Properties

Label 105.2.b.d.41.1
Level $105$
Weight $2$
Character 105.41
Analytic conductor $0.838$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [105,2,Mod(41,105)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(105, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("105.41"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 105.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,1,-6,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.838429221223\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 41.1
Root \(-1.18614 + 1.26217i\) of defining polynomial
Character \(\chi\) \(=\) 105.41
Dual form 105.2.b.d.41.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.52434i q^{2} +(1.68614 - 0.396143i) q^{3} -4.37228 q^{4} +1.00000 q^{5} +(-1.00000 - 4.25639i) q^{6} +(-2.00000 + 1.73205i) q^{7} +5.98844i q^{8} +(2.68614 - 1.33591i) q^{9} -2.52434i q^{10} -0.792287i q^{11} +(-7.37228 + 1.73205i) q^{12} +5.84096i q^{13} +(4.37228 + 5.04868i) q^{14} +(1.68614 - 0.396143i) q^{15} +6.37228 q^{16} -1.37228 q^{17} +(-3.37228 - 6.78073i) q^{18} -3.46410i q^{19} -4.37228 q^{20} +(-2.68614 + 3.71277i) q^{21} -2.00000 q^{22} -1.87953i q^{23} +(2.37228 + 10.0974i) q^{24} +1.00000 q^{25} +14.7446 q^{26} +(4.00000 - 3.31662i) q^{27} +(8.74456 - 7.57301i) q^{28} -4.25639i q^{29} +(-1.00000 - 4.25639i) q^{30} +3.46410i q^{31} -4.10891i q^{32} +(-0.313859 - 1.33591i) q^{33} +3.46410i q^{34} +(-2.00000 + 1.73205i) q^{35} +(-11.7446 + 5.84096i) q^{36} +4.74456 q^{37} -8.74456 q^{38} +(2.31386 + 9.84868i) q^{39} +5.98844i q^{40} -6.00000 q^{41} +(9.37228 + 6.78073i) q^{42} -6.74456 q^{43} +3.46410i q^{44} +(2.68614 - 1.33591i) q^{45} -4.74456 q^{46} -7.37228 q^{47} +(10.7446 - 2.52434i) q^{48} +(1.00000 - 6.92820i) q^{49} -2.52434i q^{50} +(-2.31386 + 0.543620i) q^{51} -25.5383i q^{52} +8.51278i q^{53} +(-8.37228 - 10.0974i) q^{54} -0.792287i q^{55} +(-10.3723 - 11.9769i) q^{56} +(-1.37228 - 5.84096i) q^{57} -10.7446 q^{58} +2.74456 q^{59} +(-7.37228 + 1.73205i) q^{60} +6.92820i q^{61} +8.74456 q^{62} +(-3.05842 + 7.32435i) q^{63} +2.37228 q^{64} +5.84096i q^{65} +(-3.37228 + 0.792287i) q^{66} -6.74456 q^{67} +6.00000 q^{68} +(-0.744563 - 3.16915i) q^{69} +(4.37228 + 5.04868i) q^{70} -13.5615i q^{71} +(8.00000 + 16.0858i) q^{72} +6.92820i q^{73} -11.9769i q^{74} +(1.68614 - 0.396143i) q^{75} +15.1460i q^{76} +(1.37228 + 1.58457i) q^{77} +(24.8614 - 5.84096i) q^{78} +3.37228 q^{79} +6.37228 q^{80} +(5.43070 - 7.17687i) q^{81} +15.1460i q^{82} +5.48913 q^{83} +(11.7446 - 16.2333i) q^{84} -1.37228 q^{85} +17.0256i q^{86} +(-1.68614 - 7.17687i) q^{87} +4.74456 q^{88} +3.25544 q^{89} +(-3.37228 - 6.78073i) q^{90} +(-10.1168 - 11.6819i) q^{91} +8.21782i q^{92} +(1.37228 + 5.84096i) q^{93} +18.6101i q^{94} -3.46410i q^{95} +(-1.62772 - 6.92820i) q^{96} -1.08724i q^{97} +(-17.4891 - 2.52434i) q^{98} +(-1.05842 - 2.12819i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{3} - 6 q^{4} + 4 q^{5} - 4 q^{6} - 8 q^{7} + 5 q^{9} - 18 q^{12} + 6 q^{14} + q^{15} + 14 q^{16} + 6 q^{17} - 2 q^{18} - 6 q^{20} - 5 q^{21} - 8 q^{22} - 2 q^{24} + 4 q^{25} + 36 q^{26} + 16 q^{27}+ \cdots + 13 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.52434i 1.78498i −0.451071 0.892488i \(-0.648958\pi\)
0.451071 0.892488i \(-0.351042\pi\)
\(3\) 1.68614 0.396143i 0.973494 0.228714i
\(4\) −4.37228 −2.18614
\(5\) 1.00000 0.447214
\(6\) −1.00000 4.25639i −0.408248 1.73766i
\(7\) −2.00000 + 1.73205i −0.755929 + 0.654654i
\(8\) 5.98844i 2.11723i
\(9\) 2.68614 1.33591i 0.895380 0.445302i
\(10\) 2.52434i 0.798266i
\(11\) 0.792287i 0.238884i −0.992841 0.119442i \(-0.961890\pi\)
0.992841 0.119442i \(-0.0381105\pi\)
\(12\) −7.37228 + 1.73205i −2.12819 + 0.500000i
\(13\) 5.84096i 1.61999i 0.586436 + 0.809996i \(0.300531\pi\)
−0.586436 + 0.809996i \(0.699469\pi\)
\(14\) 4.37228 + 5.04868i 1.16854 + 1.34932i
\(15\) 1.68614 0.396143i 0.435360 0.102284i
\(16\) 6.37228 1.59307
\(17\) −1.37228 −0.332827 −0.166414 0.986056i \(-0.553219\pi\)
−0.166414 + 0.986056i \(0.553219\pi\)
\(18\) −3.37228 6.78073i −0.794854 1.59823i
\(19\) 3.46410i 0.794719i −0.917663 0.397360i \(-0.869927\pi\)
0.917663 0.397360i \(-0.130073\pi\)
\(20\) −4.37228 −0.977672
\(21\) −2.68614 + 3.71277i −0.586164 + 0.810192i
\(22\) −2.00000 −0.426401
\(23\) 1.87953i 0.391909i −0.980613 0.195954i \(-0.937220\pi\)
0.980613 0.195954i \(-0.0627804\pi\)
\(24\) 2.37228 + 10.0974i 0.484240 + 2.06111i
\(25\) 1.00000 0.200000
\(26\) 14.7446 2.89165
\(27\) 4.00000 3.31662i 0.769800 0.638285i
\(28\) 8.74456 7.57301i 1.65257 1.43117i
\(29\) 4.25639i 0.790392i −0.918597 0.395196i \(-0.870677\pi\)
0.918597 0.395196i \(-0.129323\pi\)
\(30\) −1.00000 4.25639i −0.182574 0.777107i
\(31\) 3.46410i 0.622171i 0.950382 + 0.311086i \(0.100693\pi\)
−0.950382 + 0.311086i \(0.899307\pi\)
\(32\) 4.10891i 0.726360i
\(33\) −0.313859 1.33591i −0.0546359 0.232552i
\(34\) 3.46410i 0.594089i
\(35\) −2.00000 + 1.73205i −0.338062 + 0.292770i
\(36\) −11.7446 + 5.84096i −1.95743 + 0.973494i
\(37\) 4.74456 0.780001 0.390001 0.920815i \(-0.372475\pi\)
0.390001 + 0.920815i \(0.372475\pi\)
\(38\) −8.74456 −1.41856
\(39\) 2.31386 + 9.84868i 0.370514 + 1.57705i
\(40\) 5.98844i 0.946855i
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 9.37228 + 6.78073i 1.44617 + 1.04629i
\(43\) −6.74456 −1.02854 −0.514268 0.857629i \(-0.671936\pi\)
−0.514268 + 0.857629i \(0.671936\pi\)
\(44\) 3.46410i 0.522233i
\(45\) 2.68614 1.33591i 0.400426 0.199145i
\(46\) −4.74456 −0.699548
\(47\) −7.37228 −1.07536 −0.537679 0.843150i \(-0.680699\pi\)
−0.537679 + 0.843150i \(0.680699\pi\)
\(48\) 10.7446 2.52434i 1.55084 0.364357i
\(49\) 1.00000 6.92820i 0.142857 0.989743i
\(50\) 2.52434i 0.356995i
\(51\) −2.31386 + 0.543620i −0.324005 + 0.0761221i
\(52\) 25.5383i 3.54153i
\(53\) 8.51278i 1.16932i 0.811278 + 0.584660i \(0.198772\pi\)
−0.811278 + 0.584660i \(0.801228\pi\)
\(54\) −8.37228 10.0974i −1.13932 1.37408i
\(55\) 0.792287i 0.106832i
\(56\) −10.3723 11.9769i −1.38605 1.60048i
\(57\) −1.37228 5.84096i −0.181763 0.773654i
\(58\) −10.7446 −1.41083
\(59\) 2.74456 0.357312 0.178656 0.983912i \(-0.442825\pi\)
0.178656 + 0.983912i \(0.442825\pi\)
\(60\) −7.37228 + 1.73205i −0.951757 + 0.223607i
\(61\) 6.92820i 0.887066i 0.896258 + 0.443533i \(0.146275\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) 8.74456 1.11056
\(63\) −3.05842 + 7.32435i −0.385325 + 0.922781i
\(64\) 2.37228 0.296535
\(65\) 5.84096i 0.724482i
\(66\) −3.37228 + 0.792287i −0.415099 + 0.0975238i
\(67\) −6.74456 −0.823979 −0.411990 0.911188i \(-0.635166\pi\)
−0.411990 + 0.911188i \(0.635166\pi\)
\(68\) 6.00000 0.727607
\(69\) −0.744563 3.16915i −0.0896348 0.381521i
\(70\) 4.37228 + 5.04868i 0.522588 + 0.603432i
\(71\) 13.5615i 1.60945i −0.593649 0.804724i \(-0.702313\pi\)
0.593649 0.804724i \(-0.297687\pi\)
\(72\) 8.00000 + 16.0858i 0.942809 + 1.89573i
\(73\) 6.92820i 0.810885i 0.914121 + 0.405442i \(0.132883\pi\)
−0.914121 + 0.405442i \(0.867117\pi\)
\(74\) 11.9769i 1.39228i
\(75\) 1.68614 0.396143i 0.194699 0.0457427i
\(76\) 15.1460i 1.73737i
\(77\) 1.37228 + 1.58457i 0.156386 + 0.180579i
\(78\) 24.8614 5.84096i 2.81500 0.661359i
\(79\) 3.37228 0.379411 0.189706 0.981841i \(-0.439247\pi\)
0.189706 + 0.981841i \(0.439247\pi\)
\(80\) 6.37228 0.712443
\(81\) 5.43070 7.17687i 0.603411 0.797430i
\(82\) 15.1460i 1.67260i
\(83\) 5.48913 0.602510 0.301255 0.953544i \(-0.402594\pi\)
0.301255 + 0.953544i \(0.402594\pi\)
\(84\) 11.7446 16.2333i 1.28144 1.77119i
\(85\) −1.37228 −0.148845
\(86\) 17.0256i 1.83591i
\(87\) −1.68614 7.17687i −0.180773 0.769441i
\(88\) 4.74456 0.505772
\(89\) 3.25544 0.345076 0.172538 0.985003i \(-0.444803\pi\)
0.172538 + 0.985003i \(0.444803\pi\)
\(90\) −3.37228 6.78073i −0.355470 0.714751i
\(91\) −10.1168 11.6819i −1.06053 1.22460i
\(92\) 8.21782i 0.856767i
\(93\) 1.37228 + 5.84096i 0.142299 + 0.605680i
\(94\) 18.6101i 1.91949i
\(95\) 3.46410i 0.355409i
\(96\) −1.62772 6.92820i −0.166128 0.707107i
\(97\) 1.08724i 0.110393i −0.998476 0.0551963i \(-0.982422\pi\)
0.998476 0.0551963i \(-0.0175785\pi\)
\(98\) −17.4891 2.52434i −1.76667 0.254997i
\(99\) −1.05842 2.12819i −0.106375 0.213892i
\(100\) −4.37228 −0.437228
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 1.37228 + 5.84096i 0.135876 + 0.578341i
\(103\) 16.2333i 1.59951i −0.600326 0.799756i \(-0.704962\pi\)
0.600326 0.799756i \(-0.295038\pi\)
\(104\) −34.9783 −3.42990
\(105\) −2.68614 + 3.71277i −0.262140 + 0.362329i
\(106\) 21.4891 2.08721
\(107\) 6.63325i 0.641260i −0.947204 0.320630i \(-0.896105\pi\)
0.947204 0.320630i \(-0.103895\pi\)
\(108\) −17.4891 + 14.5012i −1.68289 + 1.39538i
\(109\) 0.116844 0.0111916 0.00559581 0.999984i \(-0.498219\pi\)
0.00559581 + 0.999984i \(0.498219\pi\)
\(110\) −2.00000 −0.190693
\(111\) 8.00000 1.87953i 0.759326 0.178397i
\(112\) −12.7446 + 11.0371i −1.20425 + 1.04291i
\(113\) 10.0974i 0.949879i −0.880018 0.474939i \(-0.842470\pi\)
0.880018 0.474939i \(-0.157530\pi\)
\(114\) −14.7446 + 3.46410i −1.38095 + 0.324443i
\(115\) 1.87953i 0.175267i
\(116\) 18.6101i 1.72791i
\(117\) 7.80298 + 15.6896i 0.721386 + 1.45051i
\(118\) 6.92820i 0.637793i
\(119\) 2.74456 2.37686i 0.251594 0.217886i
\(120\) 2.37228 + 10.0974i 0.216559 + 0.921758i
\(121\) 10.3723 0.942935
\(122\) 17.4891 1.58339
\(123\) −10.1168 + 2.37686i −0.912205 + 0.214314i
\(124\) 15.1460i 1.36015i
\(125\) 1.00000 0.0894427
\(126\) 18.4891 + 7.72049i 1.64714 + 0.687796i
\(127\) 10.7446 0.953426 0.476713 0.879059i \(-0.341828\pi\)
0.476713 + 0.879059i \(0.341828\pi\)
\(128\) 14.2063i 1.25567i
\(129\) −11.3723 + 2.67181i −1.00127 + 0.235240i
\(130\) 14.7446 1.29318
\(131\) −17.4891 −1.52803 −0.764016 0.645197i \(-0.776775\pi\)
−0.764016 + 0.645197i \(0.776775\pi\)
\(132\) 1.37228 + 5.84096i 0.119442 + 0.508391i
\(133\) 6.00000 + 6.92820i 0.520266 + 0.600751i
\(134\) 17.0256i 1.47078i
\(135\) 4.00000 3.31662i 0.344265 0.285450i
\(136\) 8.21782i 0.704673i
\(137\) 13.2665i 1.13343i 0.823913 + 0.566717i \(0.191787\pi\)
−0.823913 + 0.566717i \(0.808213\pi\)
\(138\) −8.00000 + 1.87953i −0.681005 + 0.159996i
\(139\) 1.28962i 0.109384i −0.998503 0.0546921i \(-0.982582\pi\)
0.998503 0.0546921i \(-0.0174177\pi\)
\(140\) 8.74456 7.57301i 0.739050 0.640036i
\(141\) −12.4307 + 2.92048i −1.04685 + 0.245949i
\(142\) −34.2337 −2.87283
\(143\) 4.62772 0.386989
\(144\) 17.1168 8.51278i 1.42640 0.709398i
\(145\) 4.25639i 0.353474i
\(146\) 17.4891 1.44741
\(147\) −1.05842 12.0781i −0.0872972 0.996182i
\(148\) −20.7446 −1.70519
\(149\) 10.0974i 0.827207i −0.910457 0.413604i \(-0.864270\pi\)
0.910457 0.413604i \(-0.135730\pi\)
\(150\) −1.00000 4.25639i −0.0816497 0.347533i
\(151\) 3.37228 0.274432 0.137216 0.990541i \(-0.456184\pi\)
0.137216 + 0.990541i \(0.456184\pi\)
\(152\) 20.7446 1.68261
\(153\) −3.68614 + 1.83324i −0.298007 + 0.148209i
\(154\) 4.00000 3.46410i 0.322329 0.279145i
\(155\) 3.46410i 0.278243i
\(156\) −10.1168 43.0612i −0.809996 3.44766i
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 8.51278i 0.677240i
\(159\) 3.37228 + 14.3537i 0.267439 + 1.13833i
\(160\) 4.10891i 0.324838i
\(161\) 3.25544 + 3.75906i 0.256564 + 0.296255i
\(162\) −18.1168 13.7089i −1.42339 1.07708i
\(163\) 8.00000 0.626608 0.313304 0.949653i \(-0.398564\pi\)
0.313304 + 0.949653i \(0.398564\pi\)
\(164\) 26.2337 2.04851
\(165\) −0.313859 1.33591i −0.0244339 0.104000i
\(166\) 13.8564i 1.07547i
\(167\) −22.1168 −1.71145 −0.855726 0.517429i \(-0.826889\pi\)
−0.855726 + 0.517429i \(0.826889\pi\)
\(168\) −22.2337 16.0858i −1.71537 1.24105i
\(169\) −21.1168 −1.62437
\(170\) 3.46410i 0.265684i
\(171\) −4.62772 9.30506i −0.353890 0.711576i
\(172\) 29.4891 2.24852
\(173\) 16.1168 1.22534 0.612670 0.790338i \(-0.290095\pi\)
0.612670 + 0.790338i \(0.290095\pi\)
\(174\) −18.1168 + 4.25639i −1.37343 + 0.322676i
\(175\) −2.00000 + 1.73205i −0.151186 + 0.130931i
\(176\) 5.04868i 0.380558i
\(177\) 4.62772 1.08724i 0.347841 0.0817220i
\(178\) 8.21782i 0.615952i
\(179\) 6.63325i 0.495792i −0.968787 0.247896i \(-0.920261\pi\)
0.968787 0.247896i \(-0.0797392\pi\)
\(180\) −11.7446 + 5.84096i −0.875388 + 0.435360i
\(181\) 18.6101i 1.38328i −0.722242 0.691640i \(-0.756889\pi\)
0.722242 0.691640i \(-0.243111\pi\)
\(182\) −29.4891 + 25.5383i −2.18588 + 1.89303i
\(183\) 2.74456 + 11.6819i 0.202884 + 0.863553i
\(184\) 11.2554 0.829762
\(185\) 4.74456 0.348827
\(186\) 14.7446 3.46410i 1.08112 0.254000i
\(187\) 1.08724i 0.0795069i
\(188\) 32.2337 2.35088
\(189\) −2.25544 + 13.5615i −0.164059 + 0.986451i
\(190\) −8.74456 −0.634397
\(191\) 15.6434i 1.13191i 0.824435 + 0.565957i \(0.191493\pi\)
−0.824435 + 0.565957i \(0.808507\pi\)
\(192\) 4.00000 0.939764i 0.288675 0.0678216i
\(193\) 22.2337 1.60042 0.800208 0.599723i \(-0.204722\pi\)
0.800208 + 0.599723i \(0.204722\pi\)
\(194\) −2.74456 −0.197048
\(195\) 2.31386 + 9.84868i 0.165699 + 0.705279i
\(196\) −4.37228 + 30.2921i −0.312306 + 2.16372i
\(197\) 22.3692i 1.59374i 0.604152 + 0.796869i \(0.293512\pi\)
−0.604152 + 0.796869i \(0.706488\pi\)
\(198\) −5.37228 + 2.67181i −0.381791 + 0.189878i
\(199\) 12.9715i 0.919528i 0.888041 + 0.459764i \(0.152066\pi\)
−0.888041 + 0.459764i \(0.847934\pi\)
\(200\) 5.98844i 0.423447i
\(201\) −11.3723 + 2.67181i −0.802139 + 0.188455i
\(202\) 15.1460i 1.06567i
\(203\) 7.37228 + 8.51278i 0.517433 + 0.597480i
\(204\) 10.1168 2.37686i 0.708321 0.166414i
\(205\) −6.00000 −0.419058
\(206\) −40.9783 −2.85509
\(207\) −2.51087 5.04868i −0.174518 0.350907i
\(208\) 37.2203i 2.58076i
\(209\) −2.74456 −0.189845
\(210\) 9.37228 + 6.78073i 0.646749 + 0.467915i
\(211\) 6.11684 0.421101 0.210550 0.977583i \(-0.432474\pi\)
0.210550 + 0.977583i \(0.432474\pi\)
\(212\) 37.2203i 2.55630i
\(213\) −5.37228 22.8665i −0.368103 1.56679i
\(214\) −16.7446 −1.14463
\(215\) −6.74456 −0.459975
\(216\) 19.8614 + 23.9538i 1.35140 + 1.62985i
\(217\) −6.00000 6.92820i −0.407307 0.470317i
\(218\) 0.294954i 0.0199768i
\(219\) 2.74456 + 11.6819i 0.185460 + 0.789391i
\(220\) 3.46410i 0.233550i
\(221\) 8.01544i 0.539177i
\(222\) −4.74456 20.1947i −0.318434 1.35538i
\(223\) 20.9870i 1.40539i 0.711490 + 0.702696i \(0.248021\pi\)
−0.711490 + 0.702696i \(0.751979\pi\)
\(224\) 7.11684 + 8.21782i 0.475514 + 0.549076i
\(225\) 2.68614 1.33591i 0.179076 0.0890605i
\(226\) −25.4891 −1.69551
\(227\) −15.6060 −1.03580 −0.517902 0.855440i \(-0.673287\pi\)
−0.517902 + 0.855440i \(0.673287\pi\)
\(228\) 6.00000 + 25.5383i 0.397360 + 1.69132i
\(229\) 4.75372i 0.314135i −0.987588 0.157067i \(-0.949796\pi\)
0.987588 0.157067i \(-0.0502040\pi\)
\(230\) −4.74456 −0.312847
\(231\) 2.94158 + 2.12819i 0.193542 + 0.140025i
\(232\) 25.4891 1.67344
\(233\) 3.75906i 0.246264i 0.992390 + 0.123132i \(0.0392938\pi\)
−0.992390 + 0.123132i \(0.960706\pi\)
\(234\) 39.6060 19.6974i 2.58912 1.28766i
\(235\) −7.37228 −0.480915
\(236\) −12.0000 −0.781133
\(237\) 5.68614 1.33591i 0.369355 0.0867765i
\(238\) −6.00000 6.92820i −0.388922 0.449089i
\(239\) 15.6434i 1.01188i 0.862567 + 0.505942i \(0.168855\pi\)
−0.862567 + 0.505942i \(0.831145\pi\)
\(240\) 10.7446 2.52434i 0.693559 0.162945i
\(241\) 23.3639i 1.50500i 0.658593 + 0.752499i \(0.271152\pi\)
−0.658593 + 0.752499i \(0.728848\pi\)
\(242\) 26.1831i 1.68312i
\(243\) 6.31386 14.2525i 0.405034 0.914302i
\(244\) 30.2921i 1.93925i
\(245\) 1.00000 6.92820i 0.0638877 0.442627i
\(246\) 6.00000 + 25.5383i 0.382546 + 1.62826i
\(247\) 20.2337 1.28744
\(248\) −20.7446 −1.31728
\(249\) 9.25544 2.17448i 0.586540 0.137802i
\(250\) 2.52434i 0.159653i
\(251\) 17.4891 1.10390 0.551952 0.833876i \(-0.313883\pi\)
0.551952 + 0.833876i \(0.313883\pi\)
\(252\) 13.3723 32.0241i 0.842375 2.01733i
\(253\) −1.48913 −0.0936205
\(254\) 27.1229i 1.70184i
\(255\) −2.31386 + 0.543620i −0.144899 + 0.0340428i
\(256\) −31.1168 −1.94480
\(257\) 23.4891 1.46521 0.732606 0.680653i \(-0.238304\pi\)
0.732606 + 0.680653i \(0.238304\pi\)
\(258\) 6.74456 + 28.7075i 0.419898 + 1.78725i
\(259\) −9.48913 + 8.21782i −0.589626 + 0.510631i
\(260\) 25.5383i 1.58382i
\(261\) −5.68614 11.4333i −0.351963 0.707701i
\(262\) 44.1485i 2.72750i
\(263\) 13.5615i 0.836235i −0.908393 0.418118i \(-0.862690\pi\)
0.908393 0.418118i \(-0.137310\pi\)
\(264\) 8.00000 1.87953i 0.492366 0.115677i
\(265\) 8.51278i 0.522936i
\(266\) 17.4891 15.1460i 1.07233 0.928662i
\(267\) 5.48913 1.28962i 0.335929 0.0789235i
\(268\) 29.4891 1.80134
\(269\) −8.74456 −0.533165 −0.266583 0.963812i \(-0.585895\pi\)
−0.266583 + 0.963812i \(0.585895\pi\)
\(270\) −8.37228 10.0974i −0.509521 0.614505i
\(271\) 15.1460i 0.920056i 0.887905 + 0.460028i \(0.152161\pi\)
−0.887905 + 0.460028i \(0.847839\pi\)
\(272\) −8.74456 −0.530217
\(273\) −21.6861 15.6896i −1.31250 0.949581i
\(274\) 33.4891 2.02315
\(275\) 0.792287i 0.0477767i
\(276\) 3.25544 + 13.8564i 0.195954 + 0.834058i
\(277\) −6.23369 −0.374546 −0.187273 0.982308i \(-0.559965\pi\)
−0.187273 + 0.982308i \(0.559965\pi\)
\(278\) −3.25544 −0.195248
\(279\) 4.62772 + 9.30506i 0.277054 + 0.557080i
\(280\) −10.3723 11.9769i −0.619862 0.715755i
\(281\) 4.84630i 0.289106i 0.989497 + 0.144553i \(0.0461744\pi\)
−0.989497 + 0.144553i \(0.953826\pi\)
\(282\) 7.37228 + 31.3793i 0.439013 + 1.86861i
\(283\) 9.30506i 0.553129i −0.960995 0.276564i \(-0.910804\pi\)
0.960995 0.276564i \(-0.0891959\pi\)
\(284\) 59.2945i 3.51848i
\(285\) −1.37228 5.84096i −0.0812869 0.345989i
\(286\) 11.6819i 0.690767i
\(287\) 12.0000 10.3923i 0.708338 0.613438i
\(288\) −5.48913 11.0371i −0.323450 0.650368i
\(289\) −15.1168 −0.889226
\(290\) −10.7446 −0.630942
\(291\) −0.430703 1.83324i −0.0252483 0.107466i
\(292\) 30.2921i 1.77271i
\(293\) −28.1168 −1.64260 −0.821302 0.570494i \(-0.806752\pi\)
−0.821302 + 0.570494i \(0.806752\pi\)
\(294\) −30.4891 + 2.67181i −1.77816 + 0.155823i
\(295\) 2.74456 0.159795
\(296\) 28.4125i 1.65144i
\(297\) −2.62772 3.16915i −0.152476 0.183893i
\(298\) −25.4891 −1.47655
\(299\) 10.9783 0.634889
\(300\) −7.37228 + 1.73205i −0.425639 + 0.100000i
\(301\) 13.4891 11.6819i 0.777500 0.673335i
\(302\) 8.51278i 0.489855i
\(303\) 10.1168 2.37686i 0.581198 0.136547i
\(304\) 22.0742i 1.26604i
\(305\) 6.92820i 0.396708i
\(306\) 4.62772 + 9.30506i 0.264549 + 0.531935i
\(307\) 7.13058i 0.406964i −0.979079 0.203482i \(-0.934774\pi\)
0.979079 0.203482i \(-0.0652258\pi\)
\(308\) −6.00000 6.92820i −0.341882 0.394771i
\(309\) −6.43070 27.3716i −0.365830 1.55711i
\(310\) 8.74456 0.496658
\(311\) 20.2337 1.14735 0.573674 0.819084i \(-0.305518\pi\)
0.573674 + 0.819084i \(0.305518\pi\)
\(312\) −58.9783 + 13.8564i −3.33899 + 0.784465i
\(313\) 24.4511i 1.38206i −0.722827 0.691029i \(-0.757158\pi\)
0.722827 0.691029i \(-0.242842\pi\)
\(314\) 0 0
\(315\) −3.05842 + 7.32435i −0.172323 + 0.412680i
\(316\) −14.7446 −0.829446
\(317\) 8.51278i 0.478125i 0.971004 + 0.239063i \(0.0768401\pi\)
−0.971004 + 0.239063i \(0.923160\pi\)
\(318\) 36.2337 8.51278i 2.03188 0.477373i
\(319\) −3.37228 −0.188812
\(320\) 2.37228 0.132615
\(321\) −2.62772 11.1846i −0.146665 0.624263i
\(322\) 9.48913 8.21782i 0.528808 0.457961i
\(323\) 4.75372i 0.264504i
\(324\) −23.7446 + 31.3793i −1.31914 + 1.74329i
\(325\) 5.84096i 0.323998i
\(326\) 20.1947i 1.11848i
\(327\) 0.197015 0.0462870i 0.0108950 0.00255968i
\(328\) 35.9306i 1.98394i
\(329\) 14.7446 12.7692i 0.812894 0.703987i
\(330\) −3.37228 + 0.792287i −0.185638 + 0.0436140i
\(331\) −4.00000 −0.219860 −0.109930 0.993939i \(-0.535063\pi\)
−0.109930 + 0.993939i \(0.535063\pi\)
\(332\) −24.0000 −1.31717
\(333\) 12.7446 6.33830i 0.698398 0.347336i
\(334\) 55.8304i 3.05490i
\(335\) −6.74456 −0.368495
\(336\) −17.1168 + 23.6588i −0.933800 + 1.29069i
\(337\) −18.2337 −0.993252 −0.496626 0.867965i \(-0.665428\pi\)
−0.496626 + 0.867965i \(0.665428\pi\)
\(338\) 53.3060i 2.89947i
\(339\) −4.00000 17.0256i −0.217250 0.924701i
\(340\) 6.00000 0.325396
\(341\) 2.74456 0.148626
\(342\) −23.4891 + 11.6819i −1.27015 + 0.631686i
\(343\) 10.0000 + 15.5885i 0.539949 + 0.841698i
\(344\) 40.3894i 2.17765i
\(345\) −0.744563 3.16915i −0.0400859 0.170621i
\(346\) 40.6844i 2.18720i
\(347\) 18.3152i 0.983210i −0.870818 0.491605i \(-0.836410\pi\)
0.870818 0.491605i \(-0.163590\pi\)
\(348\) 7.37228 + 31.3793i 0.395196 + 1.68211i
\(349\) 4.75372i 0.254461i 0.991873 + 0.127230i \(0.0406088\pi\)
−0.991873 + 0.127230i \(0.959391\pi\)
\(350\) 4.37228 + 5.04868i 0.233708 + 0.269863i
\(351\) 19.3723 + 23.3639i 1.03402 + 1.24707i
\(352\) −3.25544 −0.173515
\(353\) 7.88316 0.419578 0.209789 0.977747i \(-0.432722\pi\)
0.209789 + 0.977747i \(0.432722\pi\)
\(354\) −2.74456 11.6819i −0.145872 0.620887i
\(355\) 13.5615i 0.719767i
\(356\) −14.2337 −0.754384
\(357\) 3.68614 5.09496i 0.195091 0.269654i
\(358\) −16.7446 −0.884978
\(359\) 9.80240i 0.517351i 0.965964 + 0.258675i \(0.0832860\pi\)
−0.965964 + 0.258675i \(0.916714\pi\)
\(360\) 8.00000 + 16.0858i 0.421637 + 0.847796i
\(361\) 7.00000 0.368421
\(362\) −46.9783 −2.46912
\(363\) 17.4891 4.10891i 0.917941 0.215662i
\(364\) 44.2337 + 51.0767i 2.31848 + 2.67714i
\(365\) 6.92820i 0.362639i
\(366\) 29.4891 6.92820i 1.54142 0.362143i
\(367\) 25.3360i 1.32253i 0.750154 + 0.661263i \(0.229979\pi\)
−0.750154 + 0.661263i \(0.770021\pi\)
\(368\) 11.9769i 0.624338i
\(369\) −16.1168 + 8.01544i −0.839009 + 0.417267i
\(370\) 11.9769i 0.622648i
\(371\) −14.7446 17.0256i −0.765500 0.883923i
\(372\) −6.00000 25.5383i −0.311086 1.32410i
\(373\) −24.7446 −1.28122 −0.640612 0.767864i \(-0.721319\pi\)
−0.640612 + 0.767864i \(0.721319\pi\)
\(374\) 2.74456 0.141918
\(375\) 1.68614 0.396143i 0.0870719 0.0204568i
\(376\) 44.1485i 2.27678i
\(377\) 24.8614 1.28043
\(378\) 34.2337 + 5.69349i 1.76079 + 0.292841i
\(379\) 1.48913 0.0764912 0.0382456 0.999268i \(-0.487823\pi\)
0.0382456 + 0.999268i \(0.487823\pi\)
\(380\) 15.1460i 0.776975i
\(381\) 18.1168 4.25639i 0.928154 0.218061i
\(382\) 39.4891 2.02044
\(383\) −17.4891 −0.893653 −0.446826 0.894621i \(-0.647446\pi\)
−0.446826 + 0.894621i \(0.647446\pi\)
\(384\) −5.62772 23.9538i −0.287188 1.22239i
\(385\) 1.37228 + 1.58457i 0.0699379 + 0.0807574i
\(386\) 56.1253i 2.85670i
\(387\) −18.1168 + 9.01011i −0.920931 + 0.458010i
\(388\) 4.75372i 0.241334i
\(389\) 13.7638i 0.697854i −0.937150 0.348927i \(-0.886546\pi\)
0.937150 0.348927i \(-0.113454\pi\)
\(390\) 24.8614 5.84096i 1.25891 0.295769i
\(391\) 2.57924i 0.130438i
\(392\) 41.4891 + 5.98844i 2.09552 + 0.302462i
\(393\) −29.4891 + 6.92820i −1.48753 + 0.349482i
\(394\) 56.4674 2.84479
\(395\) 3.37228 0.169678
\(396\) 4.62772 + 9.30506i 0.232552 + 0.467597i
\(397\) 3.66648i 0.184015i 0.995758 + 0.0920077i \(0.0293284\pi\)
−0.995758 + 0.0920077i \(0.970672\pi\)
\(398\) 32.7446 1.64134
\(399\) 12.8614 + 9.30506i 0.643876 + 0.465836i
\(400\) 6.37228 0.318614
\(401\) 2.67181i 0.133424i 0.997772 + 0.0667120i \(0.0212509\pi\)
−0.997772 + 0.0667120i \(0.978749\pi\)
\(402\) 6.74456 + 28.7075i 0.336388 + 1.43180i
\(403\) −20.2337 −1.00791
\(404\) −26.2337 −1.30517
\(405\) 5.43070 7.17687i 0.269854 0.356622i
\(406\) 21.4891 18.6101i 1.06649 0.923605i
\(407\) 3.75906i 0.186329i
\(408\) −3.25544 13.8564i −0.161168 0.685994i
\(409\) 35.0458i 1.73290i −0.499262 0.866451i \(-0.666396\pi\)
0.499262 0.866451i \(-0.333604\pi\)
\(410\) 15.1460i 0.748009i
\(411\) 5.25544 + 22.3692i 0.259232 + 1.10339i
\(412\) 70.9764i 3.49676i
\(413\) −5.48913 + 4.75372i −0.270102 + 0.233915i
\(414\) −12.7446 + 6.33830i −0.626361 + 0.311510i
\(415\) 5.48913 0.269451
\(416\) 24.0000 1.17670
\(417\) −0.510875 2.17448i −0.0250176 0.106485i
\(418\) 6.92820i 0.338869i
\(419\) −2.74456 −0.134081 −0.0670403 0.997750i \(-0.521356\pi\)
−0.0670403 + 0.997750i \(0.521356\pi\)
\(420\) 11.7446 16.2333i 0.573076 0.792102i
\(421\) −25.6060 −1.24796 −0.623979 0.781441i \(-0.714485\pi\)
−0.623979 + 0.781441i \(0.714485\pi\)
\(422\) 15.4410i 0.751655i
\(423\) −19.8030 + 9.84868i −0.962854 + 0.478859i
\(424\) −50.9783 −2.47572
\(425\) −1.37228 −0.0665654
\(426\) −57.7228 + 13.5615i −2.79668 + 0.657055i
\(427\) −12.0000 13.8564i −0.580721 0.670559i
\(428\) 29.0024i 1.40189i
\(429\) 7.80298 1.83324i 0.376732 0.0885097i
\(430\) 17.0256i 0.821045i
\(431\) 31.6742i 1.52569i 0.646579 + 0.762847i \(0.276199\pi\)
−0.646579 + 0.762847i \(0.723801\pi\)
\(432\) 25.4891 21.1345i 1.22635 1.01683i
\(433\) 2.57924i 0.123950i −0.998078 0.0619752i \(-0.980260\pi\)
0.998078 0.0619752i \(-0.0197400\pi\)
\(434\) −17.4891 + 15.1460i −0.839505 + 0.727033i
\(435\) −1.68614 7.17687i −0.0808443 0.344105i
\(436\) −0.510875 −0.0244665
\(437\) −6.51087 −0.311457
\(438\) 29.4891 6.92820i 1.40904 0.331042i
\(439\) 1.28962i 0.0615502i 0.999526 + 0.0307751i \(0.00979757\pi\)
−0.999526 + 0.0307751i \(0.990202\pi\)
\(440\) 4.74456 0.226188
\(441\) −6.56930 19.9460i −0.312824 0.949811i
\(442\) −20.2337 −0.962418
\(443\) 6.63325i 0.315155i −0.987507 0.157578i \(-0.949632\pi\)
0.987507 0.157578i \(-0.0503684\pi\)
\(444\) −34.9783 + 8.21782i −1.65999 + 0.390001i
\(445\) 3.25544 0.154323
\(446\) 52.9783 2.50859
\(447\) −4.00000 17.0256i −0.189194 0.805281i
\(448\) −4.74456 + 4.10891i −0.224160 + 0.194128i
\(449\) 28.2101i 1.33132i 0.746256 + 0.665660i \(0.231850\pi\)
−0.746256 + 0.665660i \(0.768150\pi\)
\(450\) −3.37228 6.78073i −0.158971 0.319647i
\(451\) 4.75372i 0.223844i
\(452\) 44.1485i 2.07657i
\(453\) 5.68614 1.33591i 0.267158 0.0627664i
\(454\) 39.3947i 1.84889i
\(455\) −10.1168 11.6819i −0.474285 0.547657i
\(456\) 34.9783 8.21782i 1.63801 0.384835i
\(457\) −32.9783 −1.54266 −0.771329 0.636437i \(-0.780408\pi\)
−0.771329 + 0.636437i \(0.780408\pi\)
\(458\) −12.0000 −0.560723
\(459\) −5.48913 + 4.55134i −0.256210 + 0.212438i
\(460\) 8.21782i 0.383158i
\(461\) −8.74456 −0.407275 −0.203637 0.979046i \(-0.565276\pi\)
−0.203637 + 0.979046i \(0.565276\pi\)
\(462\) 5.37228 7.42554i 0.249941 0.345467i
\(463\) 36.4674 1.69478 0.847391 0.530969i \(-0.178172\pi\)
0.847391 + 0.530969i \(0.178172\pi\)
\(464\) 27.1229i 1.25915i
\(465\) 1.37228 + 5.84096i 0.0636380 + 0.270868i
\(466\) 9.48913 0.439575
\(467\) −13.8832 −0.642436 −0.321218 0.947005i \(-0.604092\pi\)
−0.321218 + 0.947005i \(0.604092\pi\)
\(468\) −34.1168 68.5996i −1.57705 3.17102i
\(469\) 13.4891 11.6819i 0.622870 0.539421i
\(470\) 18.6101i 0.858421i
\(471\) 0 0
\(472\) 16.4356i 0.756512i
\(473\) 5.34363i 0.245700i
\(474\) −3.37228 14.3537i −0.154894 0.659289i
\(475\) 3.46410i 0.158944i
\(476\) −12.0000 + 10.3923i −0.550019 + 0.476331i
\(477\) 11.3723 + 22.8665i 0.520701 + 1.04699i
\(478\) 39.4891 1.80619
\(479\) 18.5109 0.845783 0.422892 0.906180i \(-0.361015\pi\)
0.422892 + 0.906180i \(0.361015\pi\)
\(480\) −1.62772 6.92820i −0.0742949 0.316228i
\(481\) 27.7128i 1.26360i
\(482\) 58.9783 2.68639
\(483\) 6.97825 + 5.04868i 0.317521 + 0.229723i
\(484\) −45.3505 −2.06139
\(485\) 1.08724i 0.0493691i
\(486\) −35.9783 15.9383i −1.63201 0.722977i
\(487\) 14.5109 0.657550 0.328775 0.944408i \(-0.393364\pi\)
0.328775 + 0.944408i \(0.393364\pi\)
\(488\) −41.4891 −1.87812
\(489\) 13.4891 3.16915i 0.609999 0.143314i
\(490\) −17.4891 2.52434i −0.790078 0.114038i
\(491\) 10.8896i 0.491442i 0.969341 + 0.245721i \(0.0790248\pi\)
−0.969341 + 0.245721i \(0.920975\pi\)
\(492\) 44.2337 10.3923i 1.99421 0.468521i
\(493\) 5.84096i 0.263064i
\(494\) 51.0767i 2.29805i
\(495\) −1.05842 2.12819i −0.0475725 0.0956552i
\(496\) 22.0742i 0.991162i
\(497\) 23.4891 + 27.1229i 1.05363 + 1.21663i
\(498\) −5.48913 23.3639i −0.245974 1.04696i
\(499\) −10.3505 −0.463353 −0.231677 0.972793i \(-0.574421\pi\)
−0.231677 + 0.972793i \(0.574421\pi\)
\(500\) −4.37228 −0.195534
\(501\) −37.2921 + 8.76144i −1.66609 + 0.391432i
\(502\) 44.1485i 1.97044i
\(503\) −27.6060 −1.23089 −0.615445 0.788180i \(-0.711024\pi\)
−0.615445 + 0.788180i \(0.711024\pi\)
\(504\) −43.8614 18.3152i −1.95374 0.815823i
\(505\) 6.00000 0.266996
\(506\) 3.75906i 0.167110i
\(507\) −35.6060 + 8.36530i −1.58132 + 0.371516i
\(508\) −46.9783 −2.08432
\(509\) −38.2337 −1.69468 −0.847339 0.531052i \(-0.821797\pi\)
−0.847339 + 0.531052i \(0.821797\pi\)
\(510\) 1.37228 + 5.84096i 0.0607656 + 0.258642i
\(511\) −12.0000 13.8564i −0.530849 0.612971i
\(512\) 50.1369i 2.21576i
\(513\) −11.4891 13.8564i −0.507257 0.611775i
\(514\) 59.2945i 2.61537i
\(515\) 16.2333i 0.715323i
\(516\) 49.7228 11.6819i 2.18892 0.514268i
\(517\) 5.84096i 0.256885i
\(518\) 20.7446 + 23.9538i 0.911464 + 1.05247i
\(519\) 27.1753 6.38458i 1.19286 0.280252i
\(520\) −34.9783 −1.53390
\(521\) 34.4674 1.51004 0.755022 0.655700i \(-0.227626\pi\)
0.755022 + 0.655700i \(0.227626\pi\)
\(522\) −28.8614 + 14.3537i −1.26323 + 0.628246i
\(523\) 10.3923i 0.454424i 0.973845 + 0.227212i \(0.0729610\pi\)
−0.973845 + 0.227212i \(0.927039\pi\)
\(524\) 76.4674 3.34049
\(525\) −2.68614 + 3.71277i −0.117233 + 0.162038i
\(526\) −34.2337 −1.49266
\(527\) 4.75372i 0.207075i
\(528\) −2.00000 8.51278i −0.0870388 0.370471i
\(529\) 19.4674 0.846408
\(530\) 21.4891 0.933428
\(531\) 7.37228 3.66648i 0.319930 0.159112i
\(532\) −26.2337 30.2921i −1.13737 1.31333i
\(533\) 35.0458i 1.51800i
\(534\) −3.25544 13.8564i −0.140877 0.599625i
\(535\) 6.63325i 0.286780i
\(536\) 40.3894i 1.74456i
\(537\) −2.62772 11.1846i −0.113394 0.482651i
\(538\) 22.0742i 0.951688i
\(539\) −5.48913 0.792287i −0.236433 0.0341262i
\(540\) −17.4891 + 14.5012i −0.752612 + 0.624033i
\(541\) 18.6277 0.800868 0.400434 0.916326i \(-0.368859\pi\)
0.400434 + 0.916326i \(0.368859\pi\)
\(542\) 38.2337 1.64228
\(543\) −7.37228 31.3793i −0.316375 1.34661i
\(544\) 5.63858i 0.241752i
\(545\) 0.116844 0.00500505
\(546\) −39.6060 + 54.7431i −1.69498 + 2.34279i
\(547\) 42.9783 1.83762 0.918809 0.394703i \(-0.129153\pi\)
0.918809 + 0.394703i \(0.129153\pi\)
\(548\) 58.0049i 2.47785i
\(549\) 9.25544 + 18.6101i 0.395012 + 0.794261i
\(550\) −2.00000 −0.0852803
\(551\) −14.7446 −0.628139
\(552\) 18.9783 4.45877i 0.807768 0.189778i
\(553\) −6.74456 + 5.84096i −0.286808 + 0.248383i
\(554\) 15.7359i 0.668556i
\(555\) 8.00000 1.87953i 0.339581 0.0797815i
\(556\) 5.63858i 0.239129i
\(557\) 30.8820i 1.30851i −0.756274 0.654255i \(-0.772982\pi\)
0.756274 0.654255i \(-0.227018\pi\)
\(558\) 23.4891 11.6819i 0.994374 0.494535i
\(559\) 39.3947i 1.66622i
\(560\) −12.7446 + 11.0371i −0.538556 + 0.466403i
\(561\) 0.430703 + 1.83324i 0.0181843 + 0.0773995i
\(562\) 12.2337 0.516047
\(563\) 5.48913 0.231339 0.115670 0.993288i \(-0.463099\pi\)
0.115670 + 0.993288i \(0.463099\pi\)
\(564\) 54.3505 12.7692i 2.28857 0.537679i
\(565\) 10.0974i 0.424799i
\(566\) −23.4891 −0.987322
\(567\) 1.56930 + 23.7600i 0.0659043 + 0.997826i
\(568\) 81.2119 3.40758
\(569\) 10.6873i 0.448033i 0.974585 + 0.224017i \(0.0719170\pi\)
−0.974585 + 0.224017i \(0.928083\pi\)
\(570\) −14.7446 + 3.46410i −0.617582 + 0.145095i
\(571\) −4.00000 −0.167395 −0.0836974 0.996491i \(-0.526673\pi\)
−0.0836974 + 0.996491i \(0.526673\pi\)
\(572\) −20.2337 −0.846013
\(573\) 6.19702 + 26.3769i 0.258884 + 1.10191i
\(574\) −26.2337 30.2921i −1.09497 1.26437i
\(575\) 1.87953i 0.0783817i
\(576\) 6.37228 3.16915i 0.265512 0.132048i
\(577\) 12.7692i 0.531587i −0.964030 0.265794i \(-0.914366\pi\)
0.964030 0.265794i \(-0.0856340\pi\)
\(578\) 38.1600i 1.58725i
\(579\) 37.4891 8.80773i 1.55799 0.366037i
\(580\) 18.6101i 0.772744i
\(581\) −10.9783 + 9.50744i −0.455455 + 0.394435i
\(582\) −4.62772 + 1.08724i −0.191825 + 0.0450676i
\(583\) 6.74456 0.279331
\(584\) −41.4891 −1.71683
\(585\) 7.80298 + 15.6896i 0.322614 + 0.648687i
\(586\) 70.9764i 2.93201i
\(587\) −5.48913 −0.226560 −0.113280 0.993563i \(-0.536136\pi\)
−0.113280 + 0.993563i \(0.536136\pi\)
\(588\) 4.62772 + 52.8087i 0.190844 + 2.17779i
\(589\) 12.0000 0.494451
\(590\) 6.92820i 0.285230i
\(591\) 8.86141 + 37.7176i 0.364510 + 1.55149i
\(592\) 30.2337 1.24260
\(593\) −1.37228 −0.0563528 −0.0281764 0.999603i \(-0.508970\pi\)
−0.0281764 + 0.999603i \(0.508970\pi\)
\(594\) −8.00000 + 6.63325i −0.328244 + 0.272166i
\(595\) 2.74456 2.37686i 0.112516 0.0974418i
\(596\) 44.1485i 1.80839i
\(597\) 5.13859 + 21.8719i 0.210309 + 0.895155i
\(598\) 27.7128i 1.13326i
\(599\) 1.78695i 0.0730129i 0.999333 + 0.0365065i \(0.0116230\pi\)
−0.999333 + 0.0365065i \(0.988377\pi\)
\(600\) 2.37228 + 10.0974i 0.0968480 + 0.412223i
\(601\) 2.17448i 0.0886989i 0.999016 + 0.0443495i \(0.0141215\pi\)
−0.999016 + 0.0443495i \(0.985878\pi\)
\(602\) −29.4891 34.0511i −1.20189 1.38782i
\(603\) −18.1168 + 9.01011i −0.737775 + 0.366920i
\(604\) −14.7446 −0.599948
\(605\) 10.3723 0.421693
\(606\) −6.00000 25.5383i −0.243733 1.03742i
\(607\) 20.9870i 0.851836i 0.904762 + 0.425918i \(0.140049\pi\)
−0.904762 + 0.425918i \(0.859951\pi\)
\(608\) −14.2337 −0.577252
\(609\) 15.8030 + 11.4333i 0.640369 + 0.463299i
\(610\) 17.4891 0.708114
\(611\) 43.0612i 1.74207i
\(612\) 16.1168 8.01544i 0.651485 0.324005i
\(613\) −4.51087 −0.182193 −0.0910963 0.995842i \(-0.529037\pi\)
−0.0910963 + 0.995842i \(0.529037\pi\)
\(614\) −18.0000 −0.726421
\(615\) −10.1168 + 2.37686i −0.407951 + 0.0958443i
\(616\) −9.48913 + 8.21782i −0.382328 + 0.331106i
\(617\) 37.8102i 1.52218i −0.648646 0.761090i \(-0.724665\pi\)
0.648646 0.761090i \(-0.275335\pi\)
\(618\) −69.0951 + 16.2333i −2.77941 + 0.652998i
\(619\) 1.28962i 0.0518342i −0.999664 0.0259171i \(-0.991749\pi\)
0.999664 0.0259171i \(-0.00825060\pi\)
\(620\) 15.1460i 0.608279i
\(621\) −6.23369 7.51811i −0.250149 0.301691i
\(622\) 51.0767i 2.04799i
\(623\) −6.51087 + 5.63858i −0.260853 + 0.225905i
\(624\) 14.7446 + 62.7586i 0.590255 + 2.51235i
\(625\) 1.00000 0.0400000
\(626\) −61.7228 −2.46694
\(627\) −4.62772 + 1.08724i −0.184813 + 0.0434202i
\(628\) 0 0
\(629\) −6.51087 −0.259606
\(630\) 18.4891 + 7.72049i 0.736624 + 0.307592i
\(631\) −5.88316 −0.234205 −0.117102 0.993120i \(-0.537361\pi\)
−0.117102 + 0.993120i \(0.537361\pi\)
\(632\) 20.1947i 0.803302i
\(633\) 10.3139 2.42315i 0.409939 0.0963115i
\(634\) 21.4891 0.853442
\(635\) 10.7446 0.426385
\(636\) −14.7446 62.7586i −0.584660 2.48854i
\(637\) 40.4674 + 5.84096i 1.60338 + 0.231427i
\(638\) 8.51278i 0.337024i
\(639\) −18.1168 36.4280i −0.716691 1.44107i
\(640\) 14.2063i 0.561552i
\(641\) 29.7021i 1.17316i 0.809890 + 0.586582i \(0.199527\pi\)
−0.809890 + 0.586582i \(0.800473\pi\)
\(642\) −28.2337 + 6.63325i −1.11429 + 0.261793i
\(643\) 39.5971i 1.56156i 0.624807 + 0.780779i \(0.285178\pi\)
−0.624807 + 0.780779i \(0.714822\pi\)
\(644\) −14.2337 16.4356i −0.560886 0.647655i
\(645\) −11.3723 + 2.67181i −0.447783 + 0.105203i
\(646\) 12.0000 0.472134
\(647\) 12.0000 0.471769 0.235884 0.971781i \(-0.424201\pi\)
0.235884 + 0.971781i \(0.424201\pi\)
\(648\) 42.9783 + 32.5214i 1.68835 + 1.27756i
\(649\) 2.17448i 0.0853559i
\(650\) 14.7446 0.578329
\(651\) −12.8614 9.30506i −0.504078 0.364694i
\(652\) −34.9783 −1.36985
\(653\) 33.0564i 1.29360i −0.762660 0.646799i \(-0.776107\pi\)
0.762660 0.646799i \(-0.223893\pi\)
\(654\) −0.116844 0.497333i −0.00456896 0.0194473i
\(655\) −17.4891 −0.683357
\(656\) −38.2337 −1.49277
\(657\) 9.25544 + 18.6101i 0.361089 + 0.726050i
\(658\) −32.2337 37.2203i −1.25660 1.45100i
\(659\) 20.3971i 0.794558i 0.917698 + 0.397279i \(0.130045\pi\)
−0.917698 + 0.397279i \(0.869955\pi\)
\(660\) 1.37228 + 5.84096i 0.0534160 + 0.227359i
\(661\) 6.92820i 0.269476i −0.990881 0.134738i \(-0.956981\pi\)
0.990881 0.134738i \(-0.0430193\pi\)
\(662\) 10.0974i 0.392445i
\(663\) −3.17527 13.5152i −0.123317 0.524886i
\(664\) 32.8713i 1.27565i
\(665\) 6.00000 + 6.92820i 0.232670 + 0.268664i
\(666\) −16.0000 32.1716i −0.619987 1.24662i
\(667\) −8.00000 −0.309761
\(668\) 96.7011 3.74148
\(669\) 8.31386 + 35.3870i 0.321432 + 1.36814i
\(670\) 17.0256i 0.657755i
\(671\) 5.48913 0.211905
\(672\) 15.2554 + 11.0371i 0.588491 + 0.425766i
\(673\) 22.2337 0.857046 0.428523 0.903531i \(-0.359034\pi\)
0.428523 + 0.903531i \(0.359034\pi\)
\(674\) 46.0280i 1.77293i
\(675\) 4.00000 3.31662i 0.153960 0.127657i
\(676\) 92.3288 3.55111
\(677\) 21.6060 0.830385 0.415192 0.909734i \(-0.363714\pi\)
0.415192 + 0.909734i \(0.363714\pi\)
\(678\) −42.9783 + 10.0974i −1.65057 + 0.387786i
\(679\) 1.88316 + 2.17448i 0.0722689 + 0.0834489i
\(680\) 8.21782i 0.315139i
\(681\) −26.3139 + 6.18220i −1.00835 + 0.236903i
\(682\) 6.92820i 0.265295i
\(683\) 51.7764i 1.98117i 0.136906 + 0.990584i \(0.456284\pi\)
−0.136906 + 0.990584i \(0.543716\pi\)
\(684\) 20.2337 + 40.6844i 0.773654 + 1.55561i
\(685\) 13.2665i 0.506887i
\(686\) 39.3505 25.2434i 1.50241 0.963797i
\(687\) −1.88316 8.01544i −0.0718469 0.305808i
\(688\) −42.9783 −1.63853
\(689\) −49.7228 −1.89429
\(690\) −8.00000 + 1.87953i −0.304555 + 0.0715524i
\(691\) 38.5099i 1.46498i −0.680775 0.732492i \(-0.738357\pi\)
0.680775 0.732492i \(-0.261643\pi\)
\(692\) −70.4674 −2.67877
\(693\) 5.80298 + 2.42315i 0.220437 + 0.0920478i
\(694\) −46.2337 −1.75501
\(695\) 1.28962i 0.0489181i
\(696\) 42.9783 10.0974i 1.62909 0.382739i
\(697\) 8.23369 0.311873
\(698\) 12.0000 0.454207
\(699\) 1.48913 + 6.33830i 0.0563239 + 0.239736i
\(700\) 8.74456 7.57301i 0.330513 0.286233i
\(701\) 45.8256i 1.73081i −0.501074 0.865405i \(-0.667061\pi\)
0.501074 0.865405i \(-0.332939\pi\)
\(702\) 58.9783 48.9022i 2.22599 1.84569i
\(703\) 16.4356i 0.619882i
\(704\) 1.87953i 0.0708374i
\(705\) −12.4307 + 2.92048i −0.468167 + 0.109992i
\(706\) 19.8997i 0.748937i
\(707\) −12.0000 + 10.3923i −0.451306 + 0.390843i
\(708\) −20.2337 + 4.75372i −0.760429 + 0.178656i
\(709\) 24.1168 0.905727 0.452864 0.891580i \(-0.350402\pi\)
0.452864 + 0.891580i \(0.350402\pi\)
\(710\) −34.2337 −1.28477
\(711\) 9.05842 4.50506i 0.339717 0.168953i
\(712\) 19.4950i 0.730606i
\(713\) 6.51087 0.243834
\(714\) −12.8614 9.30506i −0.481326 0.348233i
\(715\) 4.62772 0.173067
\(716\) 29.0024i 1.08387i
\(717\) 6.19702 + 26.3769i 0.231432 + 0.985064i
\(718\) 24.7446 0.923459
\(719\) 40.4674 1.50918 0.754589 0.656197i \(-0.227836\pi\)
0.754589 + 0.656197i \(0.227836\pi\)
\(720\) 17.1168 8.51278i 0.637907 0.317252i
\(721\) 28.1168 + 32.4665i 1.04713 + 1.20912i
\(722\) 17.6704i 0.657623i
\(723\) 9.25544 + 39.3947i 0.344213 + 1.46511i
\(724\) 81.3687i 3.02404i
\(725\) 4.25639i 0.158078i
\(726\) −10.3723 44.1485i −0.384951 1.63850i
\(727\) 3.46410i 0.128476i 0.997935 + 0.0642382i \(0.0204617\pi\)
−0.997935 + 0.0642382i \(0.979538\pi\)
\(728\) 69.9565 60.5841i 2.59276 2.24540i
\(729\) 5.00000 26.5330i 0.185185 0.982704i
\(730\) 17.4891 0.647302
\(731\) 9.25544 0.342325
\(732\) −12.0000 51.0767i −0.443533 1.88785i
\(733\) 10.1899i 0.376373i −0.982133 0.188187i \(-0.939739\pi\)
0.982133 0.188187i \(-0.0602610\pi\)
\(734\) 63.9565 2.36068
\(735\) −1.05842 12.0781i −0.0390405 0.445506i
\(736\) −7.72281 −0.284667
\(737\) 5.34363i 0.196835i
\(738\) 20.2337 + 40.6844i 0.744812 + 1.49761i
\(739\) −8.62772 −0.317376 −0.158688 0.987329i \(-0.550726\pi\)
−0.158688 + 0.987329i \(0.550726\pi\)
\(740\) −20.7446 −0.762585
\(741\) 34.1168 8.01544i 1.25331 0.294455i
\(742\) −42.9783 + 37.2203i −1.57778 + 1.36640i
\(743\) 36.9253i 1.35466i −0.735680 0.677329i \(-0.763137\pi\)
0.735680 0.677329i \(-0.236863\pi\)
\(744\) −34.9783 + 8.21782i −1.28236 + 0.301280i
\(745\) 10.0974i 0.369938i
\(746\) 62.4636i 2.28696i
\(747\) 14.7446 7.33296i 0.539475 0.268299i
\(748\) 4.75372i 0.173813i
\(749\) 11.4891 + 13.2665i 0.419804 + 0.484747i
\(750\) −1.00000 4.25639i −0.0365148 0.155421i
\(751\) −22.3505 −0.815582 −0.407791 0.913075i \(-0.633701\pi\)
−0.407791 + 0.913075i \(0.633701\pi\)
\(752\) −46.9783 −1.71312
\(753\) 29.4891 6.92820i 1.07464 0.252478i
\(754\) 62.7586i 2.28553i
\(755\) 3.37228 0.122730
\(756\) 9.86141 59.2945i 0.358656 2.15652i
\(757\) −54.2337 −1.97116 −0.985578 0.169219i \(-0.945875\pi\)
−0.985578 + 0.169219i \(0.945875\pi\)
\(758\) 3.75906i 0.136535i
\(759\) −2.51087 + 0.589907i −0.0911390 + 0.0214123i
\(760\) 20.7446 0.752484
\(761\) −26.2337 −0.950970 −0.475485 0.879724i \(-0.657727\pi\)
−0.475485 + 0.879724i \(0.657727\pi\)
\(762\) −10.7446 45.7330i −0.389234 1.65673i
\(763\) −0.233688 + 0.202380i −0.00846007 + 0.00732664i
\(764\) 68.3972i 2.47452i
\(765\) −3.68614 + 1.83324i −0.133273 + 0.0662810i
\(766\) 44.1485i 1.59515i
\(767\) 16.0309i 0.578842i
\(768\) −52.4674 + 12.3267i −1.89325 + 0.444803i
\(769\) 21.1894i 0.764108i 0.924140 + 0.382054i \(0.124783\pi\)
−0.924140 + 0.382054i \(0.875217\pi\)
\(770\) 4.00000 3.46410i 0.144150 0.124838i
\(771\) 39.6060 9.30506i 1.42637 0.335114i
\(772\) −97.2119 −3.49873
\(773\) −46.6277 −1.67708 −0.838541 0.544838i \(-0.816591\pi\)
−0.838541 + 0.544838i \(0.816591\pi\)
\(774\) 22.7446 + 45.7330i 0.817536 + 1.64384i
\(775\) 3.46410i 0.124434i
\(776\) 6.51087 0.233727
\(777\) −12.7446 + 17.6155i −0.457209 + 0.631951i
\(778\) −34.7446 −1.24565
\(779\) 20.7846i 0.744686i
\(780\) −10.1168 43.0612i −0.362241 1.54184i
\(781\) −10.7446 −0.384471
\(782\) 6.51087 0.232828
\(783\) −14.1168 17.0256i −0.504495 0.608444i
\(784\) 6.37228 44.1485i 0.227581 1.57673i
\(785\) 0 0
\(786\) 17.4891 + 74.4405i 0.623816 + 2.65521i
\(787\) 46.5253i 1.65845i −0.558916 0.829224i \(-0.688783\pi\)
0.558916 0.829224i \(-0.311217\pi\)
\(788\) 97.8044i 3.48414i
\(789\) −5.37228 22.8665i −0.191258 0.814070i
\(790\) 8.51278i 0.302871i
\(791\) 17.4891 + 20.1947i 0.621842 + 0.718041i
\(792\) 12.7446 6.33830i 0.452858 0.225222i
\(793\) −40.4674 −1.43704
\(794\) 9.25544 0.328463
\(795\) 3.37228 + 14.3537i 0.119602 + 0.509075i
\(796\) 56.7152i 2.01022i
\(797\) −42.8614 −1.51823 −0.759114 0.650957i \(-0.774368\pi\)
−0.759114 + 0.650957i \(0.774368\pi\)
\(798\) 23.4891 32.4665i 0.831506 1.14930i
\(799\) 10.1168 0.357908
\(800\) 4.10891i 0.145272i
\(801\) 8.74456 4.34896i 0.308974 0.153663i
\(802\) 6.74456 0.238159
\(803\) 5.48913 0.193707
\(804\) 49.7228 11.6819i 1.75359 0.411990i
\(805\) 3.25544 + 3.75906i 0.114739 + 0.132489i
\(806\) 51.0767i 1.79910i
\(807\) −14.7446 + 3.46410i −0.519033 + 0.121942i
\(808\) 35.9306i 1.26404i
\(809\) 36.7229i 1.29111i −0.763714 0.645555i \(-0.776626\pi\)
0.763714 0.645555i \(-0.223374\pi\)
\(810\) −18.1168 13.7089i −0.636561 0.481683i
\(811\) 1.28962i 0.0452847i −0.999744 0.0226423i \(-0.992792\pi\)
0.999744 0.0226423i \(-0.00720790\pi\)
\(812\) −32.2337 37.2203i −1.13118 1.30617i
\(813\) 6.00000 + 25.5383i 0.210429 + 0.895668i
\(814\) −9.48913 −0.332594
\(815\) 8.00000 0.280228
\(816\) −14.7446 + 3.46410i −0.516163 + 0.121268i
\(817\) 23.3639i 0.817398i
\(818\) −88.4674 −3.09319
\(819\) −42.7812 17.8641i −1.49490 0.624223i
\(820\) 26.2337 0.916120
\(821\) 11.7745i 0.410933i 0.978664 + 0.205466i \(0.0658711\pi\)
−0.978664 + 0.205466i \(0.934129\pi\)
\(822\) 56.4674 13.2665i 1.96953 0.462722i
\(823\) −48.2337 −1.68132 −0.840660 0.541563i \(-0.817833\pi\)
−0.840660 + 0.541563i \(0.817833\pi\)
\(824\) 97.2119 3.38654
\(825\) −0.313859 1.33591i −0.0109272 0.0465103i
\(826\) 12.0000 + 13.8564i 0.417533 + 0.482126i
\(827\) 18.3152i 0.636881i −0.947943 0.318441i \(-0.896841\pi\)
0.947943 0.318441i \(-0.103159\pi\)
\(828\) 10.9783 + 22.0742i 0.381521 + 0.767133i
\(829\) 32.4665i 1.12761i 0.825908 + 0.563805i \(0.190663\pi\)
−0.825908 + 0.563805i \(0.809337\pi\)
\(830\) 13.8564i 0.480963i
\(831\) −10.5109 + 2.46943i −0.364618 + 0.0856637i
\(832\) 13.8564i 0.480384i
\(833\) −1.37228 + 9.50744i −0.0475467 + 0.329413i
\(834\) −5.48913 + 1.28962i −0.190073 + 0.0446559i
\(835\) −22.1168 −0.765385
\(836\) 12.0000 0.415029
\(837\) 11.4891 + 13.8564i 0.397122 + 0.478947i
\(838\) 6.92820i 0.239331i
\(839\) −53.4891 −1.84665 −0.923325 0.384020i \(-0.874539\pi\)
−0.923325 + 0.384020i \(0.874539\pi\)
\(840\) −22.2337 16.0858i −0.767135 0.555013i
\(841\) 10.8832 0.375281
\(842\) 64.6381i 2.22758i
\(843\) 1.91983 + 8.17154i 0.0661224 + 0.281443i
\(844\) −26.7446 −0.920586
\(845\) −21.1168 −0.726442
\(846\) 24.8614 + 49.9894i 0.854753 + 1.71867i
\(847\) −20.7446 + 17.9653i −0.712792 + 0.617296i
\(848\) 54.2458i 1.86281i
\(849\) −3.68614 15.6896i −0.126508 0.538467i
\(850\) 3.46410i 0.118818i
\(851\) 8.91754i 0.305689i
\(852\) 23.4891 + 99.9788i 0.804724 + 3.42522i
\(853\) 46.7277i 1.59993i −0.600049 0.799963i \(-0.704852\pi\)
0.600049 0.799963i \(-0.295148\pi\)
\(854\) −34.9783 + 30.2921i −1.19693 + 1.03657i
\(855\) −4.62772 9.30506i −0.158265 0.318226i
\(856\) 39.7228 1.35770
\(857\) −22.4674 −0.767471 −0.383735 0.923443i \(-0.625363\pi\)
−0.383735 + 0.923443i \(0.625363\pi\)
\(858\) −4.62772 19.6974i −0.157988 0.672457i
\(859\) 45.4381i 1.55033i 0.631760 + 0.775164i \(0.282333\pi\)
−0.631760 + 0.775164i \(0.717667\pi\)
\(860\) 29.4891 1.00557
\(861\) 16.1168 22.2766i 0.549261 0.759185i
\(862\) 79.9565 2.72333
\(863\) 28.0078i 0.953395i 0.879067 + 0.476698i \(0.158166\pi\)
−0.879067 + 0.476698i \(0.841834\pi\)
\(864\) −13.6277 16.4356i −0.463624 0.559152i
\(865\) 16.1168 0.547989
\(866\) −6.51087 −0.221249
\(867\) −25.4891 + 5.98844i −0.865656 + 0.203378i
\(868\) 26.2337 + 30.2921i 0.890429 + 1.02818i
\(869\) 2.67181i 0.0906351i
\(870\) −18.1168 + 4.25639i −0.614219 + 0.144305i
\(871\) 39.3947i 1.33484i
\(872\) 0.699713i 0.0236953i
\(873\) −1.45245 2.92048i −0.0491581 0.0988433i
\(874\) 16.4356i 0.555944i
\(875\) −2.00000 + 1.73205i −0.0676123 + 0.0585540i
\(876\) −12.0000 51.0767i −0.405442 1.72572i
\(877\) 30.4674 1.02881 0.514405 0.857547i \(-0.328013\pi\)
0.514405 + 0.857547i \(0.328013\pi\)
\(878\) 3.25544 0.109866
\(879\) −47.4090 + 11.1383i −1.59906 + 0.375686i
\(880\) 5.04868i 0.170191i
\(881\) −2.23369 −0.0752549 −0.0376274 0.999292i \(-0.511980\pi\)
−0.0376274 + 0.999292i \(0.511980\pi\)
\(882\) −50.3505 + 16.5831i −1.69539 + 0.558383i
\(883\) 26.5109 0.892162 0.446081 0.894993i \(-0.352819\pi\)
0.446081 + 0.894993i \(0.352819\pi\)
\(884\) 35.0458i 1.17872i
\(885\) 4.62772 1.08724i 0.155559 0.0365472i
\(886\) −16.7446 −0.562545
\(887\) 41.4891 1.39307 0.696534 0.717524i \(-0.254724\pi\)
0.696534 + 0.717524i \(0.254724\pi\)
\(888\) 11.2554 + 47.9075i 0.377708 + 1.60767i
\(889\) −21.4891 + 18.6101i −0.720722 + 0.624164i
\(890\) 8.21782i 0.275462i
\(891\) −5.68614 4.30268i −0.190493 0.144145i
\(892\) 91.7610i 3.07239i
\(893\) 25.5383i 0.854608i
\(894\) −42.9783 + 10.0974i −1.43741 + 0.337706i
\(895\) 6.63325i 0.221725i
\(896\) 24.6060 + 28.4125i 0.822028 + 0.949196i
\(897\) 18.5109 4.34896i 0.618060 0.145208i
\(898\) 71.2119 2.37637
\(899\) 14.7446 0.491759
\(900\) −11.7446 + 5.84096i −0.391485 + 0.194699i
\(901\) 11.6819i 0.389181i
\(902\) 12.0000 0.399556
\(903\) 18.1168 25.0410i 0.602891 0.833312i
\(904\) 60.4674 2.01112
\(905\) 18.6101i 0.618622i
\(906\) −3.37228 14.3537i −0.112037 0.476871i
\(907\) 8.00000 0.265636 0.132818 0.991140i \(-0.457597\pi\)
0.132818 + 0.991140i \(0.457597\pi\)
\(908\) 68.2337 2.26441
\(909\) 16.1168 8.01544i 0.534562 0.265855i
\(910\) −29.4891 + 25.5383i −0.977555 + 0.846587i
\(911\) 23.6588i 0.783851i 0.919997 + 0.391926i \(0.128191\pi\)
−0.919997 + 0.391926i \(0.871809\pi\)
\(912\) −8.74456 37.2203i −0.289561 1.23249i
\(913\) 4.34896i 0.143930i
\(914\) 83.2482i 2.75361i
\(915\) 2.74456 + 11.6819i 0.0907324 + 0.386193i
\(916\) 20.7846i 0.686743i
\(917\) 34.9783 30.2921i 1.15508 1.00033i
\(918\) 11.4891 + 13.8564i 0.379198 + 0.457330i
\(919\) −11.3723 −0.375137 −0.187568 0.982252i \(-0.560061\pi\)
−0.187568 + 0.982252i \(0.560061\pi\)
\(920\) 11.2554 0.371081
\(921\) −2.82473 12.0232i −0.0930782 0.396177i
\(922\) 22.0742i 0.726976i
\(923\) 79.2119 2.60729
\(924\) −12.8614 9.30506i −0.423109 0.306114i
\(925\) 4.74456 0.156000
\(926\) 92.0560i 3.02515i
\(927\) −21.6861 43.6048i −0.712266 1.43217i
\(928\) −17.4891 −0.574109
\(929\) 7.02175 0.230376 0.115188 0.993344i \(-0.463253\pi\)
0.115188 + 0.993344i \(0.463253\pi\)
\(930\) 14.7446 3.46410i 0.483493 0.113592i
\(931\) −24.0000 3.46410i −0.786568 0.113531i
\(932\) 16.4356i 0.538368i
\(933\) 34.1168 8.01544i 1.11694 0.262414i
\(934\) 35.0458i 1.14673i
\(935\) 1.08724i 0.0355566i
\(936\) −93.9565 + 46.7277i −3.07106 + 1.52734i
\(937\) 49.9894i 1.63308i −0.577287 0.816542i \(-0.695888\pi\)
0.577287 0.816542i \(-0.304112\pi\)
\(938\) −29.4891 34.0511i −0.962854 1.11181i
\(939\) −9.68614 41.2280i −0.316095 1.34542i
\(940\) 32.2337 1.05135
\(941\) −27.2554 −0.888502 −0.444251 0.895902i \(-0.646530\pi\)
−0.444251 + 0.895902i \(0.646530\pi\)
\(942\) 0 0
\(943\) 11.2772i 0.367235i
\(944\) 17.4891 0.569223
\(945\) −2.25544 + 13.5615i −0.0733694 + 0.441154i
\(946\) 13.4891 0.438569
\(947\) 48.2025i 1.56637i −0.621789 0.783185i \(-0.713594\pi\)
0.621789 0.783185i \(-0.286406\pi\)
\(948\) −24.8614 + 5.84096i −0.807461 + 0.189706i
\(949\) −40.4674 −1.31363
\(950\) −8.74456 −0.283711
\(951\) 3.37228 + 14.3537i 0.109354 + 0.465452i
\(952\) 14.2337 + 16.4356i 0.461316 + 0.532682i
\(953\) 38.8048i 1.25701i 0.777805 + 0.628506i \(0.216333\pi\)
−0.777805 + 0.628506i \(0.783667\pi\)
\(954\) 57.7228 28.7075i 1.86885 0.929439i
\(955\) 15.6434i 0.506207i
\(956\) 68.3972i 2.21212i
\(957\) −5.68614 + 1.33591i −0.183807 + 0.0431838i
\(958\) 46.7277i 1.50970i
\(959\) −22.9783 26.5330i −0.742006 0.856795i
\(960\) 4.00000 0.939764i 0.129099 0.0303307i
\(961\) 19.0000 0.612903
\(962\) 69.9565 2.25549
\(963\) −8.86141 17.8178i −0.285555 0.574172i
\(964\) 102.153i 3.29014i
\(965\) 22.2337 0.715728
\(966\) 12.7446 17.6155i 0.410050 0.566768i
\(967\) −24.2337 −0.779303 −0.389651 0.920962i \(-0.627405\pi\)
−0.389651 + 0.920962i \(0.627405\pi\)
\(968\) 62.1138i 1.99641i
\(969\) 1.88316 + 8.01544i 0.0604957 + 0.257493i
\(970\) −2.74456 −0.0881226
\(971\) −43.2119 −1.38674 −0.693369 0.720583i \(-0.743874\pi\)
−0.693369 + 0.720583i \(0.743874\pi\)
\(972\) −27.6060 + 62.3162i −0.885462 + 1.99879i
\(973\) 2.23369 + 2.57924i 0.0716087 + 0.0826867i
\(974\) 36.6303i 1.17371i
\(975\) 2.31386 + 9.84868i 0.0741028 + 0.315410i
\(976\) 44.1485i 1.41316i
\(977\) 38.8048i 1.24148i 0.784018 + 0.620738i \(0.213167\pi\)
−0.784018 + 0.620738i \(0.786833\pi\)
\(978\) −8.00000 34.0511i −0.255812 1.08883i
\(979\) 2.57924i 0.0824329i
\(980\) −4.37228 + 30.2921i −0.139667 + 0.967644i
\(981\) 0.313859 0.156093i 0.0100208 0.00498366i
\(982\) 27.4891 0.877213
\(983\) 11.1386 0.355266 0.177633 0.984097i \(-0.443156\pi\)
0.177633 + 0.984097i \(0.443156\pi\)
\(984\) −14.2337 60.5841i −0.453753 1.93135i
\(985\) 22.3692i 0.712741i
\(986\) 14.7446 0.469563
\(987\) 19.8030 27.3716i 0.630336 0.871247i
\(988\) −88.4674 −2.81452
\(989\) 12.6766i 0.403092i
\(990\) −5.37228 + 2.67181i −0.170742 + 0.0849158i
\(991\) 2.51087 0.0797606 0.0398803 0.999204i \(-0.487302\pi\)
0.0398803 + 0.999204i \(0.487302\pi\)
\(992\) 14.2337 0.451920
\(993\) −6.74456 + 1.58457i −0.214032 + 0.0502849i
\(994\) 68.4674 59.2945i 2.17165 1.88071i
\(995\) 12.9715i 0.411226i
\(996\) −40.4674 + 9.50744i −1.28226 + 0.301255i
\(997\) 21.8719i 0.692688i −0.938107 0.346344i \(-0.887423\pi\)
0.938107 0.346344i \(-0.112577\pi\)
\(998\) 26.1282i 0.827075i
\(999\) 18.9783 15.7359i 0.600445 0.497863i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 105.2.b.d.41.1 yes 4
3.2 odd 2 105.2.b.c.41.4 yes 4
4.3 odd 2 1680.2.f.g.881.2 4
5.2 odd 4 525.2.g.d.524.7 8
5.3 odd 4 525.2.g.d.524.2 8
5.4 even 2 525.2.b.e.251.4 4
7.2 even 3 735.2.s.g.521.1 4
7.3 odd 6 735.2.s.i.656.2 4
7.4 even 3 735.2.s.j.656.2 4
7.5 odd 6 735.2.s.h.521.1 4
7.6 odd 2 105.2.b.c.41.1 4
12.11 even 2 1680.2.f.h.881.4 4
15.2 even 4 525.2.g.e.524.2 8
15.8 even 4 525.2.g.e.524.7 8
15.14 odd 2 525.2.b.g.251.1 4
21.2 odd 6 735.2.s.i.521.2 4
21.5 even 6 735.2.s.j.521.2 4
21.11 odd 6 735.2.s.h.656.1 4
21.17 even 6 735.2.s.g.656.1 4
21.20 even 2 inner 105.2.b.d.41.4 yes 4
28.27 even 2 1680.2.f.h.881.3 4
35.13 even 4 525.2.g.e.524.1 8
35.27 even 4 525.2.g.e.524.8 8
35.34 odd 2 525.2.b.g.251.4 4
84.83 odd 2 1680.2.f.g.881.1 4
105.62 odd 4 525.2.g.d.524.1 8
105.83 odd 4 525.2.g.d.524.8 8
105.104 even 2 525.2.b.e.251.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.b.c.41.1 4 7.6 odd 2
105.2.b.c.41.4 yes 4 3.2 odd 2
105.2.b.d.41.1 yes 4 1.1 even 1 trivial
105.2.b.d.41.4 yes 4 21.20 even 2 inner
525.2.b.e.251.1 4 105.104 even 2
525.2.b.e.251.4 4 5.4 even 2
525.2.b.g.251.1 4 15.14 odd 2
525.2.b.g.251.4 4 35.34 odd 2
525.2.g.d.524.1 8 105.62 odd 4
525.2.g.d.524.2 8 5.3 odd 4
525.2.g.d.524.7 8 5.2 odd 4
525.2.g.d.524.8 8 105.83 odd 4
525.2.g.e.524.1 8 35.13 even 4
525.2.g.e.524.2 8 15.2 even 4
525.2.g.e.524.7 8 15.8 even 4
525.2.g.e.524.8 8 35.27 even 4
735.2.s.g.521.1 4 7.2 even 3
735.2.s.g.656.1 4 21.17 even 6
735.2.s.h.521.1 4 7.5 odd 6
735.2.s.h.656.1 4 21.11 odd 6
735.2.s.i.521.2 4 21.2 odd 6
735.2.s.i.656.2 4 7.3 odd 6
735.2.s.j.521.2 4 21.5 even 6
735.2.s.j.656.2 4 7.4 even 3
1680.2.f.g.881.1 4 84.83 odd 2
1680.2.f.g.881.2 4 4.3 odd 2
1680.2.f.h.881.3 4 28.27 even 2
1680.2.f.h.881.4 4 12.11 even 2