Properties

Label 105.10.b
Level $105$
Weight $10$
Character orbit 105.b
Rep. character $\chi_{105}(41,\cdot)$
Character field $\Q$
Dimension $96$
Newform subspaces $2$
Sturm bound $160$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 105.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(160\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(105, [\chi])\).

Total New Old
Modular forms 148 96 52
Cusp forms 140 96 44
Eisenstein series 8 0 8

Trace form

\( 96 q - 24576 q^{4} - 456 q^{7} - 32948 q^{9} + 132500 q^{15} + 5838576 q^{16} - 3060652 q^{18} + 873288 q^{21} + 1731096 q^{22} + 37500000 q^{25} + 2284260 q^{28} - 4760000 q^{30} - 24202824 q^{36} + 18157272 q^{37}+ \cdots - 5923419820 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(105, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
105.10.b.a 105.b 21.c $48$ $54.079$ None 105.10.b.a \(0\) \(-106\) \(-30000\) \(-228\) $\mathrm{SU}(2)[C_{2}]$
105.10.b.b 105.b 21.c $48$ $54.079$ None 105.10.b.a \(0\) \(106\) \(30000\) \(-228\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{10}^{\mathrm{old}}(105, [\chi])\) into lower level spaces

\( S_{10}^{\mathrm{old}}(105, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 2}\)