Properties

Label 105.2.a
Level $105$
Weight $2$
Character orbit 105.a
Rep. character $\chi_{105}(1,\cdot)$
Character field $\Q$
Dimension $3$
Newform subspaces $2$
Sturm bound $32$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 105.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(32\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(105))\).

Total New Old
Modular forms 20 3 17
Cusp forms 13 3 10
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(5\)\(7\)FrickeDim
\(+\)\(+\)\(-\)\(-\)\(2\)
\(-\)\(-\)\(-\)\(-\)\(1\)
Plus space\(+\)\(0\)
Minus space\(-\)\(3\)

Trace form

\( 3 q + q^{2} - q^{3} + 5 q^{4} - q^{5} + q^{6} + 3 q^{7} - 3 q^{8} + 3 q^{9} + q^{10} + 4 q^{11} - 7 q^{12} - 6 q^{13} + q^{14} + 3 q^{15} - 3 q^{16} - 2 q^{17} + q^{18} - 4 q^{19} - 7 q^{20} - q^{21}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(105))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 5 7
105.2.a.a 105.a 1.a $1$ $0.838$ \(\Q\) None 105.2.a.a \(1\) \(1\) \(1\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}-q^{4}+q^{5}+q^{6}+q^{7}+\cdots\)
105.2.a.b 105.a 1.a $2$ $0.838$ \(\Q(\sqrt{5}) \) None 105.2.a.b \(0\) \(-2\) \(-2\) \(2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{2}-q^{3}+3q^{4}-q^{5}+\beta q^{6}+q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(105))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(105)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 2}\)