0261968 + 0.325148i
\(367\) −21.2836 + 12.2881i −1.11099 + 0.641433i −0.939087 0.343680i \(-0.888327\pi\)
−0.171908 + 0.985113i \(0.554993\pi\)
\(368\) 8.28219 4.78173i 0.431739 0.249265i
\(369\) 2.46214 + 6.48594i 0.128174 + 0.337644i
\(370\) 1.37015i 0.0712305i
\(371\) 19.4048 29.2110i 1.00745 1.51656i
\(372\) 9.45176 + 19.9110i 0.490051 + 1.03234i
\(373\) −13.2513 + 22.9519i −0.686126 + 1.18840i 0.286956 + 0.957944i \(0.407357\pi\)
−0.973082 + 0.230461i \(0.925977\pi\)
\(374\) −3.16804 5.48721i −0.163816 0.283737i
\(375\) −1.42561 0.983691i −0.0736180 0.0507976i
\(376\) −4.14279 2.39184i −0.213648 0.123350i
\(377\) −23.8329 −1.22746
\(378\) 1.58711 5.05985i 0.0816322 0.260250i
\(379\) 13.0939 0.672588 0.336294 0.941757i \(-0.390826\pi\)
0.336294 + 0.941757i \(0.390826\pi\)
\(380\) 1.91730 + 1.10695i 0.0983552 + 0.0567854i
\(381\) −15.9618 11.0139i −0.817747 0.564258i
\(382\) 1.66655 + 2.88655i 0.0852680 + 0.147689i
\(383\) 8.48299 14.6930i 0.433461 0.750776i −0.563708 0.825974i \(-0.690626\pi\)
0.997169 + 0.0751982i \(0.0239589\pi\)
\(384\) −7.53825 15.8800i −0.384685 0.810374i
\(385\) 2.99109 + 6.02447i 0.152440 + 0.307036i
\(386\) 9.16964i 0.466723i
\(387\) 5.81467 + 15.3174i 0.295576 + 0.778626i
\(388\) −19.8303 + 11.4490i −1.00673 + 0.581236i
\(389\) −2.13457 + 1.23239i −0.108227 + 0.0624848i −0.553136 0.833091i \(-0.686569\pi\)
0.444910 + 0.895576i \(0.353236\pi\)
\(390\) 0.164568 2.04258i 0.00833324 0.103430i
\(391\) 19.7457i 0.998583i
\(392\) 8.28375 + 6.28592i 0.418393 + 0.317487i
\(393\) −24.5090 + 11.6344i −1.23632 + 0.586879i
\(394\) −2.25351 + 3.90319i −0.113530 + 0.196640i
\(395\) 4.14741 + 7.18352i 0.208679 + 0.361442i
\(396\) −2.26037 + 13.9366i −0.113588 + 0.700339i
\(397\) 2.90437 + 1.67684i 0.145766 + 0.0841582i 0.571109 0.820874i \(-0.306513\pi\)
−0.425343 + 0.905032i \(0.639847\pi\)
\(398\) 5.44912 0.273140
\(399\) −4.30667 3.38930i −0.215603 0.169677i
\(400\) 3.12941 0.156470
\(401\) −5.40992 3.12342i −0.270158 0.155976i 0.358801 0.933414i \(-0.383186\pi\)
−0.628960 + 0.777438i \(0.716519\pi\)
\(402\) 1.33537 1.93527i 0.0666022 0.0965226i
\(403\) −10.5418 18.2589i −0.525124 0.909541i
\(404\) −6.45731 + 11.1844i −0.321263 + 0.556444i
\(405\) 1.80582 + 8.81697i 0.0897321 + 0.438119i
\(406\) 0.497384 7.91434i 0.0246848 0.392782i
\(407\) 9.03024i 0.447612i
\(408\) 16.5713 + 1.33513i 0.820403 + 0.0660988i
\(409\) −10.2147 + 5.89748i −0.505086 + 0.291611i −0.730811 0.682579i \(-0.760858\pi\)
0.225726 + 0.974191i \(0.427525\pi\)
\(410\) −0.772502 + 0.446004i −0.0381511 + 0.0220266i
\(411\) −10.0625 0.810722i −0.496346 0.0399899i
\(412\) 6.98495i 0.344124i
\(413\) −8.73350 5.80166i −0.429748 0.285481i
\(414\) −2.23569 + 2.74000i −0.109878 + 0.134664i
\(415\) 1.05586 1.82880i 0.0518299 0.0897721i
\(416\) 6.40761 + 11.0983i 0.314159 + 0.544139i
\(417\) 11.8402 17.1593i 0.579817 0.840295i
\(418\) −1.01563 0.586372i −0.0496759 0.0286804i
\(419\) −12.0419 −0.588284 −0.294142 0.955762i \(-0.595034\pi\)
−0.294142 + 0.955762i \(0.595034\pi\)
\(420\) −8.39654 1.21031i −0.409709 0.0590573i
\(421\) 11.4264 0.556888 0.278444 0.960453i \(-0.410181\pi\)
0.278444 + 0.960453i \(0.410181\pi\)
\(422\) −1.50270 0.867582i −0.0731501 0.0422332i
\(423\) −9.53594 1.54664i −0.463653 0.0752000i
\(424\) 9.84521 + 17.0524i 0.478126 + 0.828138i
\(425\) −3.23065 + 5.59565i −0.156710 + 0.271429i
\(426\) 0.556394 0.264120i 0.0269574 0.0127967i
\(427\) −24.6647 1.55007i −1.19361 0.0750133i
\(428\) 24.4983i 1.18417i
\(429\) 1.08462 13.4621i 0.0523660 0.649955i
\(430\) −1.82436 + 1.05330i −0.0879786 + 0.0507945i
\(431\) −28.2346 + 16.3013i −1.36001 + 0.785205i −0.989625 0.143672i \(-0.954109\pi\)
−0.370389 + 0.928877i \(0.620776\pi\)
\(432\) −11.7327 11.2587i −0.564492 0.541686i
\(433\) 4.37644i 0.210318i 0.994455 + 0.105159i \(0.0335352\pi\)
−0.994455 + 0.105159i \(0.966465\pi\)
\(434\) 6.28335 3.11962i 0.301611 0.149747i
\(435\) 5.77151 + 12.1582i 0.276723 + 0.582942i
\(436\) −2.31551 + 4.01059i −0.110893 + 0.192072i
\(437\) 1.82736 + 3.16508i 0.0874146 + 0.151407i
\(438\) −0.163011 0.112480i −0.00778895 0.00537450i
\(439\) −12.8416 7.41409i −0.612895 0.353855i 0.161202 0.986921i \(-0.448463\pi\)
−0.774098 + 0.633066i \(0.781796\pi\)
\(440\) −3.77658 −0.180041
\(441\) 20.1451 + 5.93084i 0.959291 + 0.282421i
\(442\) −7.64441 −0.363607
\(443\) −13.7806 7.95622i −0.654735 0.378011i 0.135533 0.990773i \(-0.456725\pi\)
−0.790268 + 0.612762i \(0.790059\pi\)
\(444\) −9.37428 6.46841i −0.444884 0.306977i
\(445\) −9.41507 16.3074i −0.446317 0.773044i
\(446\) 1.38991 2.40739i 0.0658141 0.113993i
\(447\) 13.8878 + 29.2560i 0.656872 + 1.38376i
\(448\) 11.0126 5.46765i 0.520298 0.258322i
\(449\) 35.1881i 1.66063i −0.557294 0.830315i \(-0.688161\pi\)
0.557294 0.830315i \(-0.311839\pi\)
\(450\) −1.08186 + 0.410689i −0.0509995 + 0.0193601i
\(451\) −5.09134 + 2.93948i −0.239742 + 0.138415i
\(452\) −11.5178 + 6.64978i −0.541750 + 0.312779i
\(453\) −0.827721 + 10.2735i −0.0388897 + 0.482690i
\(454\) 0.718630i 0.0337270i
\(455\) 8.09902 + 0.508991i 0.379688 + 0.0238619i
\(456\) 2.77982 1.31958i 0.130177 0.0617950i
\(457\) −7.02954 + 12.1755i −0.328828 + 0.569547i −0.982280 0.187421i \(-0.939987\pi\)
0.653451 + 0.756968i \(0.273320\pi\)
\(458\) 3.87782 + 6.71658i 0.181199 + 0.313845i
\(459\) 32.2439 9.35619i 1.50502 0.436710i
\(460\) 4.89936 + 2.82865i 0.228434 + 0.131886i
\(461\) 13.5161 0.629506 0.314753 0.949174i \(-0.398078\pi\)
0.314753 + 0.949174i \(0.398078\pi\)
\(462\) 4.44780 + 0.641126i 0.206930 + 0.0298279i
\(463\) 17.8381 0.829009 0.414504 0.910047i \(-0.363955\pi\)
0.414504 + 0.910047i \(0.363955\pi\)
\(464\) −21.0586 12.1582i −0.977623 0.564431i
\(465\) −6.76182 + 9.79951i −0.313572 + 0.454441i
\(466\) −0.301892 0.522893i −0.0139849 0.0242225i
\(467\) −4.59471 + 7.95827i −0.212618 + 0.368265i −0.952533 0.304435i \(-0.901532\pi\)
0.739915 + 0.672700i \(0.234866\pi\)
\(468\) 13.1980 + 10.7689i 0.610080 + 0.497792i
\(469\) 7.75588 + 5.15223i 0.358133 + 0.237908i
\(470\) 1.24212i 0.0572949i
\(471\) 11.0714 + 0.892008i 0.510143 + 0.0411016i
\(472\) 5.09833 2.94352i 0.234670 0.135487i
\(473\) −12.0238 + 6.94197i −0.552857 + 0.319192i
\(474\) 5.52391 + 0.445055i 0.253722 + 0.0204420i
\(475\) 1.19592i 0.0548726i
\(476\) −1.98494 + 31.5842i −0.0909794 + 1.44766i
\(477\) 30.8097 + 25.1391i 1.41068 + 1.15104i
\(478\) 1.09785 1.90153i 0.0502144 0.0869739i
\(479\) −9.44037 16.3512i −0.431341 0.747105i 0.565648 0.824647i \(-0.308626\pi\)
−0.996989 + 0.0775419i \(0.975293\pi\)
\(480\) 4.11003 5.95643i 0.187596 0.271872i
\(481\) 9.43523 + 5.44743i 0.430210 + 0.248382i
\(482\) −5.14291 −0.234253
\(483\) −11.0050 8.66085i −0.500746 0.394082i
\(484\) 8.39897 0.381772
\(485\) −10.7121 6.18461i −0.486409 0.280828i
\(486\) 5.53366 + 2.35249i 0.251012 + 0.106711i
\(487\) 2.61762 + 4.53386i 0.118616 + 0.205449i 0.919219 0.393746i \(-0.128821\pi\)
−0.800604 + 0.599194i \(0.795488\pi\)
\(488\) 6.93799 12.0170i 0.314068 0.543982i
\(489\) 25.7292 12.2136i 1.16351 0.552320i
\(490\) −0.338047 + 2.67887i −0.0152714 + 0.121019i
\(491\) 19.5201i 0.880930i −0.897770 0.440465i \(-0.854814\pi\)
0.897770 0.440465i \(-0.145186\pi\)
\(492\) 0.595474 7.39088i 0.0268460 0.333207i
\(493\) 43.4799 25.1031i 1.95823 1.13059i
\(494\) −1.22534 + 0.707451i −0.0551307 + 0.0318297i
\(495\) −7.13025 + 2.70673i −0.320481 + 0.121659i
\(496\) 21.5113i 0.965887i
\(497\) 1.08462 + 2.18458i 0.0486519 + 0.0979918i
\(498\) −0.605021 1.27453i −0.0271116 0.0571132i
\(499\) 18.3175 31.7269i 0.820005 1.42029i −0.0856728 0.996323i \(-0.527304\pi\)
0.905678 0.423967i \(-0.139363\pi\)
\(500\) 0.925606 + 1.60320i 0.0413944 + 0.0716971i
\(501\) −6.85844 4.73243i −0.306413 0.211430i
\(502\) −1.77913 1.02718i −0.0794064 0.0458453i
\(503\) −40.7156 −1.81542 −0.907708 0.419602i \(-0.862170\pi\)
−0.907708 + 0.419602i \(0.862170\pi\)
\(504\) −8.01263 + 8.65022i −0.356911 + 0.385312i
\(505\) −6.97630 −0.310441
\(506\) −2.59528 1.49838i −0.115374 0.0666113i
\(507\) 5.12134 + 3.53381i 0.227447 + 0.156942i
\(508\) 10.3635 + 17.9502i 0.459807 + 0.796410i
\(509\) 8.86384 15.3526i 0.392883 0.680493i −0.599946 0.800041i \(-0.704811\pi\)
0.992828 + 0.119548i \(0.0381445\pi\)
\(510\) 1.85121 + 3.89975i 0.0819730 + 0.172684i
\(511\) 0.433979 0.653288i 0.0191981 0.0288998i
\(512\) 22.3729i 0.988751i
\(513\) 4.30258 4.48373i 0.189964 0.197962i
\(514\) −2.17136 + 1.25364i −0.0957747 + 0.0552956i
\(515\) 3.26767 1.88659i 0.143991 0.0831330i
\(516\) 1.40629 17.4545i 0.0619084 0.768393i
\(517\) 8.18648i 0.360041i
\(518\) −2.00587 + 3.01953i −0.0881330 + 0.132671i
\(519\) −10.6638 + 5.06210i −0.468088 + 0.222202i
\(520\) −2.27820 + 3.94595i −0.0999055 + 0.173041i
\(521\) 1.75780 + 3.04461i 0.0770108 + 0.133387i 0.901959 0.431822i \(-0.142129\pi\)
−0.824948 + 0.565208i \(0.808796\pi\)
\(522\) 8.87574 + 1.43956i 0.388481 + 0.0630078i
\(523\) 4.20527 + 2.42791i 0.183884 + 0.106165i 0.589116 0.808048i \(-0.299476\pi\)
−0.405232 + 0.914214i \(0.632809\pi\)
\(524\) 28.9968 1.26673
\(525\) −1.70164 4.25493i −0.0742659 0.185700i
\(526\) 5.71904 0.249362
\(527\) 38.4641 + 22.2073i 1.67552 + 0.967363i
\(528\) 7.82596 11.3417i 0.340581 0.493584i
\(529\) −6.83045 11.8307i −0.296976 0.514378i
\(530\) −2.55639 + 4.42780i −0.111043 + 0.192331i
\(531\) 7.51608 9.21148i 0.326170 0.399744i
\(532\) 2.60478 + 5.24639i 0.112932 + 0.227460i
\(533\) 7.09290i 0.307228i
\(534\) −12.5399 1.01032i −0.542654 0.0437209i
\(535\) 11.4607 6.61684i 0.495489 0.286071i
\(536\) −4.52763 + 2.61403i −0.195564 + 0.112909i
\(537\) −34.4746 2.77757i −1.48769 0.119861i
\(538\) 9.49222i 0.409239i
\(539\) −2.22797 + 17.6557i −0.0959656 + 0.760483i
\(540\) 2.29758 9.34076i 0.0988719 0.401962i
\(541\) 0.0193171 0.0334581i 0.000830506 0.00143848i −0.865610 0.500719i \(-0.833069\pi\)
0.866440 + 0.499281i \(0.166402\pi\)
\(542\) −0.735184 1.27338i −0.0315789 0.0546962i
\(543\) 5.10346 7.39615i 0.219011 0.317399i
\(544\) −23.3796 13.4982i −1.00239 0.578731i
\(545\) −2.50162 −0.107158
\(546\) 3.35299 4.26052i 0.143495 0.182333i
\(547\) −36.3881 −1.55584 −0.777921 0.628362i \(-0.783726\pi\)
−0.777921 + 0.628362i \(0.783726\pi\)
\(548\) 9.34408 + 5.39480i 0.399159 + 0.230455i
\(549\) 4.48632 27.6608i 0.191471 1.18053i
\(550\) −0.490310 0.849242i −0.0209069 0.0362118i
\(551\) 4.64633 8.04767i 0.197940 0.342842i
\(552\) 7.10340 3.37199i 0.302341 0.143521i
\(553\) −1.37650 + 21.9028i −0.0585349 + 0.931402i
\(554\) 7.24224i 0.307693i
\(555\) 0.494088 6.13251i 0.0209729 0.260310i
\(556\) −19.2969 + 11.1411i −0.818370 + 0.472486i
\(557\) −15.0477 + 8.68779i −0.637591 + 0.368114i −0.783686 0.621157i \(-0.786663\pi\)
0.146095 + 0.989271i \(0.453330\pi\)
\(558\) 2.82305 + 7.43665i 0.119509 + 0.314818i
\(559\) 16.7508i 0.708484i
\(560\) 6.89660 + 4.58141i 0.291434 + 0.193600i
\(561\) 12.2008 + 25.7021i 0.515118 + 1.08514i
\(562\) 4.56870 7.91322i 0.192719 0.333799i
\(563\) 10.4546 + 18.1078i 0.440607 + 0.763153i 0.997735 0.0672735i \(-0.0214300\pi\)
−0.557128 + 0.830427i \(0.688097\pi\)
\(564\) 8.49838 + 5.86402i 0.357846 + 0.246920i
\(565\) −6.22174 3.59212i −0.261751 0.151122i
\(566\) 1.94566 0.0817822
\(567\) −8.92824 + 22.0746i −0.374951 + 0.927045i
\(568\) −1.36945 −0.0574610
\(569\) −24.8873 14.3687i −1.04333 0.602367i −0.122556 0.992462i \(-0.539109\pi\)
−0.920775 + 0.390094i \(0.872442\pi\)
\(570\) 0.657637 + 0.453780i 0.0275454 + 0.0190067i
\(571\) 15.2499 + 26.4136i 0.638188 + 1.10537i 0.985830 + 0.167746i \(0.0536490\pi\)
−0.347643 + 0.937627i \(0.613018\pi\)
\(572\) −7.21742 + 12.5009i −0.301776 + 0.522691i
\(573\) −6.41823 13.5206i −0.268125 0.564831i
\(574\) −2.35539 0.148026i −0.0983119 0.00617850i
\(575\) 3.05599i 0.127444i
\(576\) 4.94786 + 13.0340i 0.206161 + 0.543082i
\(577\) 20.3570 11.7531i 0.847473 0.489289i −0.0123245 0.999924i \(-0.503923\pi\)
0.859797 + 0.510635i \(0.170590\pi\)
\(578\) 8.26728 4.77312i 0.343874 0.198536i
\(579\) −3.30667 + 41.0416i −0.137420 + 1.70563i
\(580\) 14.3845i 0.597282i
\(581\) 5.00423 2.48455i 0.207610 0.103076i
\(582\) −7.46549 + 3.54387i −0.309455 + 0.146898i
\(583\) −16.8485 + 29.1824i −0.697792 + 1.20861i
\(584\) 0.220183 + 0.381368i 0.00911124 + 0.0157811i
\(585\) −1.47315 + 9.08286i −0.0609073 + 0.375530i
\(586\) −2.10260 1.21394i −0.0868575 0.0501472i
\(587\) 24.4613 1.00963 0.504813 0.863229i \(-0.331561\pi\)
0.504813 + 0.863229i \(0.331561\pi\)
\(588\) −16.7324 14.9597i −0.690034 0.616928i
\(589\) 8.22067 0.338727
\(590\) 1.32383 + 0.764311i 0.0545010 + 0.0314662i
\(591\) 11.4938 16.6573i 0.472791 0.685189i
\(592\) 5.55795 + 9.62665i 0.228430 + 0.395653i
\(593\) −1.87506 + 3.24770i −0.0769995 + 0.133367i −0.901954 0.431832i \(-0.857867\pi\)
0.824955 + 0.565199i \(0.191201\pi\)
\(594\) −1.21707 + 4.94797i −0.0499369 + 0.203018i
\(595\) −15.3117 + 7.60209i −0.627717 + 0.311655i
\(596\) 34.6130i 1.41780i
\(597\) −24.3892 1.96501i −0.998184 0.0804224i
\(598\) −3.13117 + 1.80778i −0.128043 + 0.0739257i
\(599\) 28.6663 16.5505i 1.17127 0.676235i 0.217294 0.976106i \(-0.430277\pi\)
0.953980 + 0.299871i \(0.0969438\pi\)
\(600\) 2.56470 + 0.206635i 0.104704 + 0.00843584i
\(601\) 3.36032i 0.137070i −0.997649 0.0685352i \(-0.978167\pi\)
0.997649 0.0685352i \(-0.0218325\pi\)
\(602\) −5.56255 0.349583i −0.226712 0.0142480i
\(603\) −6.67473 + 8.18036i −0.271816 + 0.333130i
\(604\) 5.50793 9.54001i 0.224114 0.388177i
\(605\) 2.26851 + 3.92917i 0.0922279 + 0.159743i
\(606\) −2.64709 + 3.83627i −0.107531 + 0.155838i
\(607\) 38.5420 + 22.2522i 1.56437 + 0.903190i 0.996806 + 0.0798612i \(0.0254477\pi\)
0.567565 + 0.823329i \(0.307886\pi\)
\(608\) −4.99676 −0.202645
\(609\) −5.08019 + 35.2437i −0.205860 + 1.42815i
\(610\) 3.60302 0.145882
\(611\) −8.55364 4.93844i −0.346043 0.199788i
\(612\) −35.4209 5.74492i −1.43180 0.232225i
\(613\) −20.1567 34.9125i −0.814123 1.41010i −0.909956 0.414705i \(-0.863885\pi\)
0.0958333 0.995397i \(-0.469448\pi\)
\(614\) −3.09349 + 5.35809i −0.124843 + 0.216235i
\(615\) 3.61840 1.71766i 0.145908 0.0692626i
\(616\) −8.32283 5.52885i −0.335336 0.222764i
\(617\) 37.7372i 1.51924i −0.650366 0.759621i \(-0.725384\pi\)
0.650366 0.759621i \(-0.274616\pi\)
\(618\) 0.202448 2.51274i 0.00814365 0.101077i
\(619\) 12.7122 7.33941i 0.510948 0.294996i −0.222275 0.974984i \(-0.571348\pi\)
0.733223 + 0.679988i \(0.238015\pi\)
\(620\) 11.0202 6.36254i 0.442584 0.255526i
\(621\) 10.9946 11.4575i 0.441198 0.459774i
\(622\) 6.97111i 0.279516i
\(623\) 3.12481 49.7218i 0.125193 1.99206i
\(624\) −7.12941 15.0188i −0.285405 0.601232i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 3.59155 + 6.22075i 0.143547 + 0.248631i
\(627\) 4.33429 + 2.99073i 0.173095 + 0.119438i
\(628\) −10.2810 5.93571i −0.410255 0.236861i
\(629\) −22.9511 −0.915118
\(630\) −2.98546 0.678754i −0.118943 0.0270422i
\(631\) −35.8363 −1.42662 −0.713311 0.700848i \(-0.752805\pi\)
−0.713311 + 0.700848i \(0.752805\pi\)
\(632\) −10.6713 6.16110i −0.424483 0.245076i
\(633\) 6.41292 + 4.42502i 0.254891 + 0.175879i
\(634\) 0.508489 + 0.880729i 0.0201947 + 0.0349782i
\(635\) −5.59824 + 9.69644i −0.222160 + 0.384792i
\(636\) −18.2256 38.3939i −0.722691 1.52242i
\(637\) 17.1035 + 12.9786i 0.677665 + 0.514230i
\(638\) 7.61971i 0.301667i
\(639\) −2.58555 + 0.981510i −0.102283 + 0.0388279i
\(640\) −8.78920 + 5.07445i −0.347424 + 0.200585i
\(641\) −13.5251 + 7.80872i −0.534209 + 0.308426i −0.742729 0.669592i \(-0.766469\pi\)
0.208519 + 0.978018i \(0.433136\pi\)
\(642\) 0.710047 8.81293i 0.0280233 0.347819i
\(643\) 29.3208i 1.15630i 0.815931 + 0.578149i \(0.196225\pi\)
−0.815931 + 0.578149i \(0.803775\pi\)
\(644\) 6.65612 + 13.4064i 0.262288 + 0.528285i
\(645\) 8.54532 4.05647i 0.336472 0.159723i
\(646\) 1.49031 2.58129i 0.0586355 0.101560i
\(647\) 3.33405 + 5.77475i 0.131075 + 0.227029i 0.924091 0.382172i \(-0.124824\pi\)
−0.793016 + 0.609201i \(0.791490\pi\)
\(648\) −8.87215 10.0018i −0.348531 0.392908i
\(649\) 8.72495 + 5.03735i 0.342484 + 0.197733i
\(650\) −1.18311 −0.0464053
\(651\) −29.2480 + 11.6970i −1.14632 + 0.458441i
\(652\) −30.4404 −1.19214
\(653\) 38.2165 + 22.0643i 1.49553 + 0.863444i 0.999987 0.00514013i \(-0.00163616\pi\)
0.495542 + 0.868584i \(0.334969\pi\)
\(654\) −0.949214 + 1.37564i −0.0371172 + 0.0537918i
\(655\) 7.83183 + 13.5651i 0.306015 + 0.530034i
\(656\) −3.61840 + 6.26726i −0.141275 + 0.244695i
\(657\) 0.689043 + 0.562222i 0.0268821 + 0.0219344i
\(658\) 1.81845 2.73740i 0.0708906 0.106715i
\(659\) 7.10057i 0.276599i 0.990390 + 0.138299i \(0.0441636\pi\)
−0.990390 + 0.138299i \(0.955836\pi\)
\(660\) 8.12509 + 0.654628i 0.316269 + 0.0254814i
\(661\) −20.5558 + 11.8679i −0.799527 + 0.461607i −0.843306 0.537434i \(-0.819394\pi\)
0.0437789 + 0.999041i \(0.486060\pi\)
\(662\) −10.1354 + 5.85170i −0.393925 + 0.227433i
\(663\) 34.2149 + 2.75665i 1.32880 + 0.107059i
\(664\) 3.13701i 0.121740i
\(665\) −1.75081 + 2.63557i −0.0678935 + 0.102203i
\(666\) −3.18479 2.59862i −0.123408 0.100694i
\(667\) 11.8730 20.5646i 0.459724 0.796265i
\(668\) 4.45299 + 7.71281i 0.172291 + 0.298418i
\(669\) −7.08909 + 10.2738i −0.274080 + 0.397208i
\(670\) −1.17564 0.678754i −0.0454188 0.0262226i
\(671\) 23.7464 0.916721
\(672\) 17.7778 7.10976i 0.685794 0.274265i
\(673\) −14.7915 −0.570171 −0.285086 0.958502i \(-0.592022\pi\)
−0.285086 + 0.958502i \(0.592022\pi\)
\(674\) 0.615374 + 0.355286i 0.0237033 + 0.0136851i
\(675\) 4.99031 1.44803i 0.192077 0.0557349i
\(676\) −3.32514 5.75931i −0.127890 0.221512i
\(677\) 18.2590 31.6255i 0.701749 1.21547i −0.266103 0.963945i \(-0.585736\pi\)
0.967852 0.251521i \(-0.0809307\pi\)
\(678\) −4.33609 + 2.05834i −0.166526 + 0.0790501i
\(679\) −14.5531 29.3119i −0.558496 1.12489i
\(680\) 9.59847i 0.368084i
\(681\) −0.259145 + 3.21645i −0.00993047 + 0.123255i
\(682\) −5.83763 + 3.37035i −0.223534 + 0.129058i
\(683\) −18.9828 + 10.9597i −0.726356 + 0.419362i −0.817088 0.576514i \(-0.804413\pi\)
0.0907317 + 0.995875i \(0.471079\pi\)
\(684\) −6.20936 + 2.35715i −0.237421 + 0.0901279i
\(685\) 5.82840i 0.222692i
\(686\) −4.66682 + 5.40881i −0.178180 + 0.206509i
\(687\) −14.9343 31.4605i −0.569779 1.20029i
\(688\) −8.54532 + 14.8009i −0.325787 + 0.564280i
\(689\) 20.3275 + 35.2082i 0.774414 + 1.34132i
\(690\) 1.68049 + 1.15957i 0.0639752 + 0.0441439i
\(691\) 27.2031 + 15.7057i 1.03485 + 0.597473i 0.918371 0.395720i \(-0.129505\pi\)
0.116482 + 0.993193i \(0.462838\pi\)
\(692\) 12.6164 0.479604
\(693\) −19.6763 4.47347i −0.747440 0.169933i
\(694\) −3.15929 −0.119925
\(695\) −10.4239 6.01825i −0.395402 0.228285i
\(696\) −16.4558 11.3548i −0.623755 0.430401i
\(697\) −7.47093 12.9400i −0.282982 0.490139i
\(698\) 7.00663 12.1358i 0.265205 0.459348i
\(699\) 1.16265 + 2.44923i 0.0439755 + 0.0926385i
\(700\) −0.307204 + 4.88820i −0.0116112 + 0.184757i
\(701\) 29.6988i 1.12171i 0.827915 + 0.560854i \(0.189527\pi\)
−0.827915 + 0.560854i \(0.810473\pi\)
\(702\) 4.43569 + 4.25648i 0.167414 + 0.160651i
\(703\) −3.67888 + 2.12400i −0.138751 + 0.0801082i
\(704\) −10.2314 + 5.90711i −0.385611 + 0.222633i
\(705\) −0.447922 + 5.55951i −0.0168697 + 0.209383i
\(706\) 2.20435i 0.0829617i
\(707\) −15.3744 10.2132i −0.578214 0.384107i
\(708\) −11.4790 + 5.44908i −0.431407 + 0.204789i
\(709\) −6.66342 + 11.5414i −0.250250 + 0.433446i −0.963595 0.267368i \(-0.913846\pi\)
0.713344 + 0.700814i \(0.247180\pi\)
\(710\) −0.177795 0.307950i −0.00667253 0.0115572i
\(711\) −24.5635 3.98396i −0.921202 0.149410i
\(712\) 24.2251 + 13.9864i 0.907875 + 0.524162i
\(713\) 21.0067 0.786706
\(714\) −1.62947 + 11.3044i −0.0609814 + 0.423057i
\(715\) −7.79751 −0.291610
\(716\) 32.0133 + 18.4829i 1.19639 + 0.690737i
\(717\) −5.59947 + 8.11498i −0.209116 + 0.303060i
\(718\) −0.926842 1.60534i −0.0345895 0.0599107i
\(719\) −25.5863 + 44.3167i −0.954207 + 1.65273i −0.218034 + 0.975941i \(0.569964\pi\)
−0.736173 + 0.676794i \(0.763369\pi\)
\(720\) −5.93523 + 7.27405i −0.221193 + 0.271088i
\(721\) 9.96323 + 0.626148i 0.371050 + 0.0233190i
\(722\) 6.77720i 0.252221i
\(723\) 23.0187 + 1.85459i 0.856074 + 0.0689728i
\(724\) −8.31751 + 4.80211i −0.309118 + 0.178469i
\(725\) 6.72927 3.88515i 0.249919 0.144291i
\(726\) 3.02141 + 0.243431i 0.112135 + 0.00903459i
\(727\) 51.6371i 1.91511i −0.288246 0.957556i \(-0.593072\pi\)
0.288246 0.957556i \(-0.406928\pi\)
\(728\) −10.7975 + 5.36085i −0.400182 + 0.198686i
\(729\) −23.9192 12.5248i −0.885898 0.463880i
\(730\) −0.0571724 + 0.0990255i −0.00211605 + 0.00366510i
\(731\) −17.6436 30.5596i −0.652571 1.13029i
\(732\) −17.0097 + 24.6512i −0.628697 + 0.911134i
\(733\) 19.0043 + 10.9721i 0.701940 + 0.405265i 0.808069 0.589087i \(-0.200513\pi\)
−0.106130 + 0.994352i \(0.533846\pi\)
\(734\) 9.47979 0.349905
\(735\) 2.47906 11.8682i 0.0914416 0.437765i
\(736\) −12.7685 −0.470652
\(737\) −7.74829 4.47347i −0.285412 0.164783i
\(738\) 0.428427 2.64151i 0.0157706 0.0972352i
\(739\) 19.2874 + 33.4068i 0.709500 + 1.22889i 0.965043 + 0.262092i \(0.0844125\pi\)
−0.255543 + 0.966798i \(0.582254\pi\)
\(740\) −3.28782 + 5.69468i −0.120863 + 0.209341i
\(741\) 5.73950 2.72454i 0.210846 0.100089i
\(742\) −12.1160 + 6.01548i −0.444793 + 0.220835i
\(743\) 3.81873i 0.140096i 0.997544 + 0.0700478i \(0.0223152\pi\)
−0.997544 + 0.0700478i \(0.977685\pi\)
\(744\) 1.42039 17.6296i 0.0520741 0.646332i
\(745\) 16.1925 9.34874i 0.593247 0.342511i
\(746\) 8.85325 5.11143i 0.324141 0.187143i
\(747\) 2.24835 + 5.92274i 0.0822628 + 0.216702i
\(748\) 30.4083i 1.11184i
\(749\) 34.9441 + 2.19609i 1.27683 + 0.0802435i
\(750\) 0.286507 + 0.603555i 0.0104618 + 0.0220387i
\(751\) −10.5271 + 18.2334i −0.384139 + 0.665348i −0.991649 0.128964i \(-0.958835\pi\)
0.607511 + 0.794312i \(0.292168\pi\)
\(752\) −5.03863 8.72717i −0.183740 0.318247i
\(753\) 7.59263 + 5.23904i 0.276691 + 0.190921i
\(754\) 7.96145 + 4.59654i 0.289939 + 0.167396i
\(755\) 5.95062 0.216565
\(756\) 18.7381 17.2216i 0.681500 0.626342i
\(757\) 28.6903 1.04277 0.521383 0.853323i \(-0.325416\pi\)
0.521383 + 0.853323i \(0.325416\pi\)
\(758\) −4.37405 2.52536i −0.158873 0.0917251i
\(759\) 11.0756 + 7.64236i 0.402020 + 0.277400i
\(760\) −0.888288 1.53856i −0.0322216 0.0558095i
\(761\) 5.34875 9.26431i 0.193892 0.335831i −0.752645 0.658427i \(-0.771222\pi\)
0.946537 + 0.322596i \(0.104556\pi\)
\(762\) 3.20788 + 6.75769i 0.116209 + 0.244805i
\(763\) −5.51308 3.66234i −0.199587 0.132585i
\(764\) 15.9963i 0.578726i
\(765\) −6.87938 18.1221i −0.248724 0.655206i
\(766\) −5.66753 + 3.27215i −0.204776 + 0.118228i
\(767\) 10.5265 6.07750i 0.380092 0.219446i
\(768\) 0.748293 9.28763i 0.0270017 0.335139i
\(769\) 38.6874i 1.39510i −0.716535 0.697551i \(-0.754273\pi\)
0.716535 0.697551i \(-0.245727\pi\)
\(770\) 0.162731 2.58937i 0.00586443 0.0933144i
\(771\) 10.1707 4.82802i 0.366288 0.173877i
\(772\) 22.0036 38.1114i 0.791928 1.37166i
\(773\) 11.4438 + 19.8212i 0.411603 + 0.712918i 0.995065 0.0992225i \(-0.0316355\pi\)
−0.583462 + 0.812141i \(