Properties

Label 105.2.j
Level $105$
Weight $2$
Character orbit 105.j
Rep. character $\chi_{105}(8,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $24$
Newform subspaces $1$
Sturm bound $32$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 105.j (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 15 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(32\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(105, [\chi])\).

Total New Old
Modular forms 40 24 16
Cusp forms 24 24 0
Eisenstein series 16 0 16

Trace form

\( 24 q - 4 q^{3} - 16 q^{10} + 16 q^{12} - 8 q^{13} - 16 q^{15} - 16 q^{16} - 20 q^{18} + 4 q^{21} + 8 q^{22} - 16 q^{25} - 16 q^{27} + 20 q^{30} + 28 q^{33} + 16 q^{36} - 16 q^{37} + 64 q^{40} - 20 q^{42}+ \cdots + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(105, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
105.2.j.a 105.j 15.e $24$ $0.838$ None 105.2.j.a \(0\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$