Properties

Label 105.2.d
Level $105$
Weight $2$
Character orbit 105.d
Rep. character $\chi_{105}(64,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $2$
Sturm bound $32$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 105.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(32\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(105, [\chi])\).

Total New Old
Modular forms 20 8 12
Cusp forms 12 8 4
Eisenstein series 8 0 8

Trace form

\( 8 q - 8 q^{4} + 4 q^{5} - 4 q^{6} - 8 q^{9} - 8 q^{10} + 4 q^{15} + 24 q^{16} - 28 q^{20} + 4 q^{21} + 12 q^{24} - 8 q^{25} + 24 q^{26} - 12 q^{30} - 16 q^{31} + 32 q^{34} + 4 q^{35} + 8 q^{36} - 8 q^{39}+ \cdots - 68 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(105, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
105.2.d.a 105.d 5.b $2$ $0.838$ \(\Q(\sqrt{-1}) \) None 105.2.d.a \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+i q^{3}+q^{4}+(-2 i+1)q^{5}+\cdots\)
105.2.d.b 105.d 5.b $6$ $0.838$ 6.0.350464.1 None 105.2.d.b \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}+\beta _{4}q^{3}+(-1+\beta _{3}+\beta _{5})q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(105, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(105, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 2}\)