Properties

Label 105.2.s.c.101.4
Level 105
Weight 2
Character 105.101
Analytic conductor 0.838
Analytic rank 0
Dimension 8
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 105.s (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.838429221223\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.856615824.2
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.4
Root \(-2.06288i\)
Character \(\chi\) = 105.101
Dual form 105.2.s.c.26.4

$q$-expansion

\(f(q)\) \(=\) \(q+(1.78651 - 1.03144i) q^{2} +(-0.627739 + 1.61429i) q^{3} +(1.12774 - 1.95330i) q^{4} +(0.500000 + 0.866025i) q^{5} +(0.543588 + 3.53142i) q^{6} +(-0.00953166 - 2.64573i) q^{7} -0.527019i q^{8} +(-2.21189 - 2.02671i) q^{9} +O(q^{10})\) \(q+(1.78651 - 1.03144i) q^{2} +(-0.627739 + 1.61429i) q^{3} +(1.12774 - 1.95330i) q^{4} +(0.500000 + 0.866025i) q^{5} +(0.543588 + 3.53142i) q^{6} +(-0.00953166 - 2.64573i) q^{7} -0.527019i q^{8} +(-2.21189 - 2.02671i) q^{9} +(1.78651 + 1.03144i) q^{10} +(-4.06348 - 2.34605i) q^{11} +(2.44528 + 3.04666i) q^{12} +0.638688i q^{13} +(-2.74595 - 4.71679i) q^{14} +(-1.71189 + 0.263509i) q^{15} +(1.71189 + 2.96508i) q^{16} +(-2.07462 + 3.59334i) q^{17} +(-6.04198 - 1.33930i) q^{18} +(-0.776975 + 0.448587i) q^{19} +2.25548 q^{20} +(4.27698 + 1.64544i) q^{21} -9.67925 q^{22} +(5.89275 - 3.40218i) q^{23} +(0.850763 + 0.330830i) q^{24} +(-0.500000 + 0.866025i) q^{25} +(0.658769 + 1.14102i) q^{26} +(4.66019 - 2.29839i) q^{27} +(-5.17866 - 2.96508i) q^{28} -2.14740i q^{29} +(-2.78651 + 2.23647i) q^{30} +(-2.02453 - 1.16886i) q^{31} +(7.02943 + 4.05844i) q^{32} +(6.33802 - 5.08695i) q^{33} +8.55938i q^{34} +(2.28651 - 1.33112i) q^{35} +(-6.45320 + 2.03489i) q^{36} +(5.69122 + 9.85748i) q^{37} +(-0.925382 + 1.60281i) q^{38} +(-1.03103 - 0.400929i) q^{39} +(0.456412 - 0.263509i) q^{40} -4.10624 q^{41} +(9.33802 - 1.47185i) q^{42} +3.14924 q^{43} +(-9.16509 + 5.29147i) q^{44} +(0.649237 - 2.92891i) q^{45} +(7.01829 - 12.1560i) q^{46} +(-3.40471 - 5.89714i) q^{47} +(-5.86113 + 0.902197i) q^{48} +(-6.99982 + 0.0504365i) q^{49} +2.06288i q^{50} +(-4.49840 - 5.60472i) q^{51} +(1.24755 + 0.720273i) q^{52} +(1.96187 + 1.13269i) q^{53} +(5.95481 - 8.91281i) q^{54} -4.69211i q^{55} +(-1.39435 + 0.00502336i) q^{56} +(-0.236414 - 1.53586i) q^{57} +(-2.21492 - 3.83635i) q^{58} +(-0.254055 + 0.440035i) q^{59} +(-1.41585 + 3.64100i) q^{60} +(4.48946 - 2.59199i) q^{61} -4.82244 q^{62} +(-5.34105 + 5.87139i) q^{63} +9.89660 q^{64} +(-0.553120 + 0.319344i) q^{65} +(6.07604 - 15.6252i) q^{66} +(-2.41425 + 4.18160i) q^{67} +(4.67925 + 8.10471i) q^{68} +(1.79301 + 11.6483i) q^{69} +(2.71189 - 4.73645i) q^{70} +1.22800i q^{71} +(-1.06811 + 1.16571i) q^{72} +(12.5197 + 7.22826i) q^{73} +(20.3348 + 11.7403i) q^{74} +(-1.08415 - 1.35078i) q^{75} +2.02356i q^{76} +(-6.16830 + 10.7733i) q^{77} +(-2.25548 + 0.347183i) q^{78} +(-4.54056 - 7.86448i) q^{79} +(-1.71189 + 2.96508i) q^{80} +(0.784903 + 8.96571i) q^{81} +(-7.33583 + 4.23534i) q^{82} +2.76359 q^{83} +(8.03735 - 6.49859i) q^{84} -4.14924 q^{85} +(5.62613 - 3.24825i) q^{86} +(3.46653 + 1.34801i) q^{87} +(-1.23641 + 2.14153i) q^{88} +(-6.90067 - 11.9523i) q^{89} +(-1.86113 - 5.90216i) q^{90} +(1.68980 - 0.00608775i) q^{91} -15.3471i q^{92} +(3.15776 - 2.53444i) q^{93} +(-12.1651 - 7.02352i) q^{94} +(-0.776975 - 0.448587i) q^{95} +(-10.9642 + 8.79992i) q^{96} -12.9085i q^{97} +(-12.4532 + 7.31000i) q^{98} +(4.23321 + 13.4247i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q - 3q^{2} + q^{3} + 3q^{4} + 4q^{5} + 5q^{6} + 2q^{7} - 5q^{9} + O(q^{10}) \) \( 8q - 3q^{2} + q^{3} + 3q^{4} + 4q^{5} + 5q^{6} + 2q^{7} - 5q^{9} - 3q^{10} - 9q^{12} - 12q^{14} - q^{15} + q^{16} - 12q^{17} - 19q^{18} + 9q^{19} + 6q^{20} + 19q^{21} - 40q^{22} + 27q^{23} + 16q^{24} - 4q^{25} - 6q^{26} + 4q^{27} + 3q^{28} - 5q^{30} - 21q^{31} + 21q^{32} + 2q^{33} + q^{35} + 9q^{36} + 7q^{37} - 12q^{38} - 3q^{39} + 3q^{40} - 30q^{41} + 26q^{42} + 16q^{43} - 4q^{45} - 7q^{46} - 6q^{47} - 25q^{48} - 4q^{49} - 6q^{51} + 30q^{52} + 24q^{53} + 17q^{54} - 21q^{56} + 6q^{57} - 13q^{58} - 12q^{59} - 18q^{60} + 15q^{61} + 24q^{62} - 2q^{63} + 38q^{64} - 3q^{65} + 22q^{66} + 4q^{67} - 13q^{69} + 9q^{70} - 14q^{72} + 15q^{73} + 54q^{74} - 2q^{75} - 36q^{77} - 6q^{78} - 29q^{79} - q^{80} - 41q^{81} + 27q^{82} + 30q^{83} - 3q^{84} - 24q^{85} + 9q^{86} + 32q^{87} - 2q^{88} - 3q^{89} + 7q^{90} - 3q^{91} - 9q^{93} - 24q^{94} + 9q^{95} - 3q^{96} - 39q^{98} - 34q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.78651 1.03144i 1.26325 0.729338i 0.289549 0.957163i \(-0.406495\pi\)
0.973702 + 0.227825i \(0.0731613\pi\)
\(3\) −0.627739 + 1.61429i −0.362425 + 0.932013i
\(4\) 1.12774 1.95330i 0.563869 0.976650i
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) 0.543588 + 3.53142i 0.221919 + 1.44170i
\(7\) −0.00953166 2.64573i −0.00360263 0.999994i
\(8\) 0.527019i 0.186329i
\(9\) −2.21189 2.02671i −0.737296 0.675570i
\(10\) 1.78651 + 1.03144i 0.564943 + 0.326170i
\(11\) −4.06348 2.34605i −1.22519 0.707362i −0.259167 0.965833i \(-0.583448\pi\)
−0.966019 + 0.258471i \(0.916781\pi\)
\(12\) 2.44528 + 3.04666i 0.705890 + 0.879496i
\(13\) 0.638688i 0.177140i 0.996070 + 0.0885701i \(0.0282297\pi\)
−0.996070 + 0.0885701i \(0.971770\pi\)
\(14\) −2.74595 4.71679i −0.733885 1.26062i
\(15\) −1.71189 + 0.263509i −0.442008 + 0.0680378i
\(16\) 1.71189 + 2.96508i 0.427972 + 0.741270i
\(17\) −2.07462 + 3.59334i −0.503169 + 0.871514i 0.496824 + 0.867851i \(0.334499\pi\)
−0.999993 + 0.00366299i \(0.998834\pi\)
\(18\) −6.04198 1.33930i −1.42411 0.315676i
\(19\) −0.776975 + 0.448587i −0.178250 + 0.102913i −0.586470 0.809971i \(-0.699483\pi\)
0.408220 + 0.912884i \(0.366150\pi\)
\(20\) 2.25548 0.504340
\(21\) 4.27698 + 1.64544i 0.933313 + 0.359065i
\(22\) −9.67925 −2.06362
\(23\) 5.89275 3.40218i 1.22872 0.709403i 0.261960 0.965079i \(-0.415631\pi\)
0.966763 + 0.255675i \(0.0822978\pi\)
\(24\) 0.850763 + 0.330830i 0.173661 + 0.0675304i
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0.658769 + 1.14102i 0.129195 + 0.223773i
\(27\) 4.66019 2.29839i 0.896854 0.442326i
\(28\) −5.17866 2.96508i −0.978675 0.560347i
\(29\) 2.14740i 0.398762i −0.979922 0.199381i \(-0.936107\pi\)
0.979922 0.199381i \(-0.0638932\pi\)
\(30\) −2.78651 + 2.23647i −0.508744 + 0.408322i
\(31\) −2.02453 1.16886i −0.363615 0.209933i 0.307050 0.951693i \(-0.400658\pi\)
−0.670666 + 0.741760i \(0.733991\pi\)
\(32\) 7.02943 + 4.05844i 1.24264 + 0.717438i
\(33\) 6.33802 5.08695i 1.10331 0.885524i
\(34\) 8.55938i 1.46792i
\(35\) 2.28651 1.33112i 0.386490 0.225001i
\(36\) −6.45320 + 2.03489i −1.07553 + 0.339148i
\(37\) 5.69122 + 9.85748i 0.935631 + 1.62056i 0.773505 + 0.633790i \(0.218502\pi\)
0.162126 + 0.986770i \(0.448165\pi\)
\(38\) −0.925382 + 1.60281i −0.150117 + 0.260010i
\(39\) −1.03103 0.400929i −0.165097 0.0642000i
\(40\) 0.456412 0.263509i 0.0721650 0.0416645i
\(41\) −4.10624 −0.641287 −0.320643 0.947200i \(-0.603899\pi\)
−0.320643 + 0.947200i \(0.603899\pi\)
\(42\) 9.33802 1.47185i 1.44089 0.227111i
\(43\) 3.14924 0.480254 0.240127 0.970741i \(-0.422811\pi\)
0.240127 + 0.970741i \(0.422811\pi\)
\(44\) −9.16509 + 5.29147i −1.38169 + 0.797719i
\(45\) 0.649237 2.92891i 0.0967825 0.436616i
\(46\) 7.01829 12.1560i 1.03479 1.79231i
\(47\) −3.40471 5.89714i −0.496629 0.860186i 0.503364 0.864075i \(-0.332096\pi\)
−0.999992 + 0.00388861i \(0.998762\pi\)
\(48\) −5.86113 + 0.902197i −0.845981 + 0.130221i
\(49\) −6.99982 + 0.0504365i −0.999974 + 0.00720521i
\(50\) 2.06288i 0.291735i
\(51\) −4.49840 5.60472i −0.629901 0.784818i
\(52\) 1.24755 + 0.720273i 0.173004 + 0.0998839i
\(53\) 1.96187 + 1.13269i 0.269484 + 0.155587i 0.628653 0.777686i \(-0.283607\pi\)
−0.359169 + 0.933272i \(0.616940\pi\)
\(54\) 5.95481 8.91281i 0.810347 1.21288i
\(55\) 4.69211i 0.632683i
\(56\) −1.39435 + 0.00502336i −0.186328 + 0.000671275i
\(57\) −0.236414 1.53586i −0.0313138 0.203430i
\(58\) −2.21492 3.83635i −0.290833 0.503737i
\(59\) −0.254055 + 0.440035i −0.0330751 + 0.0572877i −0.882089 0.471083i \(-0.843863\pi\)
0.849014 + 0.528370i \(0.177197\pi\)
\(60\) −1.41585 + 3.64100i −0.182785 + 0.470051i
\(61\) 4.48946 2.59199i 0.574816 0.331870i −0.184255 0.982879i \(-0.558987\pi\)
0.759070 + 0.651008i \(0.225654\pi\)
\(62\) −4.82244 −0.612450
\(63\) −5.34105 + 5.87139i −0.672909 + 0.739725i
\(64\) 9.89660 1.23708
\(65\) −0.553120 + 0.319344i −0.0686061 + 0.0396097i
\(66\) 6.07604 15.6252i 0.747909 1.92332i
\(67\) −2.41425 + 4.18160i −0.294947 + 0.510863i −0.974973 0.222325i \(-0.928635\pi\)
0.680026 + 0.733188i \(0.261969\pi\)
\(68\) 4.67925 + 8.10471i 0.567443 + 0.982840i
\(69\) 1.79301 + 11.6483i 0.215853 + 1.40229i
\(70\) 2.71189 4.73645i 0.324133 0.566115i
\(71\) 1.22800i 0.145737i 0.997342 + 0.0728686i \(0.0232154\pi\)
−0.997342 + 0.0728686i \(0.976785\pi\)
\(72\) −1.06811 + 1.16571i −0.125878 + 0.137380i
\(73\) 12.5197 + 7.22826i 1.46532 + 0.846004i 0.999249 0.0387429i \(-0.0123353\pi\)
0.466072 + 0.884747i \(0.345669\pi\)
\(74\) 20.3348 + 11.7403i 2.36387 + 1.36478i
\(75\) −1.08415 1.35078i −0.125187 0.155975i
\(76\) 2.02356i 0.232118i
\(77\) −6.16830 + 10.7733i −0.702943 + 1.22773i
\(78\) −2.25548 + 0.347183i −0.255382 + 0.0393108i
\(79\) −4.54056 7.86448i −0.510853 0.884824i −0.999921 0.0125778i \(-0.995996\pi\)
0.489068 0.872246i \(-0.337337\pi\)
\(80\) −1.71189 + 2.96508i −0.191395 + 0.331506i
\(81\) 0.784903 + 8.96571i 0.0872114 + 0.996190i
\(82\) −7.33583 + 4.23534i −0.810107 + 0.467715i
\(83\) 2.76359 0.303343 0.151671 0.988431i \(-0.451534\pi\)
0.151671 + 0.988431i \(0.451534\pi\)
\(84\) 8.03735 6.49859i 0.876947 0.709054i
\(85\) −4.14924 −0.450048
\(86\) 5.62613 3.24825i 0.606682 0.350268i
\(87\) 3.46653 + 1.34801i 0.371652 + 0.144521i
\(88\) −1.23641 + 2.14153i −0.131802 + 0.228288i
\(89\) −6.90067 11.9523i −0.731470 1.26694i −0.956255 0.292535i \(-0.905501\pi\)
0.224785 0.974408i \(-0.427832\pi\)
\(90\) −1.86113 5.90216i −0.196180 0.622142i
\(91\) 1.68980 0.00608775i 0.177139 0.000638170i
\(92\) 15.3471i 1.60004i
\(93\) 3.15776 2.53444i 0.327444 0.262809i
\(94\) −12.1651 7.02352i −1.25473 0.724421i
\(95\) −0.776975 0.448587i −0.0797160 0.0460241i
\(96\) −10.9642 + 8.79992i −1.11902 + 0.898138i
\(97\) 12.9085i 1.31066i −0.755344 0.655329i \(-0.772530\pi\)
0.755344 0.655329i \(-0.227470\pi\)
\(98\) −12.4532 + 7.31000i −1.25796 + 0.738422i
\(99\) 4.23321 + 13.4247i 0.425453 + 1.34923i
\(100\) 1.12774 + 1.95330i 0.112774 + 0.195330i
\(101\) −4.51989 + 7.82869i −0.449746 + 0.778983i −0.998369 0.0570865i \(-0.981819\pi\)
0.548623 + 0.836070i \(0.315152\pi\)
\(102\) −13.8174 5.37305i −1.36812 0.532012i
\(103\) −13.4412 + 7.76030i −1.32440 + 0.764645i −0.984428 0.175789i \(-0.943752\pi\)
−0.339976 + 0.940434i \(0.610419\pi\)
\(104\) 0.336601 0.0330064
\(105\) 0.713493 + 4.52669i 0.0696298 + 0.441760i
\(106\) 4.67320 0.453901
\(107\) −4.64012 + 2.67897i −0.448577 + 0.258986i −0.707229 0.706985i \(-0.750055\pi\)
0.258652 + 0.965971i \(0.416722\pi\)
\(108\) 0.766021 11.6947i 0.0737104 1.12533i
\(109\) −0.679436 + 1.17682i −0.0650782 + 0.112719i −0.896729 0.442581i \(-0.854063\pi\)
0.831650 + 0.555299i \(0.187396\pi\)
\(110\) −4.83963 8.38248i −0.461440 0.799238i
\(111\) −19.4855 + 2.99938i −1.84948 + 0.284689i
\(112\) 7.82849 4.55746i 0.739723 0.430640i
\(113\) 11.9390i 1.12312i −0.827435 0.561562i \(-0.810201\pi\)
0.827435 0.561562i \(-0.189799\pi\)
\(114\) −2.00650 2.49998i −0.187926 0.234145i
\(115\) 5.89275 + 3.40218i 0.549502 + 0.317255i
\(116\) −4.19452 2.42171i −0.389451 0.224850i
\(117\) 1.29443 1.41271i 0.119671 0.130605i
\(118\) 1.04817i 0.0964917i
\(119\) 9.52681 + 5.45464i 0.873321 + 0.500026i
\(120\) 0.138874 + 0.902197i 0.0126774 + 0.0823590i
\(121\) 5.50793 + 9.54001i 0.500721 + 0.867274i
\(122\) 5.34696 9.26121i 0.484091 0.838471i
\(123\) 2.57765 6.62868i 0.232418 0.597688i
\(124\) −4.56627 + 2.63634i −0.410063 + 0.236750i
\(125\) −1.00000 −0.0894427
\(126\) −3.48584 + 15.9982i −0.310543 + 1.42524i
\(127\) −16.8492 −1.49513 −0.747563 0.664191i \(-0.768776\pi\)
−0.747563 + 0.664191i \(0.768776\pi\)
\(128\) 3.62150 2.09088i 0.320099 0.184809i
\(129\) −1.97690 + 5.08379i −0.174056 + 0.447603i
\(130\) −0.658769 + 1.14102i −0.0577778 + 0.100074i
\(131\) 6.93473 + 12.0113i 0.605890 + 1.04943i 0.991910 + 0.126942i \(0.0405163\pi\)
−0.386020 + 0.922490i \(0.626150\pi\)
\(132\) −2.78870 18.1168i −0.242725 1.57687i
\(133\) 1.19425 + 2.05139i 0.103554 + 0.177878i
\(134\) 9.96060i 0.860465i
\(135\) 4.32056 + 2.88665i 0.371855 + 0.248443i
\(136\) 1.89376 + 1.09336i 0.162389 + 0.0937551i
\(137\) −3.75708 2.16915i −0.320989 0.185323i 0.330844 0.943685i \(-0.392667\pi\)
−0.651833 + 0.758362i \(0.726000\pi\)
\(138\) 15.2178 + 18.9604i 1.29542 + 1.61402i
\(139\) 10.9631i 0.929881i −0.885342 0.464941i \(-0.846076\pi\)
0.885342 0.464941i \(-0.153924\pi\)
\(140\) −0.0214984 5.96739i −0.00181695 0.504337i
\(141\) 11.6570 1.79435i 0.981695 0.151111i
\(142\) 1.26661 + 2.19384i 0.106292 + 0.184103i
\(143\) 1.49840 2.59530i 0.125302 0.217030i
\(144\) 2.22284 10.0279i 0.185237 0.835660i
\(145\) 1.85970 1.07370i 0.154440 0.0891659i
\(146\) 29.8221 2.46809
\(147\) 4.31264 11.3314i 0.355700 0.934600i
\(148\) 25.6728 2.11029
\(149\) 7.50546 4.33328i 0.614871 0.354996i −0.159998 0.987117i \(-0.551149\pi\)
0.774870 + 0.632121i \(0.217816\pi\)
\(150\) −3.33010 1.29495i −0.271901 0.105732i
\(151\) −6.73018 + 11.6570i −0.547694 + 0.948634i 0.450738 + 0.892656i \(0.351161\pi\)
−0.998432 + 0.0559778i \(0.982172\pi\)
\(152\) 0.236414 + 0.409481i 0.0191757 + 0.0332133i
\(153\) 11.8715 3.74343i 0.959753 0.302638i
\(154\) 0.0922593 + 25.6087i 0.00743447 + 2.06361i
\(155\) 2.33772i 0.187770i
\(156\) −1.94587 + 1.56177i −0.155794 + 0.125042i
\(157\) −6.76643 3.90660i −0.540020 0.311781i 0.205067 0.978748i \(-0.434259\pi\)
−0.745087 + 0.666967i \(0.767592\pi\)
\(158\) −16.2235 9.36664i −1.29067 0.745170i
\(159\) −3.06003 + 2.45601i −0.242677 + 0.194774i
\(160\) 8.11688i 0.641696i
\(161\) −9.05743 15.5582i −0.713825 1.22616i
\(162\) 10.6498 + 15.2077i 0.836730 + 1.19483i
\(163\) −8.33945 14.4443i −0.653196 1.13137i −0.982343 0.187090i \(-0.940095\pi\)
0.329147 0.944279i \(-0.393239\pi\)
\(164\) −4.63077 + 8.02072i −0.361602 + 0.626313i
\(165\) 7.57444 + 2.94542i 0.589669 + 0.229300i
\(166\) 4.93717 2.85047i 0.383198 0.221240i
\(167\) 0.465112 0.0359915 0.0179957 0.999838i \(-0.494271\pi\)
0.0179957 + 0.999838i \(0.494271\pi\)
\(168\) 0.867179 2.25405i 0.0669043 0.173903i
\(169\) 12.5921 0.968621
\(170\) −7.41264 + 4.27969i −0.568524 + 0.328237i
\(171\) 2.62774 + 0.582479i 0.200948 + 0.0445432i
\(172\) 3.55152 6.15141i 0.270801 0.469040i
\(173\) 5.59208 + 9.68576i 0.425158 + 0.736395i 0.996435 0.0843622i \(-0.0268853\pi\)
−0.571277 + 0.820757i \(0.693552\pi\)
\(174\) 7.58338 1.16730i 0.574894 0.0884929i
\(175\) 2.29604 + 1.31461i 0.173564 + 0.0993754i
\(176\) 16.0647i 1.21092i
\(177\) −0.550867 0.686346i −0.0414057 0.0515889i
\(178\) −24.6562 14.2353i −1.84806 1.06698i
\(179\) −0.214505 0.123845i −0.0160329 0.00925660i 0.491962 0.870617i \(-0.336280\pi\)
−0.507995 + 0.861360i \(0.669613\pi\)
\(180\) −4.98886 4.57120i −0.371848 0.340717i
\(181\) 14.3385i 1.06578i −0.846186 0.532888i \(-0.821107\pi\)
0.846186 0.532888i \(-0.178893\pi\)
\(182\) 3.01256 1.75380i 0.223306 0.130000i
\(183\) 1.36603 + 8.87439i 0.100980 + 0.656014i
\(184\) −1.79301 3.10559i −0.132183 0.228947i
\(185\) −5.69122 + 9.85748i −0.418427 + 0.724737i
\(186\) 3.02723 7.78483i 0.221967 0.570812i
\(187\) 16.8604 9.73433i 1.23295 0.711845i
\(188\) −15.3585 −1.12013
\(189\) −6.12536 12.3077i −0.445554 0.895255i
\(190\) −1.85076 −0.134268
\(191\) 14.7572 8.52006i 1.06779 0.616490i 0.140214 0.990121i \(-0.455221\pi\)
0.927577 + 0.373632i \(0.121888\pi\)
\(192\) −6.21248 + 15.9760i −0.448347 + 1.15297i
\(193\) −1.41181 + 2.44533i −0.101624 + 0.176019i −0.912354 0.409402i \(-0.865737\pi\)
0.810730 + 0.585421i \(0.199071\pi\)
\(194\) −13.3143 23.0611i −0.955913 1.65569i
\(195\) −0.168300 1.09336i −0.0120522 0.0782973i
\(196\) −7.79545 + 13.7296i −0.556818 + 0.980688i
\(197\) 9.59675i 0.683740i 0.939747 + 0.341870i \(0.111060\pi\)
−0.939747 + 0.341870i \(0.888940\pi\)
\(198\) 21.4094 + 19.6170i 1.52150 + 1.39412i
\(199\) 10.5777 + 6.10706i 0.749836 + 0.432918i 0.825635 0.564205i \(-0.190817\pi\)
−0.0757989 + 0.997123i \(0.524151\pi\)
\(200\) 0.456412 + 0.263509i 0.0322732 + 0.0186329i
\(201\) −5.23481 6.52225i −0.369235 0.460044i
\(202\) 18.6480i 1.31207i
\(203\) −5.68145 + 0.0204683i −0.398760 + 0.00143659i
\(204\) −16.0207 + 2.46605i −1.12168 + 0.172658i
\(205\) −2.05312 3.55611i −0.143396 0.248369i
\(206\) −16.0086 + 27.7277i −1.11537 + 1.93188i
\(207\) −19.9293 4.41764i −1.38518 0.307047i
\(208\) −1.89376 + 1.09336i −0.131309 + 0.0758111i
\(209\) 4.20964 0.291187
\(210\) 5.94367 + 7.35104i 0.410152 + 0.507270i
\(211\) 5.64113 0.388351 0.194176 0.980967i \(-0.437797\pi\)
0.194176 + 0.980967i \(0.437797\pi\)
\(212\) 4.42496 2.55475i 0.303908 0.175461i
\(213\) −1.98236 0.770865i −0.135829 0.0528188i
\(214\) −5.52640 + 9.57200i −0.377777 + 0.654329i
\(215\) 1.57462 + 2.72732i 0.107388 + 0.186002i
\(216\) −1.21130 2.45601i −0.0824183 0.167110i
\(217\) −3.07320 + 5.36750i −0.208622 + 0.364369i
\(218\) 2.80319i 0.189856i
\(219\) −19.5276 + 15.6730i −1.31956 + 1.05909i
\(220\) −9.16509 5.29147i −0.617910 0.356751i
\(221\) −2.29503 1.32503i −0.154380 0.0891314i
\(222\) −31.7173 + 25.4565i −2.12872 + 1.70853i
\(223\) 0.392378i 0.0262755i −0.999914 0.0131378i \(-0.995818\pi\)
0.999914 0.0131378i \(-0.00418200\pi\)
\(224\) 10.6706 18.6367i 0.712956 1.24522i
\(225\) 2.86113 0.902197i 0.190742 0.0601465i
\(226\) −12.3143 21.3290i −0.819137 1.41879i
\(227\) 11.7125 20.2867i 0.777388 1.34648i −0.156054 0.987749i \(-0.549877\pi\)
0.933442 0.358728i \(-0.116789\pi\)
\(228\) −3.26661 1.27026i −0.216337 0.0841253i
\(229\) 6.69286 3.86412i 0.442276 0.255348i −0.262286 0.964990i \(-0.584477\pi\)
0.704563 + 0.709642i \(0.251143\pi\)
\(230\) 14.0366 0.925545
\(231\) −13.5191 16.7202i −0.889493 1.10011i
\(232\) −1.13172 −0.0743011
\(233\) 3.53323 2.03991i 0.231469 0.133639i −0.379780 0.925077i \(-0.624000\pi\)
0.611250 + 0.791438i \(0.290667\pi\)
\(234\) 0.855394 3.85894i 0.0559188 0.252267i
\(235\) 3.40471 5.89714i 0.222099 0.384687i
\(236\) 0.573014 + 0.992490i 0.0373001 + 0.0646056i
\(237\) 15.5459 2.39296i 1.00981 0.155440i
\(238\) 22.6458 0.0815851i 1.46791 0.00528837i
\(239\) 5.76281i 0.372765i 0.982477 + 0.186383i \(0.0596764\pi\)
−0.982477 + 0.186383i \(0.940324\pi\)
\(240\) −3.71189 4.62479i −0.239601 0.298529i
\(241\) −17.6840 10.2098i −1.13912 0.657674i −0.192911 0.981216i \(-0.561793\pi\)
−0.946214 + 0.323542i \(0.895126\pi\)
\(242\) 19.6799 + 11.3622i 1.26507 + 0.730390i
\(243\) −14.9660 4.36106i −0.960069 0.279762i
\(244\) 11.6923i 0.748525i
\(245\) −3.54359 6.03680i −0.226392 0.385677i
\(246\) −2.23210 14.5009i −0.142314 0.924542i
\(247\) −0.286507 0.496245i −0.0182300 0.0315753i
\(248\) −0.616011 + 1.06696i −0.0391167 + 0.0677522i
\(249\) −1.73481 + 4.46124i −0.109939 + 0.282720i
\(250\) −1.78651 + 1.03144i −0.112989 + 0.0652340i
\(251\) 4.42544 0.279331 0.139666 0.990199i \(-0.455397\pi\)
0.139666 + 0.990199i \(0.455397\pi\)
\(252\) 5.44528 + 17.0541i 0.343020 + 1.07431i
\(253\) −31.9268 −2.00722
\(254\) −30.1012 + 17.3790i −1.88872 + 1.09045i
\(255\) 2.60464 6.69809i 0.163109 0.419450i
\(256\) −5.58338 + 9.67069i −0.348961 + 0.604418i
\(257\) 12.7539 + 22.0904i 0.795565 + 1.37796i 0.922480 + 0.386045i \(0.126159\pi\)
−0.126915 + 0.991914i \(0.540508\pi\)
\(258\) 1.71189 + 11.1213i 0.106578 + 0.692381i
\(259\) 26.0260 15.1514i 1.61718 0.941463i
\(260\) 1.44055i 0.0893389i
\(261\) −4.35215 + 4.74981i −0.269392 + 0.294006i
\(262\) 24.7779 + 14.3055i 1.53078 + 0.883798i
\(263\) 0.310020 + 0.178990i 0.0191166 + 0.0110370i 0.509528 0.860454i \(-0.329820\pi\)
−0.490411 + 0.871491i \(0.663153\pi\)
\(264\) −2.68092 3.34026i −0.164999 0.205579i
\(265\) 2.26538i 0.139161i
\(266\) 4.24942 + 2.43304i 0.260549 + 0.149179i
\(267\) 23.6264 3.63678i 1.44591 0.222568i
\(268\) 5.44528 + 9.43149i 0.332623 + 0.576120i
\(269\) 4.26905 7.39421i 0.260288 0.450833i −0.706030 0.708182i \(-0.749516\pi\)
0.966319 + 0.257349i \(0.0828490\pi\)
\(270\) 10.6961 + 0.700610i 0.650945 + 0.0426378i
\(271\) −7.30474 + 4.21739i −0.443731 + 0.256188i −0.705179 0.709029i \(-0.749133\pi\)
0.261448 + 0.965218i \(0.415800\pi\)
\(272\) −14.2061 −0.861369
\(273\) −1.05092 + 2.73165i −0.0636048 + 0.165327i
\(274\) −8.94940 −0.540653
\(275\) 4.06348 2.34605i 0.245037 0.141472i
\(276\) 24.7747 + 9.63395i 1.49126 + 0.579896i
\(277\) −5.05294 + 8.75195i −0.303602 + 0.525853i −0.976949 0.213473i \(-0.931523\pi\)
0.673347 + 0.739326i \(0.264856\pi\)
\(278\) −11.3078 19.5857i −0.678198 1.17467i
\(279\) 2.10909 + 6.68851i 0.126268 + 0.400431i
\(280\) −0.701526 1.20503i −0.0419242 0.0720144i
\(281\) 15.1554i 0.904094i 0.891994 + 0.452047i \(0.149306\pi\)
−0.891994 + 0.452047i \(0.850694\pi\)
\(282\) 18.9745 15.2291i 1.12992 0.906880i
\(283\) 20.7322 + 11.9697i 1.23240 + 0.711527i 0.967530 0.252757i \(-0.0813373\pi\)
0.264871 + 0.964284i \(0.414671\pi\)
\(284\) 2.39866 + 1.38487i 0.142334 + 0.0821768i
\(285\) 1.21189 0.972671i 0.0717861 0.0576161i
\(286\) 6.18202i 0.365551i
\(287\) 0.0391393 + 10.8640i 0.00231032 + 0.641283i
\(288\) −7.32303 23.2234i −0.431514 1.36845i
\(289\) −0.108084 0.187206i −0.00635786 0.0110121i
\(290\) 2.21492 3.83635i 0.130064 0.225278i
\(291\) 20.8381 + 8.10315i 1.22155 + 0.475015i
\(292\) 28.2379 16.3032i 1.65250 0.954071i
\(293\) −21.2223 −1.23982 −0.619909 0.784673i \(-0.712831\pi\)
−0.619909 + 0.784673i \(0.712831\pi\)
\(294\) −3.98313 24.6919i −0.232301 1.44006i
\(295\) −0.508109 −0.0295833
\(296\) 5.19508 2.99938i 0.301958 0.174335i
\(297\) −24.3288 1.59357i −1.41170 0.0924681i
\(298\) 8.93904 15.4829i 0.517825 0.896899i
\(299\) 2.17293 + 3.76363i 0.125664 + 0.217656i
\(300\) −3.86113 + 0.594339i −0.222922 + 0.0343142i
\(301\) −0.0300174 8.33204i −0.00173018 0.480251i
\(302\) 27.7671i 1.59782i
\(303\) −9.80049 12.2108i −0.563023 0.701492i
\(304\) −2.66019 1.53586i −0.152572 0.0880877i
\(305\) 4.48946 + 2.59199i 0.257065 + 0.148417i
\(306\) 17.3474 18.9324i 0.991683 1.08229i
\(307\) 24.2817i 1.38583i 0.721019 + 0.692916i \(0.243674\pi\)
−0.721019 + 0.692916i \(0.756326\pi\)
\(308\) 14.0872 + 24.1980i 0.802691 + 1.37881i
\(309\) −4.08982 26.5695i −0.232662 1.51149i
\(310\) −2.41122 4.17635i −0.136948 0.237201i
\(311\) 3.55858 6.16364i 0.201789 0.349508i −0.747316 0.664469i \(-0.768658\pi\)
0.949105 + 0.314960i \(0.101991\pi\)
\(312\) −0.211297 + 0.543372i −0.0119623 + 0.0307624i
\(313\) 3.07200 1.77362i 0.173640 0.100251i −0.410661 0.911788i \(-0.634702\pi\)
0.584301 + 0.811537i \(0.301369\pi\)
\(314\) −16.1177 −0.909575
\(315\) −7.75530 1.68979i −0.436961 0.0952089i
\(316\) −20.4823 −1.15222
\(317\) −18.2527 + 10.5382i −1.02517 + 0.591885i −0.915599 0.402093i \(-0.868283\pi\)
−0.109576 + 0.993978i \(0.534949\pi\)
\(318\) −2.93355 + 7.54392i −0.164505 + 0.423042i
\(319\) −5.03791 + 8.72592i −0.282069 + 0.488558i
\(320\) 4.94830 + 8.57071i 0.276619 + 0.479117i
\(321\) −1.41187 9.17220i −0.0788028 0.511942i
\(322\) −32.2285 18.4527i −1.79603 1.02833i
\(323\) 3.72259i 0.207130i
\(324\) 18.3979 + 8.57782i 1.02210 + 0.476546i
\(325\) −0.553120 0.319344i −0.0306816 0.0177140i
\(326\) −29.7970 17.2033i −1.65030 0.952802i
\(327\) −1.47322 1.83554i −0.0814693 0.101506i
\(328\) 2.16407i 0.119491i
\(329\) −15.5698 + 9.06418i −0.858391 + 0.499724i
\(330\) 16.5698 2.55057i 0.912138 0.140404i
\(331\) 7.40412 + 12.8243i 0.406967 + 0.704888i 0.994548 0.104277i \(-0.0332529\pi\)
−0.587581 + 0.809165i \(0.699920\pi\)
\(332\) 3.11660 5.39811i 0.171046 0.296260i
\(333\) 7.38990 33.3381i 0.404964 1.82692i
\(334\) 0.830926 0.479736i 0.0454663 0.0262500i
\(335\) −4.82849 −0.263809
\(336\) 2.44284 + 15.4984i 0.133268 + 0.845506i
\(337\) 20.5062 1.11704 0.558522 0.829490i \(-0.311369\pi\)
0.558522 + 0.829490i \(0.311369\pi\)
\(338\) 22.4958 12.9880i 1.22361 0.706453i
\(339\) 19.2730 + 7.49455i 1.04677 + 0.407048i
\(340\) −4.67925 + 8.10471i −0.253768 + 0.439539i
\(341\) 5.48442 + 9.49929i 0.296998 + 0.514415i
\(342\) 5.29527 1.66975i 0.286335 0.0902899i
\(343\) 0.200161 + 18.5192i 0.0108077 + 0.999942i
\(344\) 1.65971i 0.0894854i
\(345\) −9.19122 + 7.37695i −0.494839 + 0.397161i
\(346\) 19.9806 + 11.5358i 1.07416 + 0.620168i
\(347\) 13.7103 + 7.91567i 0.736010 + 0.424935i 0.820617 0.571479i \(-0.193630\pi\)
−0.0846070 + 0.996414i \(0.526963\pi\)
\(348\) 6.54241 5.25099i 0.350710 0.281482i
\(349\) 8.96019i 0.479628i −0.970819 0.239814i \(-0.922914\pi\)
0.970819 0.239814i \(-0.0770865\pi\)
\(350\) 5.45783 0.0196627i 0.291734 0.00105101i
\(351\) 1.46796 + 2.97641i 0.0783538 + 0.158869i
\(352\) −19.0426 32.9828i −1.01498 1.75799i
\(353\) 6.72876 11.6545i 0.358136 0.620309i −0.629514 0.776989i \(-0.716746\pi\)
0.987649 + 0.156680i \(0.0500792\pi\)
\(354\) −1.69205 0.657976i −0.0899316 0.0349710i
\(355\) −1.06348 + 0.614002i −0.0564438 + 0.0325878i
\(356\) −31.1286 −1.64981
\(357\) −14.7857 + 11.9550i −0.782544 + 0.632725i
\(358\) −0.510954 −0.0270048
\(359\) −4.85824 + 2.80491i −0.256408 + 0.148037i −0.622695 0.782465i \(-0.713962\pi\)
0.366287 + 0.930502i \(0.380629\pi\)
\(360\) −1.54359 0.342160i −0.0813543 0.0180334i
\(361\) −9.09754 + 15.7574i −0.478818 + 0.829337i
\(362\) −14.7894 25.6159i −0.777311 1.34634i
\(363\) −18.8579 + 2.90278i −0.989784 + 0.152356i
\(364\) 1.89376 3.30755i 0.0992600 0.173363i
\(365\) 14.4565i 0.756689i
\(366\) 11.5938 + 14.4452i 0.606019 + 0.755062i
\(367\) −1.71154 0.988156i −0.0893415 0.0515813i 0.454664 0.890663i \(-0.349759\pi\)
−0.544005 + 0.839082i \(0.683093\pi\)
\(368\) 20.1755 + 11.6483i 1.05172 + 0.607210i
\(369\) 9.08255 + 8.32215i 0.472818 + 0.433234i
\(370\) 23.4806i 1.22070i
\(371\) 2.97809 5.20139i 0.154615 0.270043i
\(372\) −1.38940 9.02623i −0.0720370 0.467988i
\(373\) 11.5467 + 19.9995i 0.597866 + 1.03553i 0.993136 + 0.116969i \(0.0373177\pi\)
−0.395270 + 0.918565i \(0.629349\pi\)
\(374\) 20.0808 34.7809i 1.03835 1.79848i
\(375\) 0.627739 1.61429i 0.0324163 0.0833618i
\(376\) −3.10790 + 1.79435i −0.160278 + 0.0925364i
\(377\) 1.37152 0.0706368
\(378\) −23.6377 15.6699i −1.21579 0.805972i
\(379\) −17.0645 −0.876547 −0.438273 0.898842i \(-0.644410\pi\)
−0.438273 + 0.898842i \(0.644410\pi\)
\(380\) −1.75245 + 1.01178i −0.0898988 + 0.0519031i
\(381\) 10.5769 27.1996i 0.541871 1.39348i
\(382\) 17.5759 30.4423i 0.899259 1.55756i
\(383\) 13.3056 + 23.0460i 0.679886 + 1.17760i 0.975015 + 0.222139i \(0.0713040\pi\)
−0.295129 + 0.955457i \(0.595363\pi\)
\(384\) 1.10193 + 7.15869i 0.0562327 + 0.365316i
\(385\) −12.4141 + 0.0447235i −0.632679 + 0.00227932i
\(386\) 5.82479i 0.296474i
\(387\) −6.96576 6.38259i −0.354090 0.324445i
\(388\) −25.2141 14.5574i −1.28005 0.739040i
\(389\) 8.20951 + 4.73976i 0.416239 + 0.240316i 0.693467 0.720489i \(-0.256082\pi\)
−0.277228 + 0.960804i \(0.589416\pi\)
\(390\) −1.42841 1.77971i −0.0723303 0.0901191i
\(391\) 28.2329i 1.42780i
\(392\) 0.0265810 + 3.68904i 0.00134254 + 0.186324i
\(393\) −23.7430 + 3.65473i −1.19767 + 0.184357i
\(394\) 9.89848 + 17.1447i 0.498678 + 0.863736i
\(395\) 4.54056 7.86448i 0.228460 0.395705i
\(396\) 30.9964 + 6.87083i 1.55763 + 0.345272i
\(397\) 10.7042 6.18009i 0.537230 0.310170i −0.206726 0.978399i \(-0.566281\pi\)
0.743956 + 0.668229i \(0.232947\pi\)
\(398\) 25.1963 1.26297
\(399\) −4.06123 + 0.640127i −0.203316 + 0.0320464i
\(400\) −3.42378 −0.171189
\(401\) 7.11494 4.10781i 0.355303 0.205134i −0.311715 0.950176i \(-0.600904\pi\)
0.667019 + 0.745041i \(0.267570\pi\)
\(402\) −16.0793 6.25265i −0.801964 0.311854i
\(403\) 0.746537 1.29304i 0.0371877 0.0644109i
\(404\) 10.1945 + 17.6574i 0.507196 + 0.878490i
\(405\) −7.37208 + 5.16260i −0.366322 + 0.256532i
\(406\) −10.1288 + 5.89664i −0.502686 + 0.292646i
\(407\) 53.4076i 2.64732i
\(408\) −2.95379 + 2.37074i −0.146235 + 0.117369i
\(409\) −17.9575 10.3678i −0.887942 0.512653i −0.0146731 0.999892i \(-0.504671\pi\)
−0.873269 + 0.487239i \(0.838004\pi\)
\(410\) −7.33583 4.23534i −0.362291 0.209169i
\(411\) 5.86011 4.70337i 0.289058 0.232000i
\(412\) 35.0064i 1.72464i
\(413\) 1.16664 + 0.667967i 0.0574065 + 0.0328685i
\(414\) −40.1604 + 12.6638i −1.97378 + 0.622390i
\(415\) 1.38179 + 2.39334i 0.0678296 + 0.117484i
\(416\) −2.59208 + 4.48961i −0.127087 + 0.220121i
\(417\) 17.6977 + 6.88198i 0.866661 + 0.337012i
\(418\) 7.52054 4.34199i 0.367842 0.212374i
\(419\) 6.93924 0.339004 0.169502 0.985530i \(-0.445784\pi\)
0.169502 + 0.985530i \(0.445784\pi\)
\(420\) 9.64662 + 3.71126i 0.470707 + 0.181091i
\(421\) −15.2162 −0.741594 −0.370797 0.928714i \(-0.620915\pi\)
−0.370797 + 0.928714i \(0.620915\pi\)
\(422\) 10.0779 5.81849i 0.490585 0.283240i
\(423\) −4.42093 + 19.9442i −0.214953 + 0.969719i
\(424\) 0.596948 1.03394i 0.0289904 0.0502128i
\(425\) −2.07462 3.59334i −0.100634 0.174303i
\(426\) −4.33660 + 0.667529i −0.210109 + 0.0323419i
\(427\) −6.90050 11.8532i −0.333939 0.573617i
\(428\) 12.0847i 0.584137i
\(429\) 3.24897 + 4.04802i 0.156862 + 0.195440i
\(430\) 5.62613 + 3.24825i 0.271316 + 0.156645i
\(431\) −26.9043 15.5332i −1.29594 0.748209i −0.316236 0.948681i \(-0.602419\pi\)
−0.979699 + 0.200472i \(0.935752\pi\)
\(432\) 14.7926 + 9.88323i 0.711712 + 0.475507i
\(433\) 22.3083i 1.07207i −0.844196 0.536034i \(-0.819922\pi\)
0.844196 0.536034i \(-0.180078\pi\)
\(434\) 0.0459658 + 12.7589i 0.00220643 + 0.612446i
\(435\) 0.565860 + 3.67611i 0.0271309 + 0.176256i
\(436\) 1.53245 + 2.65429i 0.0733912 + 0.127117i
\(437\) −3.05235 + 5.28682i −0.146014 + 0.252903i
\(438\) −18.7205 + 48.1416i −0.894498 + 2.30029i
\(439\) −22.4126 + 12.9399i −1.06970 + 0.617590i −0.928099 0.372334i \(-0.878557\pi\)
−0.141598 + 0.989924i \(0.545224\pi\)
\(440\) −2.47283 −0.117887
\(441\) 15.5850 + 14.0750i 0.742145 + 0.670240i
\(442\) −5.46677 −0.260028
\(443\) −26.8166 + 15.4826i −1.27409 + 0.735599i −0.975756 0.218862i \(-0.929766\pi\)
−0.298338 + 0.954460i \(0.596432\pi\)
\(444\) −16.1158 + 41.4435i −0.764823 + 1.96682i
\(445\) 6.90067 11.9523i 0.327123 0.566594i
\(446\) −0.404714 0.700985i −0.0191638 0.0331926i
\(447\) 2.28372 + 14.8362i 0.108016 + 0.701728i
\(448\) −0.0943310 26.1838i −0.00445672 1.23707i
\(449\) 24.2032i 1.14222i −0.820874 0.571110i \(-0.806513\pi\)
0.820874 0.571110i \(-0.193487\pi\)
\(450\) 4.18086 4.56286i 0.197088 0.215095i
\(451\) 16.6856 + 9.63346i 0.785696 + 0.453622i
\(452\) −23.3204 13.4640i −1.09690 0.633295i
\(453\) −14.5930 18.1820i −0.685641 0.854267i
\(454\) 48.3231i 2.26792i
\(455\) 0.850172 + 1.46036i 0.0398567 + 0.0684630i
\(456\) −0.809428 + 0.124594i −0.0379049 + 0.00583467i
\(457\) 1.20726 + 2.09103i 0.0564731 + 0.0978143i 0.892880 0.450295i \(-0.148681\pi\)
−0.836407 + 0.548109i \(0.815348\pi\)
\(458\) 7.97122 13.8066i 0.372471 0.645138i
\(459\) −1.40919 + 21.5140i −0.0657755 + 1.00419i
\(460\) 13.2910 7.67354i 0.619694 0.357781i
\(461\) 7.45376 0.347156 0.173578 0.984820i \(-0.444467\pi\)
0.173578 + 0.984820i \(0.444467\pi\)
\(462\) −41.3979 15.9267i −1.92601 0.740975i
\(463\) 13.8862 0.645345 0.322672 0.946511i \(-0.395419\pi\)
0.322672 + 0.946511i \(0.395419\pi\)
\(464\) 6.36721 3.67611i 0.295590 0.170659i
\(465\) 3.77377 + 1.46748i 0.175004 + 0.0680526i
\(466\) 4.20809 7.28862i 0.194936 0.337639i
\(467\) −10.0692 17.4404i −0.465948 0.807045i 0.533296 0.845929i \(-0.320953\pi\)
−0.999244 + 0.0388836i \(0.987620\pi\)
\(468\) −1.29966 4.12158i −0.0600767 0.190520i
\(469\) 11.0864 + 6.34759i 0.511923 + 0.293105i
\(470\) 14.0470i 0.647942i
\(471\) 10.5540 8.47068i 0.486300 0.390309i
\(472\) 0.231907 + 0.133892i 0.0106744 + 0.00616286i
\(473\) −12.7969 7.38828i −0.588401 0.339713i
\(474\) 25.3046 20.3097i 1.16228 0.932855i
\(475\) 0.897174i 0.0411652i
\(476\) 21.3983 12.4573i 0.980789 0.570980i
\(477\) −2.04382 6.48153i −0.0935799 0.296769i
\(478\) 5.94399 + 10.2953i 0.271872 + 0.470896i
\(479\) −16.6189 + 28.7847i −0.759335 + 1.31521i 0.183855 + 0.982953i \(0.441142\pi\)
−0.943190 + 0.332253i \(0.892191\pi\)
\(480\) −13.1030 5.09528i −0.598069 0.232567i
\(481\) −6.29586 + 3.63491i −0.287066 + 0.165738i
\(482\) −42.1234 −1.91867
\(483\) 30.8012 4.85486i 1.40150 0.220904i
\(484\) 24.8460 1.12936
\(485\) 11.1791 6.45424i 0.507616 0.293072i
\(486\) −31.2350 + 7.64548i −1.41685 + 0.346806i
\(487\) 16.1039 27.8927i 0.729736 1.26394i −0.227259 0.973834i \(-0.572976\pi\)
0.956995 0.290105i \(-0.0936902\pi\)
\(488\) −1.36603 2.36603i −0.0618371 0.107105i
\(489\) 28.5524 4.39504i 1.29118 0.198751i
\(490\) −12.5572 7.12979i −0.567279 0.322091i
\(491\) 22.5003i 1.01542i 0.861527 + 0.507712i \(0.169509\pi\)
−0.861527 + 0.507712i \(0.830491\pi\)
\(492\) −10.0409 12.5103i −0.452678 0.564009i
\(493\) 7.71635 + 4.45504i 0.347527 + 0.200645i
\(494\) −1.02369 0.591030i −0.0460582 0.0265917i
\(495\) −9.50953 + 10.3784i −0.427422 + 0.466475i
\(496\) 8.00383i 0.359383i
\(497\) 3.24897 0.0117049i 0.145736 0.000525037i
\(498\) 1.50225 + 9.75939i 0.0673176 + 0.437329i
\(499\) −3.20702 5.55472i −0.143566 0.248663i 0.785271 0.619152i \(-0.212524\pi\)
−0.928837 + 0.370489i \(0.879190\pi\)
\(500\) −1.12774 + 1.95330i −0.0504340 + 0.0873543i
\(501\) −0.291969 + 0.750828i −0.0130442 + 0.0335445i
\(502\) 7.90608 4.56458i 0.352866 0.203727i
\(503\) 38.0103 1.69479 0.847397 0.530960i \(-0.178169\pi\)
0.847397 + 0.530960i \(0.178169\pi\)
\(504\) 3.09433 + 2.81483i 0.137832 + 0.125383i
\(505\) −9.03979 −0.402265
\(506\) −57.0374 + 32.9306i −2.53562 + 1.46394i
\(507\) −7.90453 + 20.3273i −0.351053 + 0.902768i
\(508\) −19.0015 + 32.9116i −0.843056 + 1.46022i
\(509\) −6.34981 10.9982i −0.281450 0.487486i 0.690292 0.723531i \(-0.257482\pi\)
−0.971742 + 0.236045i \(0.924149\pi\)
\(510\) −2.25548 14.6527i −0.0998742 0.648833i
\(511\) 19.0047 33.1927i 0.840719 1.46836i
\(512\) 31.3992i 1.38766i
\(513\) −2.58982 + 3.87630i −0.114344 + 0.171143i
\(514\) 45.5698 + 26.3097i 2.01000 + 1.16047i
\(515\) −13.4412 7.76030i −0.592292 0.341960i
\(516\) 7.70075 + 9.59466i 0.339007 + 0.422382i
\(517\) 31.9506i 1.40518i
\(518\) 30.8679 53.9124i 1.35626 2.36878i
\(519\) −19.1460 + 2.94713i −0.840417 + 0.129365i
\(520\) 0.168300 + 0.291505i 0.00738046 + 0.0127833i
\(521\) 18.0970 31.3449i 0.792843 1.37324i −0.131357 0.991335i \(-0.541933\pi\)
0.924200 0.381909i \(-0.124733\pi\)
\(522\) −2.87601 + 12.9746i −0.125880 + 0.567881i
\(523\) −4.27382 + 2.46749i −0.186881 + 0.107896i −0.590522 0.807022i \(-0.701078\pi\)
0.403640 + 0.914918i \(0.367745\pi\)
\(524\) 31.2823 1.36657
\(525\) −3.56348 + 2.88125i −0.155523 + 0.125748i
\(526\) 0.738470 0.0321988
\(527\) 8.40023 4.84988i 0.365920 0.211264i
\(528\) 25.9332 + 10.0844i 1.12860 + 0.438869i
\(529\) 11.6496 20.1778i 0.506506 0.877295i
\(530\) 2.33660 + 4.04711i 0.101495 + 0.175795i
\(531\) 1.45376 0.458415i 0.0630880 0.0198935i
\(532\) 5.35379 0.0192878i 0.232116 0.000836234i
\(533\) 2.62261i 0.113598i
\(534\) 38.4576 30.8663i 1.66422 1.33572i
\(535\) −4.64012 2.67897i −0.200610 0.115822i
\(536\) 2.20378 + 1.27235i 0.0951888 + 0.0549573i
\(537\) 0.334575 0.268533i 0.0144380 0.0115880i
\(538\) 17.6131i 0.759354i
\(539\) 28.5620 + 16.2170i 1.23025 + 0.698515i
\(540\) 10.5110 5.18398i 0.452319 0.223083i
\(541\) −8.32849 14.4254i −0.358070 0.620195i 0.629569 0.776945i \(-0.283232\pi\)
−0.987638 + 0.156750i \(0.949898\pi\)
\(542\) −8.69998 + 15.0688i −0.373696 + 0.647261i
\(543\) 23.1466 + 9.00086i 0.993317 + 0.386264i
\(544\) −29.1668 + 16.8394i −1.25051 + 0.721985i
\(545\) −1.35887 −0.0582077
\(546\) 0.940053 + 5.96408i 0.0402306 + 0.255239i
\(547\) 21.2868 0.910159 0.455079 0.890451i \(-0.349611\pi\)
0.455079 + 0.890451i \(0.349611\pi\)
\(548\) −8.47401 + 4.89247i −0.361992 + 0.208996i
\(549\) −15.1834 3.36563i −0.648011 0.143642i
\(550\) 4.83963 8.38248i 0.206362 0.357430i
\(551\) 0.963296 + 1.66848i 0.0410378 + 0.0710795i
\(552\) 6.13887 0.944951i 0.261288 0.0402198i
\(553\) −20.7641 + 12.0881i −0.882977 + 0.514037i
\(554\) 20.8472i 0.885713i
\(555\) −12.3403 15.3752i −0.523816 0.652642i
\(556\) −21.4143 12.3636i −0.908169 0.524331i
\(557\) −16.5937 9.58040i −0.703099 0.405935i 0.105401 0.994430i \(-0.466387\pi\)
−0.808501 + 0.588495i \(0.799721\pi\)
\(558\) 10.6667 + 9.77368i 0.451557 + 0.413753i
\(559\) 2.01138i 0.0850723i
\(560\) 7.86113 + 4.50094i 0.332193 + 0.190199i
\(561\) 5.13017 + 33.3282i 0.216596 + 1.40712i
\(562\) 15.6319 + 27.0752i 0.659390 + 1.14210i
\(563\) −13.6243 + 23.5981i −0.574198 + 0.994540i 0.421930 + 0.906628i \(0.361353\pi\)
−0.996128 + 0.0879116i \(0.971981\pi\)
\(564\) 9.64113 24.7931i 0.405965 1.04398i
\(565\) 10.3394 5.96948i 0.434984 0.251138i
\(566\) 49.3843 2.07578
\(567\) 23.7134 2.16210i 0.995869 0.0907998i
\(568\) 0.647181 0.0271551
\(569\) 22.7124 13.1130i 0.952153 0.549726i 0.0584038 0.998293i \(-0.481399\pi\)
0.893749 + 0.448567i \(0.148066\pi\)
\(570\) 1.16180 2.98768i 0.0486622 0.125140i
\(571\) 13.4388 23.2767i 0.562397 0.974101i −0.434889 0.900484i \(-0.643212\pi\)
0.997287 0.0736170i \(-0.0234542\pi\)
\(572\) −3.37960 5.85363i −0.141308 0.244753i
\(573\) 4.49023 + 29.1708i 0.187582 + 1.21863i
\(574\) 11.2755 + 19.3683i 0.470631 + 0.808416i
\(575\) 6.80436i 0.283761i
\(576\) −21.8902 20.0575i −0.912091 0.835731i
\(577\) −8.93069 5.15614i −0.371790 0.214653i 0.302450 0.953165i \(-0.402195\pi\)
−0.674240 + 0.738512i \(0.735529\pi\)
\(578\) −0.386185 0.222964i −0.0160632 0.00927407i
\(579\) −3.06123 3.81410i −0.127220 0.158509i
\(580\) 4.84341i 0.201112i
\(581\) −0.0263416 7.31171i −0.00109283 0.303341i
\(582\) 45.5853 7.01690i 1.88957 0.290860i
\(583\) −5.31469 9.20532i −0.220112 0.381245i
\(584\) 3.80943 6.59812i 0.157635 0.273032i
\(585\) 1.87066 + 0.414660i 0.0773422 + 0.0171441i
\(586\) −37.9138 + 21.8895i −1.56620 + 0.904248i
\(587\) 22.1492 0.914197 0.457098 0.889416i \(-0.348889\pi\)
0.457098 + 0.889416i \(0.348889\pi\)
\(588\) −17.2701 21.2028i −0.712209 0.874387i
\(589\) 2.09734 0.0864195
\(590\) −0.907741 + 0.524084i −0.0373711 + 0.0215762i
\(591\) −15.4920 6.02425i −0.637255 0.247805i
\(592\) −19.4855 + 33.7498i −0.800848 + 1.38711i
\(593\) 1.45861 + 2.52638i 0.0598978 + 0.103746i 0.894419 0.447229i \(-0.147589\pi\)
−0.834522 + 0.550975i \(0.814256\pi\)
\(594\) −45.1072 + 22.2467i −1.85077 + 0.912795i
\(595\) 0.0395491 + 10.9778i 0.00162135 + 0.450045i
\(596\) 19.5472i 0.800686i
\(597\) −16.4986 + 13.2419i −0.675244 + 0.541956i
\(598\) 7.76391 + 4.48250i 0.317490 + 0.183303i
\(599\) −31.4551 18.1606i −1.28522 0.742023i −0.307424 0.951573i \(-0.599467\pi\)
−0.977798 + 0.209550i \(0.932800\pi\)
\(600\) −0.711889 + 0.571367i −0.0290627 + 0.0233260i
\(601\) 7.15198i 0.291735i 0.989304 + 0.145868i \(0.0465974\pi\)
−0.989304 + 0.145868i \(0.953403\pi\)
\(602\) −8.64763 14.8543i −0.352451 0.605416i
\(603\) 13.8149 4.35625i 0.562587 0.177400i
\(604\) 15.1798 + 26.2921i 0.617656 + 1.06981i
\(605\) −5.50793 + 9.54001i −0.223929 + 0.387857i
\(606\) −30.1034 11.7061i −1.22287 0.475527i
\(607\) −37.8248 + 21.8382i −1.53526 + 0.886384i −0.536156 + 0.844119i \(0.680124\pi\)
−0.999106 + 0.0422651i \(0.986543\pi\)
\(608\) −7.28226 −0.295334
\(609\) 3.53342 9.18438i 0.143182 0.372170i
\(610\) 10.6939 0.432984
\(611\) 3.76643 2.17455i 0.152373 0.0879729i
\(612\) 6.07589 27.4102i 0.245603 1.10799i
\(613\) 7.27926 12.6080i 0.294007 0.509234i −0.680747 0.732519i \(-0.738345\pi\)
0.974753 + 0.223285i \(0.0716779\pi\)
\(614\) 25.0452 + 43.3795i 1.01074 + 1.75065i
\(615\) 7.02943 1.08203i 0.283454 0.0436318i
\(616\) 5.67771 + 3.25081i 0.228761 + 0.130979i
\(617\) 4.68442i 0.188588i −0.995544 0.0942938i \(-0.969941\pi\)
0.995544 0.0942938i \(-0.0300593\pi\)
\(618\) −34.7114 43.2483i −1.39630 1.73970i
\(619\) −33.0429 19.0773i −1.32810 0.766782i −0.343098 0.939299i \(-0.611476\pi\)
−0.985006 + 0.172518i \(0.944810\pi\)
\(620\) −4.56627 2.63634i −0.183386 0.105878i
\(621\) 19.6418 29.3987i 0.788197 1.17973i
\(622\) 14.6819i 0.588689i
\(623\) −31.5569 + 18.3713i −1.26430 + 0.736030i
\(624\) −0.576223 3.74343i −0.0230674 0.149857i
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 3.65877 6.33717i 0.146234 0.253284i
\(627\) −2.64255 + 6.79559i −0.105533 + 0.271390i
\(628\) −15.2615 + 8.81125i −0.609001 + 0.351607i
\(629\) −47.2285 −1.88312
\(630\) −15.5978 + 4.98030i −0.621432 + 0.198420i
\(631\) 23.9959 0.955264 0.477632 0.878560i \(-0.341495\pi\)
0.477632 + 0.878560i \(0.341495\pi\)
\(632\) −4.14473 + 2.39296i −0.164869 + 0.0951869i
\(633\) −3.54115 + 9.10644i −0.140748 + 0.361948i
\(634\) −21.7391 + 37.6532i −0.863369 + 1.49540i
\(635\) −8.42461 14.5918i −0.334320 0.579060i
\(636\) 1.34640 + 8.74690i 0.0533883 + 0.346837i
\(637\) −0.0322132 4.47070i −0.00127633 0.177136i
\(638\) 20.7852i 0.822895i
\(639\) 2.48881 2.71621i 0.0984557 0.107452i
\(640\) 3.62150 + 2.09088i 0.143152 + 0.0826491i
\(641\) 20.0037 + 11.5491i 0.790099 + 0.456164i 0.839997 0.542590i \(-0.182556\pi\)
−0.0498985 + 0.998754i \(0.515890\pi\)
\(642\) −11.9829 14.9299i −0.472927 0.589238i
\(643\) 22.7592i 0.897536i −0.893648 0.448768i \(-0.851863\pi\)
0.893648 0.448768i \(-0.148137\pi\)
\(644\) −40.6043 + 0.146283i −1.60003 + 0.00576436i
\(645\) −5.39114 + 0.829853i −0.212276 + 0.0326754i
\(646\) −3.83963 6.65043i −0.151068 0.261658i
\(647\) 1.21349 2.10183i 0.0477073 0.0826315i −0.841186 0.540746i \(-0.818142\pi\)
0.888893 + 0.458115i \(0.151475\pi\)
\(648\) 4.72510 0.413659i 0.185619 0.0162500i
\(649\) 2.06469 1.19205i 0.0810463 0.0467921i
\(650\) −1.31754 −0.0516781
\(651\) −6.73555 8.33043i −0.263987 0.326495i
\(652\) −37.6189 −1.47327
\(653\) −34.7760 + 20.0779i −1.36089 + 0.785709i −0.989742 0.142865i \(-0.954368\pi\)
−0.371146 + 0.928574i \(0.621035\pi\)
\(654\) −4.52517 1.75967i −0.176948 0.0688086i
\(655\) −6.93473 + 12.0113i −0.270962 + 0.469321i
\(656\) −7.02943 12.1753i −0.274453 0.475366i
\(657\) −13.0426 41.3619i −0.508842 1.61368i
\(658\) −18.4664 + 32.2525i −0.719896 + 1.25734i
\(659\) 0.627454i 0.0244421i −0.999925 0.0122211i \(-0.996110\pi\)
0.999925 0.0122211i \(-0.00389018\pi\)
\(660\) 14.2953 11.4735i 0.556442 0.446605i
\(661\) −28.5745 16.4975i −1.11142 0.641678i −0.172222 0.985058i \(-0.555095\pi\)
−0.939197 + 0.343380i \(0.888428\pi\)
\(662\) 26.4550 + 15.2738i 1.02820 + 0.593634i
\(663\) 3.57967 2.87307i 0.139023 0.111581i
\(664\) 1.45646i 0.0565217i
\(665\) −1.17944 + 2.05995i −0.0457366 + 0.0798813i
\(666\) −21.1842 67.1810i −0.820869 2.60321i
\(667\) −7.30584 12.6541i −0.282883 0.489968i
\(668\) 0.524525 0.908504i 0.0202945 0.0351511i
\(669\) 0.633413 + 0.246310i 0.0244891 + 0.00952291i
\(670\) −8.62613 + 4.98030i −0.333257 + 0.192406i
\(671\) −24.3238 −0.939009
\(672\) 23.3868 + 28.9244i 0.902164 + 1.11578i
\(673\) 1.14437 0.0441121 0.0220560 0.999757i \(-0.492979\pi\)
0.0220560 + 0.999757i \(0.492979\pi\)
\(674\) 36.6345 21.1509i 1.41111 0.814703i
\(675\) −0.339627 + 5.18504i −0.0130723 + 0.199572i
\(676\) 14.2006 24.5961i 0.546176 0.946004i
\(677\) 7.98910 + 13.8375i 0.307046 + 0.531820i 0.977715 0.209938i \(-0.0673261\pi\)
−0.670669 + 0.741757i \(0.733993\pi\)
\(678\) 42.1615 6.48988i 1.61920 0.249242i
\(679\) −34.1524 + 0.123039i −1.31065 + 0.00472181i
\(680\) 2.18673i 0.0838571i
\(681\) 25.3963 + 31.6422i 0.973188 + 1.21253i
\(682\) 19.5959 + 11.3137i 0.750366 + 0.433224i
\(683\) −1.96122 1.13231i −0.0750442 0.0433268i 0.462008 0.886876i \(-0.347129\pi\)
−0.537053 + 0.843549i \(0.680462\pi\)
\(684\) 4.10116 4.47588i 0.156812 0.171140i
\(685\) 4.33830i 0.165758i
\(686\) 19.4590 + 32.8782i 0.742949 + 1.25530i
\(687\) 2.03646 + 13.2299i 0.0776960 + 0.504752i
\(688\) 5.39114 + 9.33773i 0.205535 + 0.355998i
\(689\) −0.723434 + 1.25303i −0.0275607 + 0.0477365i
\(690\) −8.81130 + 22.6592i −0.335441 + 0.862620i
\(691\) −2.40044 + 1.38589i −0.0913169 + 0.0527218i −0.544963 0.838460i \(-0.683456\pi\)
0.453646 + 0.891182i \(0.350123\pi\)
\(692\) 25.2256 0.958934
\(693\) 35.4778 11.3279i 1.34769 0.430311i
\(694\) 32.6582 1.23969
\(695\) 9.49436 5.48157i 0.360141 0.207928i
\(696\) 0.710424 1.82693i 0.0269286 0.0692496i
\(697\) 8.51888 14.7551i 0.322676 0.558891i
\(698\) −9.24191 16.0075i −0.349811 0.605891i
\(699\) 1.07507 + 6.98419i 0.0406629 + 0.264166i
\(700\) 5.15716 3.00231i 0.194922 0.113477i
\(701\) 23.1184i 0.873169i 0.899663 + 0.436585i \(0.143812\pi\)
−0.899663 + 0.436585i \(0.856188\pi\)
\(702\) 5.69250 + 3.80326i 0.214850 + 0.143545i
\(703\) −8.84388 5.10602i −0.333553 0.192577i
\(704\) −40.2147 23.2180i −1.51565 0.875060i
\(705\) 7.38244 + 9.19807i 0.278039 + 0.346419i
\(706\) 27.7612i 1.04481i
\(707\) 20.7557 + 11.8838i 0.780599 + 0.446937i
\(708\) −1.96187 + 0.301989i −0.0737317 + 0.0113495i
\(709\) 18.0134 + 31.2002i 0.676508 + 1.17175i 0.976026 + 0.217656i \(0.0698410\pi\)
−0.299517 + 0.954091i \(0.596826\pi\)
\(710\) −1.26661 + 2.19384i −0.0475351 + 0.0823333i
\(711\) −5.89580 + 26.5978i −0.221110 + 0.997494i
\(712\) −6.29910 + 3.63678i −0.236069 + 0.136294i
\(713\) −15.9067 −0.595710
\(714\) −14.0840 + 36.6083i −0.527079 + 1.37003i
\(715\) 2.99679 0.112074
\(716\) −0.483812 + 0.279329i −0.0180809 + 0.0104390i
\(717\) −9.30287 3.61754i −0.347422 0.135099i
\(718\) −5.78619 + 10.0220i −0.215939 + 0.374017i
\(719\) 8.57099 + 14.8454i 0.319644 + 0.553640i 0.980414 0.196949i \(-0.0631034\pi\)
−0.660770 + 0.750589i \(0.729770\pi\)
\(720\) 9.79586 3.08892i 0.365070 0.115117i
\(721\) 20.6598 + 35.4880i 0.769412 + 1.32164i
\(722\) 37.5343i 1.39688i
\(723\) 27.5826 22.1380i 1.02581 0.823322i
\(724\) −28.0075 16.1701i −1.04089 0.600958i
\(725\) 1.85970 + 1.07370i 0.0690676 + 0.0398762i
\(726\) −30.6958 + 24.6367i −1.13923 + 0.914352i
\(727\) 16.6832i 0.618747i −0.950941 0.309374i \(-0.899881\pi\)
0.950941 0.309374i \(-0.100119\pi\)
\(728\) −0.00320836 0.890556i −0.000118910 0.0330062i
\(729\) 16.4348 21.4219i 0.608695 0.793404i
\(730\) 14.9110 + 25.8267i 0.551882 + 0.955888i
\(731\) −6.53347 + 11.3163i −0.241649 + 0.418548i
\(732\) 18.8749 + 7.33973i 0.697635 + 0.271284i
\(733\) 32.9814 19.0418i 1.21820 0.703326i 0.253664 0.967292i \(-0.418364\pi\)
0.964532 + 0.263967i \(0.0850309\pi\)
\(734\) −4.07690 −0.150481
\(735\) 11.9696 1.93086i 0.441506 0.0712208i
\(736\) 55.2302 2.03581
\(737\) 19.6205 11.3279i 0.722730 0.417268i
\(738\) 24.8098 + 5.49948i 0.913263 + 0.202439i
\(739\) 11.2186 19.4312i 0.412684 0.714790i −0.582498 0.812832i \(-0.697925\pi\)
0.995182 + 0.0980422i \(0.0312580\pi\)
\(740\) 12.8364 + 22.2333i 0.471876 + 0.817313i
\(741\) 0.980937 0.150995i 0.0360356 0.00554693i
\(742\) −0.0445433 12.3640i −0.00163524 0.453898i
\(743\) 6.39189i 0.234496i −0.993103 0.117248i \(-0.962593\pi\)
0.993103 0.117248i \(-0.0374072\pi\)
\(744\) −1.33570 1.66420i −0.0489690 0.0610124i
\(745\) 7.50546 + 4.33328i 0.274979 + 0.158759i
\(746\) 41.2565 + 23.8195i 1.51051 + 0.872093i
\(747\) −6.11275 5.60098i −0.223654 0.204929i
\(748\) 43.9111i 1.60555i
\(749\) 7.13207 + 12.2510i 0.260600 + 0.447641i
\(750\) −0.543588 3.53142i −0.0198490 0.128949i
\(751\) 5.49944 + 9.52531i 0.200677 + 0.347583i 0.948747 0.316037i \(-0.102352\pi\)
−0.748069 + 0.663620i \(0.769019\pi\)
\(752\) 11.6570 20.1905i 0.425086 0.736271i
\(753\) −2.77802 + 7.14396i −0.101237 + 0.260340i
\(754\) 2.45023 1.41464i 0.0892320 0.0515181i
\(755\) −13.4604 −0.489873
\(756\) −30.9485 1.91522i −1.12559 0.0696558i
\(757\) −27.8216 −1.01119 −0.505597 0.862770i \(-0.668728\pi\)
−0.505597 + 0.862770i \(0.668728\pi\)
\(758\) −30.4859 + 17.6011i −1.10730 + 0.639299i
\(759\) 20.0417 51.5392i 0.727466 1.87075i
\(760\) −0.236414 + 0.409481i −0.00857563 + 0.0148534i
\(761\) −6.54766 11.3409i −0.237352 0.411106i 0.722601 0.691265i \(-0.242946\pi\)
−0.959954 + 0.280159i \(0.909613\pi\)
\(762\) −9.15904 59.5017i −0.331797 2.15552i
\(763\) 3.12002 + 1.78639i 0.112952 + 0.0646717i
\(764\) 38.4336i 1.39048i
\(765\) 9.17765 + 8.40930i 0.331819 + 0.304039i
\(766\) 47.5412 + 27.4479i 1.71773 + 0.991734i
\(767\) −0.281045 0.162262i −0.0101480 0.00585893i
\(768\) −12.1064 15.0839i −0.436853 0.544293i
\(769\) 7.74247i 0.279201i −0.990208 0.139600i \(-0.955418\pi\)
0.990208 0.139600i \(-0.0445818\pi\)
\(770\) −22.1317 + 12.8843i −0.797571 + 0.464317i
\(771\) −43.6664 + 6.72153i −1.57261 + 0.242070i
\(772\) 3.18431 + 5.51538i 0.114606 + 0.198503i
\(773\) 19.1733 33.2091i 0.689614 1.19445i −0.282349 0.959312i \(-0.591113\pi\)
0.971963 &minus