Properties

Label 105.2.p
Level 105
Weight 2
Character orbit p
Rep. character \(\chi_{105}(59,\cdot)\)
Character field \(\Q(\zeta_{6})\)
Dimension 24
Newform subspaces 1
Sturm bound 32
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 105.p (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 105 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(32\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(105, [\chi])\).

Total New Old
Modular forms 40 40 0
Cusp forms 24 24 0
Eisenstein series 16 16 0

Trace form

\( 24q - 12q^{4} - 6q^{9} + O(q^{10}) \) \( 24q - 12q^{4} - 6q^{9} - 24q^{15} - 12q^{16} - 6q^{21} + 18q^{24} - 12q^{25} + 18q^{30} + 84q^{36} - 12q^{39} - 72q^{40} - 18q^{45} + 36q^{46} - 12q^{49} - 12q^{51} - 36q^{54} + 12q^{60} + 36q^{61} + 24q^{64} - 72q^{66} + 108q^{70} + 72q^{75} + 48q^{79} - 6q^{81} + 48q^{84} + 48q^{85} - 96q^{91} - 72q^{94} - 90q^{96} - 48q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(105, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
105.2.p.a \(24\) \(0.838\) None \(0\) \(0\) \(0\) \(0\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database