Defining parameters
Level: | \( N \) | \(=\) | \( 105 = 3 \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 105.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 21 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(160\) | ||
Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(105, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 148 | 96 | 52 |
Cusp forms | 140 | 96 | 44 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(105, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
105.10.b.a | $48$ | $54.079$ | None | \(0\) | \(-106\) | \(-30000\) | \(-228\) | ||
105.10.b.b | $48$ | $54.079$ | None | \(0\) | \(106\) | \(30000\) | \(-228\) |
Decomposition of \(S_{10}^{\mathrm{old}}(105, [\chi])\) into lower level spaces
\( S_{10}^{\mathrm{old}}(105, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 2}\)