Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [105,2,Mod(59,105)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(105, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 3, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("105.59");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 105 = 3 \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 105.p (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(0.838429221223\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
59.1 | −1.25399 | − | 2.17197i | 0.0401158 | + | 1.73159i | −2.14497 | + | 3.71520i | 0.00874528 | + | 2.23605i | 3.71065 | − | 2.25852i | 1.65993 | + | 2.06025i | 5.74313 | −2.99678 | + | 0.138928i | 4.84567 | − | 2.82298i | ||
59.2 | −1.25399 | − | 2.17197i | 1.51966 | − | 0.831052i | −2.14497 | + | 3.71520i | −1.93210 | − | 1.12560i | −3.71065 | − | 2.25852i | −1.65993 | − | 2.06025i | 5.74313 | 1.61871 | − | 2.52582i | −0.0219329 | + | 5.60796i | ||
59.3 | −0.757344 | − | 1.31176i | −1.24551 | + | 1.20362i | −0.147140 | + | 0.254854i | 1.42830 | − | 1.72046i | 2.52214 | + | 0.722254i | −0.0753638 | − | 2.64468i | −2.58363 | 0.102593 | − | 2.99825i | −3.33853 | − | 0.570605i | ||
59.4 | −0.757344 | − | 1.31176i | 0.419611 | − | 1.68045i | −0.147140 | + | 0.254854i | 2.20411 | − | 0.376714i | −2.52214 | + | 0.722254i | 0.0753638 | + | 2.64468i | −2.58363 | −2.64785 | − | 1.41027i | −2.16343 | − | 2.60595i | ||
59.5 | −0.322403 | − | 0.558418i | 1.15761 | + | 1.28838i | 0.792113 | − | 1.37198i | −1.60193 | − | 1.56008i | 0.346239 | − | 1.06181i | 2.64366 | + | 0.105130i | −2.31113 | −0.319861 | + | 2.98290i | −0.354709 | + | 1.39752i | ||
59.6 | −0.322403 | − | 0.558418i | 1.69458 | + | 0.358331i | 0.792113 | − | 1.37198i | 0.550103 | + | 2.16735i | −0.346239 | − | 1.06181i | −2.64366 | − | 0.105130i | −2.31113 | 2.74320 | + | 1.21444i | 1.03293 | − | 1.00595i | ||
59.7 | 0.322403 | + | 0.558418i | −1.69458 | − | 0.358331i | 0.792113 | − | 1.37198i | 1.60193 | + | 1.56008i | −0.346239 | − | 1.06181i | 2.64366 | + | 0.105130i | 2.31113 | 2.74320 | + | 1.21444i | −0.354709 | + | 1.39752i | ||
59.8 | 0.322403 | + | 0.558418i | −1.15761 | − | 1.28838i | 0.792113 | − | 1.37198i | −0.550103 | − | 2.16735i | 0.346239 | − | 1.06181i | −2.64366 | − | 0.105130i | 2.31113 | −0.319861 | + | 2.98290i | 1.03293 | − | 1.00595i | ||
59.9 | 0.757344 | + | 1.31176i | −0.419611 | + | 1.68045i | −0.147140 | + | 0.254854i | −1.42830 | + | 1.72046i | −2.52214 | + | 0.722254i | −0.0753638 | − | 2.64468i | 2.58363 | −2.64785 | − | 1.41027i | −3.33853 | − | 0.570605i | ||
59.10 | 0.757344 | + | 1.31176i | 1.24551 | − | 1.20362i | −0.147140 | + | 0.254854i | −2.20411 | + | 0.376714i | 2.52214 | + | 0.722254i | 0.0753638 | + | 2.64468i | 2.58363 | 0.102593 | − | 2.99825i | −2.16343 | − | 2.60595i | ||
59.11 | 1.25399 | + | 2.17197i | −1.51966 | + | 0.831052i | −2.14497 | + | 3.71520i | −0.00874528 | − | 2.23605i | −3.71065 | − | 2.25852i | 1.65993 | + | 2.06025i | −5.74313 | 1.61871 | − | 2.52582i | 4.84567 | − | 2.82298i | ||
59.12 | 1.25399 | + | 2.17197i | −0.0401158 | − | 1.73159i | −2.14497 | + | 3.71520i | 1.93210 | + | 1.12560i | 3.71065 | − | 2.25852i | −1.65993 | − | 2.06025i | −5.74313 | −2.99678 | + | 0.138928i | −0.0219329 | + | 5.60796i | ||
89.1 | −1.25399 | + | 2.17197i | 0.0401158 | − | 1.73159i | −2.14497 | − | 3.71520i | 0.00874528 | − | 2.23605i | 3.71065 | + | 2.25852i | 1.65993 | − | 2.06025i | 5.74313 | −2.99678 | − | 0.138928i | 4.84567 | + | 2.82298i | ||
89.2 | −1.25399 | + | 2.17197i | 1.51966 | + | 0.831052i | −2.14497 | − | 3.71520i | −1.93210 | + | 1.12560i | −3.71065 | + | 2.25852i | −1.65993 | + | 2.06025i | 5.74313 | 1.61871 | + | 2.52582i | −0.0219329 | − | 5.60796i | ||
89.3 | −0.757344 | + | 1.31176i | −1.24551 | − | 1.20362i | −0.147140 | − | 0.254854i | 1.42830 | + | 1.72046i | 2.52214 | − | 0.722254i | −0.0753638 | + | 2.64468i | −2.58363 | 0.102593 | + | 2.99825i | −3.33853 | + | 0.570605i | ||
89.4 | −0.757344 | + | 1.31176i | 0.419611 | + | 1.68045i | −0.147140 | − | 0.254854i | 2.20411 | + | 0.376714i | −2.52214 | − | 0.722254i | 0.0753638 | − | 2.64468i | −2.58363 | −2.64785 | + | 1.41027i | −2.16343 | + | 2.60595i | ||
89.5 | −0.322403 | + | 0.558418i | 1.15761 | − | 1.28838i | 0.792113 | + | 1.37198i | −1.60193 | + | 1.56008i | 0.346239 | + | 1.06181i | 2.64366 | − | 0.105130i | −2.31113 | −0.319861 | − | 2.98290i | −0.354709 | − | 1.39752i | ||
89.6 | −0.322403 | + | 0.558418i | 1.69458 | − | 0.358331i | 0.792113 | + | 1.37198i | 0.550103 | − | 2.16735i | −0.346239 | + | 1.06181i | −2.64366 | + | 0.105130i | −2.31113 | 2.74320 | − | 1.21444i | 1.03293 | + | 1.00595i | ||
89.7 | 0.322403 | − | 0.558418i | −1.69458 | + | 0.358331i | 0.792113 | + | 1.37198i | 1.60193 | − | 1.56008i | −0.346239 | + | 1.06181i | 2.64366 | − | 0.105130i | 2.31113 | 2.74320 | − | 1.21444i | −0.354709 | − | 1.39752i | ||
89.8 | 0.322403 | − | 0.558418i | −1.15761 | + | 1.28838i | 0.792113 | + | 1.37198i | −0.550103 | + | 2.16735i | 0.346239 | + | 1.06181i | −2.64366 | + | 0.105130i | 2.31113 | −0.319861 | − | 2.98290i | 1.03293 | + | 1.00595i | ||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
7.d | odd | 6 | 1 | inner |
15.d | odd | 2 | 1 | inner |
21.g | even | 6 | 1 | inner |
35.i | odd | 6 | 1 | inner |
105.p | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 105.2.p.a | ✓ | 24 |
3.b | odd | 2 | 1 | inner | 105.2.p.a | ✓ | 24 |
5.b | even | 2 | 1 | inner | 105.2.p.a | ✓ | 24 |
5.c | odd | 4 | 2 | 525.2.t.j | 24 | ||
7.b | odd | 2 | 1 | 735.2.p.f | 24 | ||
7.c | even | 3 | 1 | 735.2.g.b | 24 | ||
7.c | even | 3 | 1 | 735.2.p.f | 24 | ||
7.d | odd | 6 | 1 | inner | 105.2.p.a | ✓ | 24 |
7.d | odd | 6 | 1 | 735.2.g.b | 24 | ||
15.d | odd | 2 | 1 | inner | 105.2.p.a | ✓ | 24 |
15.e | even | 4 | 2 | 525.2.t.j | 24 | ||
21.c | even | 2 | 1 | 735.2.p.f | 24 | ||
21.g | even | 6 | 1 | inner | 105.2.p.a | ✓ | 24 |
21.g | even | 6 | 1 | 735.2.g.b | 24 | ||
21.h | odd | 6 | 1 | 735.2.g.b | 24 | ||
21.h | odd | 6 | 1 | 735.2.p.f | 24 | ||
35.c | odd | 2 | 1 | 735.2.p.f | 24 | ||
35.i | odd | 6 | 1 | inner | 105.2.p.a | ✓ | 24 |
35.i | odd | 6 | 1 | 735.2.g.b | 24 | ||
35.j | even | 6 | 1 | 735.2.g.b | 24 | ||
35.j | even | 6 | 1 | 735.2.p.f | 24 | ||
35.k | even | 12 | 2 | 525.2.t.j | 24 | ||
105.g | even | 2 | 1 | 735.2.p.f | 24 | ||
105.o | odd | 6 | 1 | 735.2.g.b | 24 | ||
105.o | odd | 6 | 1 | 735.2.p.f | 24 | ||
105.p | even | 6 | 1 | inner | 105.2.p.a | ✓ | 24 |
105.p | even | 6 | 1 | 735.2.g.b | 24 | ||
105.w | odd | 12 | 2 | 525.2.t.j | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
105.2.p.a | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
105.2.p.a | ✓ | 24 | 3.b | odd | 2 | 1 | inner |
105.2.p.a | ✓ | 24 | 5.b | even | 2 | 1 | inner |
105.2.p.a | ✓ | 24 | 7.d | odd | 6 | 1 | inner |
105.2.p.a | ✓ | 24 | 15.d | odd | 2 | 1 | inner |
105.2.p.a | ✓ | 24 | 21.g | even | 6 | 1 | inner |
105.2.p.a | ✓ | 24 | 35.i | odd | 6 | 1 | inner |
105.2.p.a | ✓ | 24 | 105.p | even | 6 | 1 | inner |
525.2.t.j | 24 | 5.c | odd | 4 | 2 | ||
525.2.t.j | 24 | 15.e | even | 4 | 2 | ||
525.2.t.j | 24 | 35.k | even | 12 | 2 | ||
525.2.t.j | 24 | 105.w | odd | 12 | 2 | ||
735.2.g.b | 24 | 7.c | even | 3 | 1 | ||
735.2.g.b | 24 | 7.d | odd | 6 | 1 | ||
735.2.g.b | 24 | 21.g | even | 6 | 1 | ||
735.2.g.b | 24 | 21.h | odd | 6 | 1 | ||
735.2.g.b | 24 | 35.i | odd | 6 | 1 | ||
735.2.g.b | 24 | 35.j | even | 6 | 1 | ||
735.2.g.b | 24 | 105.o | odd | 6 | 1 | ||
735.2.g.b | 24 | 105.p | even | 6 | 1 | ||
735.2.p.f | 24 | 7.b | odd | 2 | 1 | ||
735.2.p.f | 24 | 7.c | even | 3 | 1 | ||
735.2.p.f | 24 | 21.c | even | 2 | 1 | ||
735.2.p.f | 24 | 21.h | odd | 6 | 1 | ||
735.2.p.f | 24 | 35.c | odd | 2 | 1 | ||
735.2.p.f | 24 | 35.j | even | 6 | 1 | ||
735.2.p.f | 24 | 105.g | even | 2 | 1 | ||
735.2.p.f | 24 | 105.o | odd | 6 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(105, [\chi])\).