Properties

Label 105.2.j
Level 105
Weight 2
Character orbit j
Rep. character \(\chi_{105}(8,\cdot)\)
Character field \(\Q(\zeta_{4})\)
Dimension 24
Newform subspaces 1
Sturm bound 32
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 105.j (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 15 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(32\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(105, [\chi])\).

Total New Old
Modular forms 40 24 16
Cusp forms 24 24 0
Eisenstein series 16 0 16

Trace form

\( 24q - 4q^{3} + O(q^{10}) \) \( 24q - 4q^{3} - 16q^{10} + 16q^{12} - 8q^{13} - 16q^{15} - 16q^{16} - 20q^{18} + 4q^{21} + 8q^{22} - 16q^{25} - 16q^{27} + 20q^{30} + 28q^{33} + 16q^{36} - 16q^{37} + 64q^{40} - 20q^{42} - 40q^{43} + 20q^{45} - 64q^{46} + 16q^{48} - 20q^{51} + 40q^{55} + 4q^{57} + 40q^{58} + 32q^{60} + 32q^{61} - 8q^{63} - 16q^{66} + 24q^{67} - 8q^{70} - 8q^{72} + 32q^{73} - 60q^{75} + 32q^{76} + 60q^{78} + 52q^{81} - 80q^{82} + 24q^{85} + 4q^{87} + 96q^{88} - 24q^{90} - 24q^{91} - 76q^{93} - 96q^{96} + 24q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(105, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
105.2.j.a \(24\) \(0.838\) None \(0\) \(-4\) \(0\) \(0\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database