Properties

Label 105.2.b.a
Level 105
Weight 2
Character orbit 105.b
Analytic conductor 0.838
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 105.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.838429221223\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 - 2 \zeta_{6} ) q^{2} + ( 1 - 2 \zeta_{6} ) q^{3} - q^{4} - q^{5} -3 q^{6} + ( 1 + 2 \zeta_{6} ) q^{7} + ( 1 - 2 \zeta_{6} ) q^{8} -3 q^{9} +O(q^{10})\) \( q + ( 1 - 2 \zeta_{6} ) q^{2} + ( 1 - 2 \zeta_{6} ) q^{3} - q^{4} - q^{5} -3 q^{6} + ( 1 + 2 \zeta_{6} ) q^{7} + ( 1 - 2 \zeta_{6} ) q^{8} -3 q^{9} + ( -1 + 2 \zeta_{6} ) q^{10} + ( -2 + 4 \zeta_{6} ) q^{11} + ( -1 + 2 \zeta_{6} ) q^{12} + ( 5 - 4 \zeta_{6} ) q^{14} + ( -1 + 2 \zeta_{6} ) q^{15} -5 q^{16} + 6 q^{17} + ( -3 + 6 \zeta_{6} ) q^{18} + ( 2 - 4 \zeta_{6} ) q^{19} + q^{20} + ( 5 - 4 \zeta_{6} ) q^{21} + 6 q^{22} + ( 2 - 4 \zeta_{6} ) q^{23} -3 q^{24} + q^{25} + ( -3 + 6 \zeta_{6} ) q^{27} + ( -1 - 2 \zeta_{6} ) q^{28} + ( -4 + 8 \zeta_{6} ) q^{29} + 3 q^{30} + ( -2 + 4 \zeta_{6} ) q^{31} + ( -3 + 6 \zeta_{6} ) q^{32} + 6 q^{33} + ( 6 - 12 \zeta_{6} ) q^{34} + ( -1 - 2 \zeta_{6} ) q^{35} + 3 q^{36} -2 q^{37} -6 q^{38} + ( -1 + 2 \zeta_{6} ) q^{40} + 6 q^{41} + ( -3 - 6 \zeta_{6} ) q^{42} -8 q^{43} + ( 2 - 4 \zeta_{6} ) q^{44} + 3 q^{45} -6 q^{46} -12 q^{47} + ( -5 + 10 \zeta_{6} ) q^{48} + ( -3 + 8 \zeta_{6} ) q^{49} + ( 1 - 2 \zeta_{6} ) q^{50} + ( 6 - 12 \zeta_{6} ) q^{51} + 9 q^{54} + ( 2 - 4 \zeta_{6} ) q^{55} + ( 5 - 4 \zeta_{6} ) q^{56} -6 q^{57} + 12 q^{58} -12 q^{59} + ( 1 - 2 \zeta_{6} ) q^{60} + ( -4 + 8 \zeta_{6} ) q^{61} + 6 q^{62} + ( -3 - 6 \zeta_{6} ) q^{63} - q^{64} + ( 6 - 12 \zeta_{6} ) q^{66} + 8 q^{67} -6 q^{68} -6 q^{69} + ( -5 + 4 \zeta_{6} ) q^{70} + ( 2 - 4 \zeta_{6} ) q^{71} + ( -3 + 6 \zeta_{6} ) q^{72} + ( 4 - 8 \zeta_{6} ) q^{73} + ( -2 + 4 \zeta_{6} ) q^{74} + ( 1 - 2 \zeta_{6} ) q^{75} + ( -2 + 4 \zeta_{6} ) q^{76} + ( -10 + 8 \zeta_{6} ) q^{77} + 8 q^{79} + 5 q^{80} + 9 q^{81} + ( 6 - 12 \zeta_{6} ) q^{82} + ( -5 + 4 \zeta_{6} ) q^{84} -6 q^{85} + ( -8 + 16 \zeta_{6} ) q^{86} + 12 q^{87} + 6 q^{88} + 6 q^{89} + ( 3 - 6 \zeta_{6} ) q^{90} + ( -2 + 4 \zeta_{6} ) q^{92} + 6 q^{93} + ( -12 + 24 \zeta_{6} ) q^{94} + ( -2 + 4 \zeta_{6} ) q^{95} + 9 q^{96} + ( 4 - 8 \zeta_{6} ) q^{97} + ( 13 - 2 \zeta_{6} ) q^{98} + ( 6 - 12 \zeta_{6} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{4} - 2q^{5} - 6q^{6} + 4q^{7} - 6q^{9} + O(q^{10}) \) \( 2q - 2q^{4} - 2q^{5} - 6q^{6} + 4q^{7} - 6q^{9} + 6q^{14} - 10q^{16} + 12q^{17} + 2q^{20} + 6q^{21} + 12q^{22} - 6q^{24} + 2q^{25} - 4q^{28} + 6q^{30} + 12q^{33} - 4q^{35} + 6q^{36} - 4q^{37} - 12q^{38} + 12q^{41} - 12q^{42} - 16q^{43} + 6q^{45} - 12q^{46} - 24q^{47} + 2q^{49} + 18q^{54} + 6q^{56} - 12q^{57} + 24q^{58} - 24q^{59} + 12q^{62} - 12q^{63} - 2q^{64} + 16q^{67} - 12q^{68} - 12q^{69} - 6q^{70} - 12q^{77} + 16q^{79} + 10q^{80} + 18q^{81} - 6q^{84} - 12q^{85} + 24q^{87} + 12q^{88} + 12q^{89} + 12q^{93} + 18q^{96} + 24q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
41.1
0.500000 + 0.866025i
0.500000 0.866025i
1.73205i 1.73205i −1.00000 −1.00000 −3.00000 2.00000 + 1.73205i 1.73205i −3.00000 1.73205i
41.2 1.73205i 1.73205i −1.00000 −1.00000 −3.00000 2.00000 1.73205i 1.73205i −3.00000 1.73205i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 105.2.b.a 2
3.b odd 2 1 105.2.b.b yes 2
4.b odd 2 1 1680.2.f.b 2
5.b even 2 1 525.2.b.a 2
5.c odd 4 2 525.2.g.b 4
7.b odd 2 1 105.2.b.b yes 2
7.c even 3 1 735.2.s.b 2
7.c even 3 1 735.2.s.d 2
7.d odd 6 1 735.2.s.a 2
7.d odd 6 1 735.2.s.f 2
12.b even 2 1 1680.2.f.c 2
15.d odd 2 1 525.2.b.b 2
15.e even 4 2 525.2.g.c 4
21.c even 2 1 inner 105.2.b.a 2
21.g even 6 1 735.2.s.b 2
21.g even 6 1 735.2.s.d 2
21.h odd 6 1 735.2.s.a 2
21.h odd 6 1 735.2.s.f 2
28.d even 2 1 1680.2.f.c 2
35.c odd 2 1 525.2.b.b 2
35.f even 4 2 525.2.g.c 4
84.h odd 2 1 1680.2.f.b 2
105.g even 2 1 525.2.b.a 2
105.k odd 4 2 525.2.g.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.2.b.a 2 1.a even 1 1 trivial
105.2.b.a 2 21.c even 2 1 inner
105.2.b.b yes 2 3.b odd 2 1
105.2.b.b yes 2 7.b odd 2 1
525.2.b.a 2 5.b even 2 1
525.2.b.a 2 105.g even 2 1
525.2.b.b 2 15.d odd 2 1
525.2.b.b 2 35.c odd 2 1
525.2.g.b 4 5.c odd 4 2
525.2.g.b 4 105.k odd 4 2
525.2.g.c 4 15.e even 4 2
525.2.g.c 4 35.f even 4 2
735.2.s.a 2 7.d odd 6 1
735.2.s.a 2 21.h odd 6 1
735.2.s.b 2 7.c even 3 1
735.2.s.b 2 21.g even 6 1
735.2.s.d 2 7.c even 3 1
735.2.s.d 2 21.g even 6 1
735.2.s.f 2 7.d odd 6 1
735.2.s.f 2 21.h odd 6 1
1680.2.f.b 2 4.b odd 2 1
1680.2.f.b 2 84.h odd 2 1
1680.2.f.c 2 12.b even 2 1
1680.2.f.c 2 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(105, [\chi])\):

\( T_{2}^{2} + 3 \)
\( T_{17} - 6 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( 1 - T^{2} + 4 T^{4} \)
$3$ \( 1 + 3 T^{2} \)
$5$ \( ( 1 + T )^{2} \)
$7$ \( 1 - 4 T + 7 T^{2} \)
$11$ \( 1 - 10 T^{2} + 121 T^{4} \)
$13$ \( ( 1 - 13 T^{2} )^{2} \)
$17$ \( ( 1 - 6 T + 17 T^{2} )^{2} \)
$19$ \( ( 1 - 8 T + 19 T^{2} )( 1 + 8 T + 19 T^{2} ) \)
$23$ \( 1 - 34 T^{2} + 529 T^{4} \)
$29$ \( 1 - 10 T^{2} + 841 T^{4} \)
$31$ \( 1 - 50 T^{2} + 961 T^{4} \)
$37$ \( ( 1 + 2 T + 37 T^{2} )^{2} \)
$41$ \( ( 1 - 6 T + 41 T^{2} )^{2} \)
$43$ \( ( 1 + 8 T + 43 T^{2} )^{2} \)
$47$ \( ( 1 + 12 T + 47 T^{2} )^{2} \)
$53$ \( ( 1 - 53 T^{2} )^{2} \)
$59$ \( ( 1 + 12 T + 59 T^{2} )^{2} \)
$61$ \( ( 1 - 14 T + 61 T^{2} )( 1 + 14 T + 61 T^{2} ) \)
$67$ \( ( 1 - 8 T + 67 T^{2} )^{2} \)
$71$ \( 1 - 130 T^{2} + 5041 T^{4} \)
$73$ \( 1 - 98 T^{2} + 5329 T^{4} \)
$79$ \( ( 1 - 8 T + 79 T^{2} )^{2} \)
$83$ \( ( 1 + 83 T^{2} )^{2} \)
$89$ \( ( 1 - 6 T + 89 T^{2} )^{2} \)
$97$ \( 1 - 146 T^{2} + 9409 T^{4} \)
show more
show less