Properties

Label 105.2.i.c
Level 105
Weight 2
Character orbit 105.i
Analytic conductor 0.838
Analytic rank 0
Dimension 4
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 105.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.838429221223\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{1} q^{2} -\beta_{2} q^{3} + ( 1 + \beta_{2} ) q^{5} -\beta_{3} q^{6} + ( -1 + \beta_{1} - \beta_{2} + 2 \beta_{3} ) q^{7} -2 \beta_{3} q^{8} + ( -1 - \beta_{2} ) q^{9} +O(q^{10})\) \( q + \beta_{1} q^{2} -\beta_{2} q^{3} + ( 1 + \beta_{2} ) q^{5} -\beta_{3} q^{6} + ( -1 + \beta_{1} - \beta_{2} + 2 \beta_{3} ) q^{7} -2 \beta_{3} q^{8} + ( -1 - \beta_{2} ) q^{9} + ( \beta_{1} + \beta_{3} ) q^{10} + ( -\beta_{1} + 2 \beta_{2} - \beta_{3} ) q^{11} + ( -3 + \beta_{3} ) q^{13} + ( -4 - \beta_{1} - 2 \beta_{2} - \beta_{3} ) q^{14} + q^{15} + ( 4 + 4 \beta_{2} ) q^{16} + ( 3 \beta_{1} - 2 \beta_{2} + 3 \beta_{3} ) q^{17} + ( -\beta_{1} - \beta_{3} ) q^{18} + ( 1 - 4 \beta_{1} + \beta_{2} ) q^{19} + ( -1 + 2 \beta_{1} + \beta_{3} ) q^{21} + ( 2 + 2 \beta_{3} ) q^{22} + ( 2 - 3 \beta_{1} + 2 \beta_{2} ) q^{23} + ( -2 \beta_{1} - 2 \beta_{3} ) q^{24} + \beta_{2} q^{25} + ( -2 - 3 \beta_{1} - 2 \beta_{2} ) q^{26} - q^{27} + ( 4 - 3 \beta_{3} ) q^{29} + \beta_{1} q^{30} + ( -2 \beta_{1} - 3 \beta_{2} - 2 \beta_{3} ) q^{31} + ( 2 - \beta_{1} + 2 \beta_{2} ) q^{33} + ( -6 - 2 \beta_{3} ) q^{34} + ( -\beta_{1} - \beta_{2} + \beta_{3} ) q^{35} + ( 7 + \beta_{1} + 7 \beta_{2} ) q^{37} + ( \beta_{1} - 8 \beta_{2} + \beta_{3} ) q^{38} + ( \beta_{1} + 3 \beta_{2} + \beta_{3} ) q^{39} + 2 \beta_{1} q^{40} + ( -2 + 3 \beta_{3} ) q^{41} + ( -2 - \beta_{1} + 2 \beta_{2} ) q^{42} + ( -9 - \beta_{3} ) q^{43} -\beta_{2} q^{45} + ( 2 \beta_{1} - 6 \beta_{2} + 2 \beta_{3} ) q^{46} + ( 2 + 8 \beta_{1} + 2 \beta_{2} ) q^{47} + 4 q^{48} + ( 2 \beta_{1} - 5 \beta_{2} - 2 \beta_{3} ) q^{49} + \beta_{3} q^{50} + ( -2 + 3 \beta_{1} - 2 \beta_{2} ) q^{51} + ( 2 \beta_{1} + 4 \beta_{2} + 2 \beta_{3} ) q^{53} -\beta_{1} q^{54} + ( -2 - \beta_{3} ) q^{55} + ( -4 - 2 \beta_{1} + 4 \beta_{2} ) q^{56} + ( 1 + 4 \beta_{3} ) q^{57} + ( 6 + 4 \beta_{1} + 6 \beta_{2} ) q^{58} + ( -\beta_{1} - \beta_{3} ) q^{59} + ( -4 + 6 \beta_{1} - 4 \beta_{2} ) q^{61} + ( 4 - 3 \beta_{3} ) q^{62} + ( \beta_{1} + \beta_{2} - \beta_{3} ) q^{63} + 8 q^{64} + ( -3 - \beta_{1} - 3 \beta_{2} ) q^{65} + ( 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} ) q^{66} + ( -9 \beta_{1} - \beta_{2} - 9 \beta_{3} ) q^{67} + ( 2 + 3 \beta_{3} ) q^{69} + ( -2 - 4 \beta_{2} - \beta_{3} ) q^{70} + ( -2 - \beta_{3} ) q^{71} -2 \beta_{1} q^{72} + ( -5 \beta_{1} - 5 \beta_{2} - 5 \beta_{3} ) q^{73} + ( 7 \beta_{1} + 2 \beta_{2} + 7 \beta_{3} ) q^{74} + ( 1 + \beta_{2} ) q^{75} + ( 4 - 4 \beta_{1} + 4 \beta_{2} - \beta_{3} ) q^{77} + ( -2 + 3 \beta_{3} ) q^{78} + ( -1 - 4 \beta_{1} - \beta_{2} ) q^{79} + 4 \beta_{2} q^{80} + \beta_{2} q^{81} + ( -6 - 2 \beta_{1} - 6 \beta_{2} ) q^{82} + ( 4 + \beta_{3} ) q^{83} + ( 2 + 3 \beta_{3} ) q^{85} + ( 2 - 9 \beta_{1} + 2 \beta_{2} ) q^{86} + ( -3 \beta_{1} - 4 \beta_{2} - 3 \beta_{3} ) q^{87} + ( 4 \beta_{1} - 4 \beta_{2} + 4 \beta_{3} ) q^{88} + ( 8 + 3 \beta_{1} + 8 \beta_{2} ) q^{89} -\beta_{3} q^{90} + ( 5 - 2 \beta_{1} + \beta_{2} - 6 \beta_{3} ) q^{91} + ( -3 - 2 \beta_{1} - 3 \beta_{2} ) q^{93} + ( 2 \beta_{1} + 16 \beta_{2} + 2 \beta_{3} ) q^{94} + ( -4 \beta_{1} + \beta_{2} - 4 \beta_{3} ) q^{95} + ( -8 - 2 \beta_{3} ) q^{97} + ( 4 + 8 \beta_{2} - 5 \beta_{3} ) q^{98} + ( 2 + \beta_{3} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 2q^{3} + 2q^{5} - 2q^{7} - 2q^{9} + O(q^{10}) \) \( 4q + 2q^{3} + 2q^{5} - 2q^{7} - 2q^{9} - 4q^{11} - 12q^{13} - 12q^{14} + 4q^{15} + 8q^{16} + 4q^{17} + 2q^{19} - 4q^{21} + 8q^{22} + 4q^{23} - 2q^{25} - 4q^{26} - 4q^{27} + 16q^{29} + 6q^{31} + 4q^{33} - 24q^{34} + 2q^{35} + 14q^{37} + 16q^{38} - 6q^{39} - 8q^{41} - 12q^{42} - 36q^{43} + 2q^{45} + 12q^{46} + 4q^{47} + 16q^{48} + 10q^{49} - 4q^{51} - 8q^{53} - 8q^{55} - 24q^{56} + 4q^{57} + 12q^{58} - 8q^{61} + 16q^{62} - 2q^{63} + 32q^{64} - 6q^{65} + 4q^{66} + 2q^{67} + 8q^{69} - 8q^{71} + 10q^{73} - 4q^{74} + 2q^{75} + 8q^{77} - 8q^{78} - 2q^{79} - 8q^{80} - 2q^{81} - 12q^{82} + 16q^{83} + 8q^{85} + 4q^{86} + 8q^{87} + 8q^{88} + 16q^{89} + 18q^{91} - 6q^{93} - 32q^{94} - 2q^{95} - 32q^{97} + 8q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} + 2 x^{2} + 4\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} \)\(/2\)
\(\beta_{3}\)\(=\)\( \nu^{3} \)\(/2\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(2 \beta_{2}\)
\(\nu^{3}\)\(=\)\(2 \beta_{3}\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(1\) \(-1 - \beta_{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
16.1
−0.707107 + 1.22474i
0.707107 1.22474i
−0.707107 1.22474i
0.707107 + 1.22474i
−0.707107 + 1.22474i 0.500000 + 0.866025i 0 0.500000 0.866025i −1.41421 1.62132 + 2.09077i −2.82843 −0.500000 + 0.866025i 0.707107 + 1.22474i
16.2 0.707107 1.22474i 0.500000 + 0.866025i 0 0.500000 0.866025i 1.41421 −2.62132 0.358719i 2.82843 −0.500000 + 0.866025i −0.707107 1.22474i
46.1 −0.707107 1.22474i 0.500000 0.866025i 0 0.500000 + 0.866025i −1.41421 1.62132 2.09077i −2.82843 −0.500000 0.866025i 0.707107 1.22474i
46.2 0.707107 + 1.22474i 0.500000 0.866025i 0 0.500000 + 0.866025i 1.41421 −2.62132 + 0.358719i 2.82843 −0.500000 0.866025i −0.707107 + 1.22474i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 105.2.i.c 4
3.b odd 2 1 315.2.j.d 4
4.b odd 2 1 1680.2.bg.p 4
5.b even 2 1 525.2.i.g 4
5.c odd 4 2 525.2.r.g 8
7.b odd 2 1 735.2.i.j 4
7.c even 3 1 inner 105.2.i.c 4
7.c even 3 1 735.2.a.i 2
7.d odd 6 1 735.2.a.j 2
7.d odd 6 1 735.2.i.j 4
21.g even 6 1 2205.2.a.s 2
21.h odd 6 1 315.2.j.d 4
21.h odd 6 1 2205.2.a.u 2
28.g odd 6 1 1680.2.bg.p 4
35.i odd 6 1 3675.2.a.x 2
35.j even 6 1 525.2.i.g 4
35.j even 6 1 3675.2.a.z 2
35.l odd 12 2 525.2.r.g 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.2.i.c 4 1.a even 1 1 trivial
105.2.i.c 4 7.c even 3 1 inner
315.2.j.d 4 3.b odd 2 1
315.2.j.d 4 21.h odd 6 1
525.2.i.g 4 5.b even 2 1
525.2.i.g 4 35.j even 6 1
525.2.r.g 8 5.c odd 4 2
525.2.r.g 8 35.l odd 12 2
735.2.a.i 2 7.c even 3 1
735.2.a.j 2 7.d odd 6 1
735.2.i.j 4 7.b odd 2 1
735.2.i.j 4 7.d odd 6 1
1680.2.bg.p 4 4.b odd 2 1
1680.2.bg.p 4 28.g odd 6 1
2205.2.a.s 2 21.g even 6 1
2205.2.a.u 2 21.h odd 6 1
3675.2.a.x 2 35.i odd 6 1
3675.2.a.z 2 35.j even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 2 T_{2}^{2} + 4 \) acting on \(S_{2}^{\mathrm{new}}(105, [\chi])\).

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( ( 1 - 2 T^{2} )^{2}( 1 + 2 T^{2} + 4 T^{4} ) \)
$3$ \( ( 1 - T + T^{2} )^{2} \)
$5$ \( ( 1 - T + T^{2} )^{2} \)
$7$ \( 1 + 2 T - 3 T^{2} + 14 T^{3} + 49 T^{4} \)
$11$ \( 1 + 4 T - 8 T^{2} + 8 T^{3} + 279 T^{4} + 88 T^{5} - 968 T^{6} + 5324 T^{7} + 14641 T^{8} \)
$13$ \( ( 1 + 6 T + 33 T^{2} + 78 T^{3} + 169 T^{4} )^{2} \)
$17$ \( 1 - 4 T - 4 T^{2} + 56 T^{3} - 161 T^{4} + 952 T^{5} - 1156 T^{6} - 19652 T^{7} + 83521 T^{8} \)
$19$ \( 1 - 2 T - 3 T^{2} + 62 T^{3} - 388 T^{4} + 1178 T^{5} - 1083 T^{6} - 13718 T^{7} + 130321 T^{8} \)
$23$ \( 1 - 4 T - 16 T^{2} + 56 T^{3} + 127 T^{4} + 1288 T^{5} - 8464 T^{6} - 48668 T^{7} + 279841 T^{8} \)
$29$ \( ( 1 - 8 T + 56 T^{2} - 232 T^{3} + 841 T^{4} )^{2} \)
$31$ \( 1 - 6 T - 27 T^{2} - 6 T^{3} + 1892 T^{4} - 186 T^{5} - 25947 T^{6} - 178746 T^{7} + 923521 T^{8} \)
$37$ \( 1 - 14 T + 75 T^{2} - 658 T^{3} + 6020 T^{4} - 24346 T^{5} + 102675 T^{6} - 709142 T^{7} + 1874161 T^{8} \)
$41$ \( ( 1 + 4 T + 68 T^{2} + 164 T^{3} + 1681 T^{4} )^{2} \)
$43$ \( ( 1 + 18 T + 165 T^{2} + 774 T^{3} + 1849 T^{4} )^{2} \)
$47$ \( 1 - 4 T + 46 T^{2} + 496 T^{3} - 2061 T^{4} + 23312 T^{5} + 101614 T^{6} - 415292 T^{7} + 4879681 T^{8} \)
$53$ \( 1 + 8 T - 50 T^{2} + 64 T^{3} + 6795 T^{4} + 3392 T^{5} - 140450 T^{6} + 1191016 T^{7} + 7890481 T^{8} \)
$59$ \( 1 - 116 T^{2} + 9975 T^{4} - 403796 T^{6} + 12117361 T^{8} \)
$61$ \( 1 + 8 T - 2 T^{2} - 448 T^{3} - 3269 T^{4} - 27328 T^{5} - 7442 T^{6} + 1815848 T^{7} + 13845841 T^{8} \)
$67$ \( 1 - 2 T + 31 T^{2} + 322 T^{3} - 4028 T^{4} + 21574 T^{5} + 139159 T^{6} - 601526 T^{7} + 20151121 T^{8} \)
$71$ \( ( 1 + 4 T + 144 T^{2} + 284 T^{3} + 5041 T^{4} )^{2} \)
$73$ \( 1 - 10 T - 21 T^{2} + 250 T^{3} + 2012 T^{4} + 18250 T^{5} - 111909 T^{6} - 3890170 T^{7} + 28398241 T^{8} \)
$79$ \( 1 + 2 T - 123 T^{2} - 62 T^{3} + 9572 T^{4} - 4898 T^{5} - 767643 T^{6} + 986078 T^{7} + 38950081 T^{8} \)
$83$ \( ( 1 - 8 T + 180 T^{2} - 664 T^{3} + 6889 T^{4} )^{2} \)
$89$ \( 1 - 16 T + 32 T^{2} - 736 T^{3} + 19471 T^{4} - 65504 T^{5} + 253472 T^{6} - 11279504 T^{7} + 62742241 T^{8} \)
$97$ \( ( 1 + 16 T + 250 T^{2} + 1552 T^{3} + 9409 T^{4} )^{2} \)
show more
show less