Defining parameters
Level: | \( N \) | \(=\) | \( 105 = 3 \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 105.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(32\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(105))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 20 | 3 | 17 |
Cusp forms | 13 | 3 | 10 |
Eisenstein series | 7 | 0 | 7 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(5\) | \(7\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(-\) | \(-\) | \(2\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(1\) |
Plus space | \(+\) | \(0\) | ||
Minus space | \(-\) | \(3\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(105))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | 5 | 7 | |||||||
105.2.a.a | $1$ | $0.838$ | \(\Q\) | None | \(1\) | \(1\) | \(1\) | \(1\) | $-$ | $-$ | $-$ | \(q+q^{2}+q^{3}-q^{4}+q^{5}+q^{6}+q^{7}+\cdots\) | |
105.2.a.b | $2$ | $0.838$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(-2\) | \(-2\) | \(2\) | $+$ | $+$ | $-$ | \(q-\beta q^{2}-q^{3}+3q^{4}-q^{5}+\beta q^{6}+q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(105))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(105)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 2}\)